An R companion to “Experimental Design”

Vikneswaran






Preface

This document is, as the title suggests, an R companion to the following
book: “Ezperimental Design with Applications in Management, Engineering
and the Sciences”, written by two professors who were with Boston Univer-
sity at the time. These are the full details of the book:

Title Experimental Design with
Applications in Management,
Engineering and the Sciences

Authors Paul D Berger & Robert E Maurer
Publisher Duxbury

Publication Date | 2002

ISBN 0-534-35822-5

It is informative to point out my purpose in writing this companion,
because as Agent Smith so rightly pointed out,

“...without purpose, we would not exist.”

In essence, this document is a step-by-step guide on how to use R to carry
out the analyses and techniques covered in the above book, which basically
covers ANOVA techniques. As such, the chapters here mirror the books’
(up to Chapter 11) and the datsets used are from the examples in the book.
This companion might prove useful to students who are using the epony-
mous book as their textbook, and are just starting out in R.

It must be categorically stated that I do not wish to make any profit out
of this document. I doubt if people would even consider paying for it any-
way! The sole aim is to get more people to use and contribute to R, and to
spread the love of statistics. I am currently not affiliated to any organisation
or university, but can be reached at the email address below. Datsets used
here can be downloaded from the website specified below.

Vikneswaran

viknesh_g@yahoo.co.uk
http://www.geocities.com/viknesh_g/
August 2005
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Part 1

Primary Focus on Factors
Under Study






Chapter 1

Introduction to
Experimental Design

Chapter 1 in the book, hereafter referred to as ED in order to save typing,
is quite qualitative. Among other things, it states that there are six steps
to experimental design, starting with planning the experiment and ending
with evaluating the conclusions of the experiment. The chapter then goes on
to discuss some real-world applications of designed experiments. R cannot
really help much here.
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Chapter 2

One-Factor Designs and the
Analysis of Variance

This chapter in ED considers the impact of a single factor on some perfor-
mance measure. In this document, the first section lays down some termi-
nology and notations used, hopefully minimising confusion when ED delves
into two and then three factor designs later. After that we cover the eas-
iest way to read datasets into R. The third section is the first real meat:
the aov() function. For the purpose of instruction, we use the battery-life
example from ED.

2.1 Notation and Terminology

The variable Y will be used to denote the dependent variable. In various
instances, it will also be referred to as the yield, response variable and per-
formance measure. The independent variable will be X. The statistical
model we desire to fit to the data is

Yij=p+7+e€j

where

.
|

1,...,R
= 1,...,C
= number of rows, or replicates in each factor

number of columns, or factors

T QW
I

= overall average (mean)
differential effect associated with jth level of X

S
I

€;j = noise or error associated with the ijth data value
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When discussing the sample statistics, Y’.j will refer to the mean of col-
umn j. For example,

le(Y11+Y21+"'+YRl)/R

Meanwhile, Y. will refer to the overall sample mean. Other notation worth
mentioning are TSS for total sum of squares, SSBc for sum of squares
between columns and SSW for sum of squares within columns. SSW
are equivalent to SSE, the error sum of squares.

2.2 Reading Datasets into R

For our purpose, we shall use example 2.2 from ED. It investigates how bat-
tery lifetimes vary according to the devices they are used on.

The first step to carrying out data analyses with R is, obviously, to
read in the data. Although R can handle data of several formats, it prefers
a simple text file, with two columns - one for the dependent variable and
another for the independent one. If this is available, the easiest way to read
in data is with the read.table () function. Assuming the file name is eg2.2,
this is the required syntax.

> battlife <- read.table("eg2.2")

It is natural for the first line in datasets to denote the names of the
columns. For example, the first 5 lines in eg2.2 are

hrs device

1.8 devl
5.0 devl
1.0 devl
4.2  dev2

To cater to this, use the following option
> battlife <- read.table("eg2.2", header = T)

Other times, we may leave comments at the beginning of the file to
remind ourselves where the data came from, when it was collected and so
on. You can tell R to ignore these comments, but you need to know how
many lines these comments take up.

> battlife <- read.table("eg2.2", header = T, skip = 3)

14



The above would tell R to skip the first 3 lines of the file , read in the
header, and then the data proper.

R has now stored the data in an object named battlife. Having read
in the header, we can access and work on individual columns with bat-
tlife$device and battlife$hrs. The mean and standard deviation of the
whole dataset can be obtained with the following commands.

> mean(battlife$hrs)
[1] 5.8
> sd(battlife$hrs)
[1] 2.244220
To obtain the mean lifetime of only the batteries used with device 8,
> mean(battlife$hrs[battlife$device == "dev8"])

[1] 7.4

2.3 The aov() function

We first have to create an aov object, which we name mod1, with the follow-
ing command.

> modl <- aov(hrs ~ device, data = battlife)

The first argument tells R that hrs is the dependent variable and device
is the independent one. The second argument is to tell R to look for these
variables in the object battlife. To print out the analysis in a pretty
format, use

> summary (mod1)

Df Sum Sq Mean Sq F value Pr(>F)
device 7 69.120 9.874 3.3816 0.02064 *
Residuals 16 46.720 2.920

Signif. codes: 0 ‘*xx’> 0.001 ‘**’ 0.01 ‘*’> 0.056 ‘.” 0.1 ¢ * 1

The entries in the table are easily understood. The entry in the rightmost
column is the p-value. If instead we wish to test at a fixed significance level,
say at the a = 0.075 level, we can find the critical F' value with

15
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Figure 2.1: Boxplots for Battery Life Data

> qf(0.075, 7, 16, lower.tail = F)
[1] 2.344197

The above command informs R that we are interested in the 0.075-th
quantile of the F' distribution with 7 and 16 degrees of freedom. The last
argument is crucial, because by default, R returns the quantile for the lower
tail.

Another function useful in one-factor analyses is boxplot (). It allows
for a visual comparison of the data obtained at the different levels.

> boxplot(hrs ~ device, data = battlife,
+ main = "Boxplot diagram")

The output from R is shown in Figure 2.1. The first two arguments to
the command are the same as those used above with aov (), while the final
argument provides the title of the plot. It can be altered according to your
preference.

16



Chapter 3

Some Further Issues in
One-Factor Designs and

ANOVA

This chapter is really an extension to the previous one, because whenever we
draw from inferences from an ANOVA, we have to check if any assumptions
have been violated. The next section covers these tests. If the assumptions
are severely violated, it might be appropriate to carry out a non-parametric
test. The Kruskal-Wallis test, which is available in R is covered here. Finally,
we include instructions on how to construct confidence intervals. The dataset
used is the battery life one, hence we assume the model has already been
built, as per Section 2.3.

3.1 Testing the Validity of the Assumptions

The three main assumptions made when conducting ANOVA tests are
1. The residuals ¢;; are independent and uncorrelated random variables.
2. The residuals ¢;; are normally distributed.
3. The residuals ¢;; have a mean 0 and a constant variance.

The first assumption is sensitive, while the latter two are more robust. As-
sumptions 1 and 3 are usually checked via graphical plots, while assumption
2 is usually checked through a normal-normal quantile plot.

Before proceeding with the plots, it has to be pointed out that the aov
object created contains more than just a method to print out the ANOVA
table. All the data that it holds can be listed with the following command.

> names (mod1)

17



[1] "coefficients" '"residuals" "effects"

[6] "fitted.values" "assign" "gr"

[9] "contrasts" "xlevels" "call"
[13] "model"

The individual elements can then be accessed
example, to list all the residuals, use

> modl$residuals

1 2 3
-8.000000e-01 2.400000e+00 -1.600000e+00
6 7 8
-4.000000e-01 2.800000e+00 -1.200000e+00
11 12 13
-2.000000e+00 2.000000e+00 -2.000000e+00
16 17 18
-4.000000e-01 -4.000000e-01 8.000000e-01
21 22 23

1.600000e+00 1.600000e+00 6.528930e-16

Ilrankll

"df .residual"

"terms"

with the $ operator. For

4
-4.000000e-01
9
-1.600000e+00
14
1.600000e+00
19
-4.000000e-01
24
-1.600000e+00

5
8.000000e-01
10
4.227033e-17
15
4.000000e-01
20
-1.200000e+00

Now, back to the plots. There will be 4 of them, and in order to save
space they will be carried out on a single graphical device. This will be
acheived with the help of the split.screen() command in R. The following
commands are to open a graphics device, split it into 4, then select the first

screen to be drawn on.

> x110)
> split.screen(c(2, 2))

[1] 1 2 3 4

> screen(1)

The first 3 plots are all for checking the assumptions 1 and 3. They
consist of plotting the residuals against the fitted values, the factor levels
and in time order. The last plot is quite meaningless in the battery life
example, but it is included for completeness’ sake. The fourth plot is the

normality check.

> plot(modi$fitted.values, modl$residuals,
+ main = "Residuals vs. Fitted", pch = 20)
> abline(h = 0, 1ty = 2)

> screen(2)

> plot(modi$model$device, modl$residuals,

18
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Figure 3.1: Residual Plots
+ main = "Residuals vs. Levels")
> screen(3)
> plot(1:24, modl$residuals, main = "Residuals vs. Time Order",
+ pch = 20)
> abline(h = 0, 1ty = 2)
> screen(4)
> qqnorm(modi$residuals, pch = 20)
> gqqline (mod1$residuals)

3.2 Kruskal-Wallis Test

As mentioned earlier, this is a non-parametric test for use when the above
assumptions have been significantly violated. It is quite easy to run; just
two lines of code are needed.

> mod2 <- kruskal.test(battlife$hrs, battlife$device)
> mod2

Kruskal-Wallis rank sum test

19



data: Dbattlife$hrs and battlife$device
Kruskal-Wallis chi-squared = 13.0096, df = 7, p-value = 0.07188

3.3 Confidence Intervals

3.3.1 For the Mean at a Specific Level

Confidence intervals can be constructed for each of the levels at which the
experiment was carried out. The formula is given by

X £ 4102 (s/VR)

Let us take the terms, one at a time from left to right. All of them will
be derived from the modl model that was built earlier. Returning to the
example on battery life, assume that we wish to compute the confidence
interval for batteries used on device 6. Obtaining X is quite straightforward.

> xbar <- mean(modi$model$hrs[modl$model$device == "dev6"])

The critical ¢ value can be obtained just as the quantile for the F' distri-
bution was obtained in Section 2.3. Remember that the degrees of freedom
follows the SSE degrees of freedom. To avoid making any careless mistakes,
use the following command to obtain the required quantile to construct a
95% confidence interval.

> tcrit <- qt(0.025, mod1$df.residual, lower.tail = F)

For s, we need to find the square root of MSW. Since MSW is the sum
of the square of the residuals divided by the degrees of freedom, there is a
simple formula we can apply.

> s <- sqrt(sum((modi$residuals)"2)/mod1$df.residual)

Finally, n comes from the number of data points at the level of device 6.
Here is a general way to find this number.

> n <- sum(modi$model$device == "dev6")

We can put them all together to obtain the lower and upper confidence
intervals simultaneously.

> xbar - tcrit * (s/sqrt(n)); xbar + tcrit * (s/sqrt(n))

[1] 2.508551
[1] 6.691449
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3.3.2 For the Difference Between Two Means

The formula to derive the confidence intervals for the difference between two

means is
(X1 — X2) £t a2 (3\/ 1/n1 + 1/”2)

Say we wish to find the interval for the difference between levels at devices
1 and 3. The inputs s and #;_,/2 have already been computed in Section
3.3.1. The remaining values can be obtained with

> n1 <- sum(modi$model$device == "devl")
> n2 <- sum(modl$model$device == '"dev3")
> x1bar <- mean(modl$model$hrs[modl$model$device == '"devi'])
> x2bar <- mean(modl$model$hrs[modi$model$device == "dev3"])

Substituting into the formula will yield the required interval.

> (x1bar - x2bar) - tcrit * (s * sqrt(1/m1 + 1/n2)) ; (xlbar
+ -x2bar) + tcrit * (s * sqrt(1/nl + 1/n2))

[1] -6.157755
[1]1 -0.2422446
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Chapter 4

Multiple-Comparison Testing

ED covers two kinds of multiple-comparison tests in this chapter - pairwise
and post hoc. A priori tests are covered in the next chapter on orthogonality.
ED covers 4 pairwise tests. However, R has only a function for Tukey’s
Honestly Significant Difference (HSD) test. Although the rest of the tests
are not included in R, they can still be carried out in a few steps. In this
document, we cover how to compute Fisher’s Least Significant Difference
(LSD) and how to use the TukeyHSD() function.

4.1 Fisher’s Least Significant Difference Test

The LSD test essentially involves performing a series of pairwise ¢ tests. It
is important to note that with LSD, we have to specify the individual error
rate, not the experimentwise one. The example used in this chapter is the
broker study. The data can be found in the file eg/.3. Here are the steps to
create mod2.

> brok <- read.table('"eg4.3", header = T)
> mod2 <- aov(index ~ broker, data = brok)

Now we can proceed to compute the LSD. In fact, we had actually com-
puted the LSD when deriving the confidence intervals for the difference
between two means in Section 3.3.2. Assume here that we wish to find the
LSD between brokers 2 and 5.

> n1 <- sum(mod2$model$broker == "brok2")

> n2 <- sum(mod2$model$broker == "brok5'")

> s <- sqrt(sum((mod2$residuals) "2)/mod2%$df.residual)
> tcrit <- qt(0.025, mod2$df.residual, lower.tail = F)
> LSD <- tcrit * s * sqrt(1/nl1 + 1/n2)

> LSD

23



[1] 5.474913

The last two lines compute the LSD and display it.

4.2 Tukey’s Honestly Significant Difference Test

The HSD test focuses on the experimentwise error rate, a, and assumes that
the number of replicates at each level are equal. To use the function, an aov
object is required as the first argument.

> mod2.tukey <- TukeyHSD(mod2, ordered = T)
> mod2. tukey

Tukey multiple comparisons of means
95%, family-wise confidence level
factor levels have been ordered

Fit: aov(formula = index ~ broker, data = brok)

$broker

diff lwr upr
broki-brok3 1 -6.8071443 8.807144
brok2-brok3 7 -0.8071443 14.807144
brok4-brok3 9 1.1928557 16.807144
brok5-brok3d 12 4.1928557 19.807144
brok2-broki -1.8071443 13.807144
brok4-broki1 0.1928557 15.807144
brokb-brokli 11 3.1928557 18.807144
brok4-brok2 .8071443 9.807144
brok5-brok2 -2.8071443 12.807144
brok5-brok4 -4.8071443 10.807144

W N = 00O,
|
l

Requesting that R order the difference makes it easy to read. Check to
see if 0 falls within the confidence intervals to determine if the difference
between the means is significant. From the first line alone, it can be inferred
that brokers 3 and 1 are in the same group. If you wish to compute the
HSD at the a= 0.05 level explicitly, use this.

> gcrit <- qtukey(0.05, length(mod2$xlevels[[1]]),
+ mod2$df.residual, lower.tail = F)

> hsd <- qcrit * s/sqrt(6)

> hsd

[1] 7.807144
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brok5—-brok1 brok5-brok3 brok1-brok3

brok5—-brok4

95% family—wise confidence level

Differences in mean levels of broker

Figure 4.1: Tukey’s HSD plot

20

Another neat trick R can do is to plot the confidence intervals. Note
that the order of the intervals follows the same listing as the text printout.

> plot(mod2.HSD)
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Chapter 5

Orthogonality, Orthogonal
Decomposition, and Their

Role in Modern
Experimental Design

In the last chapter, ED covered two multiple-comparison techniques. Here
a more versatile test is covered - orthogonal contrasts. The next section will
cover setting up the contrasts matrix, after which we will use two examples
from the text to illustrate their use in R. Fortunately, we have left the battery
life example behind for good.

5.1 Setting up the Contrasts Matrix

ED states that there are typically C' — 1 orthogonal contrasts when there
are C levels to the factor. These can be arranged in the rows of a matrix,
given that they abide by the following restrictions.

1. The dot product of every pair of different rows is 0.
2. The dot product of every row with itself is 1.
3. The sum of the entries in each row is 1.

An example of an orthonormal matrix, when there are 4 levels of the
factor, is given below.
/2 1/2 -1/2 -1/2
1/2 -1/2  1/2 —-1/2
1/2 -1/2 -1/2  1/2
There are countless ways to create a matrix object in R. As it is not our
main focus, we simply cover one of them here.

27



> con <- matrix(c(0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5,
+ 0.5, -0.5, -0.5, 0.5), nrow = 4, ncol = 3, byrow = F)
> con

[,11 [,21 [,3]
[1,] 0.5 0.5 0.5

[2,] 0.5 -0.5 -0.5
[3,] -0.5 0.5 -0.5
[4,] -0.5 -0.5 0.5

Notice that the contrasts are stored column-wise instead of row-wise.
We are not deliberately trying to confuse the reader. It is merely that R
prefers the contrasts this way. One could always create the constrasts matrix
row-wise and then apply t() to transpose it.

5.2 Portfolio Rating and Drug Comparison Exam-
ples

We focus first on the portfolio rating example. The dataset is available in file
egd. 3. After reading in the dataset, the next thing to do is not to build the
model straightaway, but to set the contrast according to the matrix created
earlier. The intuitive command is contrasts().

> pf <- read.table('"eg5.3", header = T)
> contrasts (pf$portfolio) <- con

Now when we build the model, R will note that we have specified a
certain set of contrasts. When we invoke the summary.aov() method, we
can recall the contrasts according to their columns - 1, 2 and 3. It is of
great consequence that the exact name of the factor column be used when
invoking the summary.aov() method. In this case it is “portfolio”.

> mod3 <- aov(rating ~ portfolio, data = pf)
> summary.aov(mod3, split = list(portfolio
+ aggressiveness = 1, balance = 2, environ

list(
3)))

Df Sum Sq Mean Sq F value Pr (>F)

portfolio 3 184.000 61.333 20.4444 5.220e-05 **x*
portfolio: aggressiveness 1 144.000 144.000 48.0000 1.587e-05 ***
portfolio: balance 1 36.000 36.000 12.0000 0.004682 *x*
portfolio: environ 1 4.000 4.000 1.3333 0.270690

Residuals 12 36.000 3.000

Signif. codes: O ‘**%’ 0.001 ‘**’> 0.01 ‘x> 0.05 .’ 0.1 ¢ > 1
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Now let us move on to the drug comparison example, whose data can be
obtained from the eg5.4 file.

> dg <- read.table("eg5.4",header=T)
> levels(dg$drug)

[1] "aspl" "asp2" "nonA" "placebo"

Notice that the levels have been ordered alphabetically, meaning that
the ordering is different from the ED book. Taking this into account, we
have to set up the contrasts matrix carefully and correctly.

> con <- matrix(c(0.2887, 0.2887, 0.2887, -0.866, -0.7071,
+ 0.7071, 0, 0, -0.4082, -0.4082, 0.8165, 0), 4, 3)

> contrasts(dg$drug) <- con

> mod4 <- aov(improvement ~ drug, data = dg)

> mod4$contrasts

$drug

[,1] [,2] [,3]
aspl 0.2887 -0.7071 -0.4082
asp2 0.2887 0.7071 -0.4082
nonA 0.2887 0.0000 0.8165

placebo -0.8660 0.0000 0.0000

The last command was to check that the contrasts have been set up
correctly and that the three questions of interest are being answered (via
the columns of the matrix): P versus P’, Al versus A2 and A versus Non-A.
Now we can ask R to split the SSB for us.

> summary.aov(mod4, split = list(drug = list("P vs. P’" =1,
+ "A1 vs. A2" = 2, "A vs. Non-A" = 3)))

Df Sum Sq Mean Sq F value Pr (>F)
drug 3 112.000 37.333 7.4667 0.0008018 *x*x
drug: P vs. P’ 1 42.667 42.667 8.5333 0.0068202 **
drug: Al vs. A2 1 4.000 4.000 0.8000 0.3787177
drug: A vs. Non-A 1 65.333 65.333 13.0667 0.0011681 *x*
Residuals 28 140.000 5.000

Signif. codes: 0 ‘*x*x’> 0.001 ‘**’ 0.01 ‘*x’> 0.05 ‘.” 0.1 ¢ * 1
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Chapter 6

Two Factor
Cross-Classification Designs

In the previous chapters, we dealt exclusively with experiments with only
one factor. This is a good starting point, but highly unrealistic. This chapter
introduces the reader to experiments with two factors. ED returns to the
battery life example again to illustrate two-way ANOVA tests. Just as in
the one-factor case, the assumptions are then tested and a non-parametric
test is demonstrated as an alternative.

6.1 Two Factor ANOVA

It is instructive to state the statistical model before going further.

Yijk = p+ pi + 75 + +1ij + €k

1,...,R
1,...,C
1,...,n

number of rows

number of columns

number of replicates at each treatment level

overall average (mean)

differential effect associated with the ¢th row factor

differential effect associated with the jth column factor

interaction effect associated with the ith row and jth column factor

noise or error associated with the ijkth data value
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We can dive straight into the battery life data, which now has a second
factor, brand. The dataset is in the file eg6.2.

> battlife <- read.table("eg6.2", header
> mod5 <- aov(hrs ~ device * brand, data
> summary (mod5)

T)
battlife)

Df Sum Sq Mean Sq F value Pr(>F)
device 2 0.280000 0.140000 5.6000 0.01915 =*
brand 3 0.210000 0.070000 2.8000 0.08533 .
device:brand 6 0.110000 0.018333 0.7333 0.63251
Residuals 12 0.300000 0.025000

Signif. codes: O ‘**%’ 0.001 ‘**’> 0.01 ‘x> 0.05 .’ 0.1 ¢ > 1

R is told to include the “device*brand” interaction term, and hence will
include the main effects device and brand by default. ED points out that
the interaction effects are not significant. For further evidence, we can draw
an interaction plot.

> interaction.plot(battlife$device, battlife$brand, battlife$hrs,
+ type = "1", main = "Battery Life Interaction Plot", xlab =
+ "Device", ylab = "Hours", trace.label = "brand", col = 1:4)

The first argument to the function denotes the levels that will be plotted
on the z-axis. The second tells R how many lines to draw on the plot. In
this case, there are 4 brands, resulting in 4 lines. The third argument is
the response, which will be plotted on the y-axis. By default, R plots the
mean of each treatment combination, that is, }_’U In the above, we have
also requested R to plot lines (by joining the dots), to label the axes as we
have specified and to use 4 different colours.

As the ANOVA output and the interaction plot in Figure 6.1 both seem
to indicate that the interaction effect is insignificant, ED recommends pool-
ing the SSE and SSI. This can be easily achieved with

> modba <- aov(hrs ~ device + brand, data = battlife)
> summary (mod5a)

Df Sum Sq Mean Sq F value Pr(>F)
device 2 0.28000 0.14000 6.1463 0.009234 *x
brand 3 0.21000 0.07000 3.0732 0.054089 .
Residuals 18 0.41000 0.02278

Signif. codes: O ‘**%’ 0.001 ‘**’> 0.01 ‘x> 0.05 .’ 0.1 ¢ > 1
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Figure 6.1: Interaction Plot
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Residuals vs. Fitted
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Figure 6.2: Residual Plot

It always good to check the residuals in our model. Here we only dislay
two plots - in Figures 6.2 and 6.3. The remaining can be drawn the same
way as in section 3.1.

> plot (mod5a$fitted.values, modba$residuals,
+ main = "Residuals vs. Fitted", pch = 20)
> abline(h = 0, 1ty = 2)

> qqnorm(modba$residuals, pch = 20)

> qqline(mod5a$residuals)

6.2 Two Factors with No Replication and No In-
teraction

When there are no replicates, ED tells us that we have to assume there

is no interaction and use the SSI as the SSE. To tell R to do this, simply

create a model with only main effects. The rest will lumped with the SSE
automatically. The data for this example can be found in the file eg6.8.
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Figure 6.3: Normal Quantile Plot
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> unrep <- read.table('"eg6.8", header = T)
> mod6 <- aov(resp ~ A + B, data = unrep)
> summary (mod6)

Df Sum Sq Mean Sq F value Pr (>F)
A 2 32.000 16.000 72  6.4e-05 **x
B 3 28.667 9.556 43 0.0001888 *xx*
Residuals 6 1.333 0.222

Signif. codes: 0 ‘**x’> 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ 1

Naturally, the assumptions should be checked via the residuals, and
if they are severly violated, the Friedman nonparametric test (see below)
should be carried out.

6.3 Friedman Nonparametric Test

Remember that this test is for two factor ANOVA without replication. The
required function in R is friedman.test (). The dataset for this angioplasty
example is in eg6.11. The function can be called in three different ways. All
give the same output, so it depends on what format your dataset is in. In
our case, since our responses are all in a vector, we can use 2 of the methods
directly.

The first method involves specifying the response vector, group vector
(which we wish to test) and the block factor in the first 3 arguments. In
this example, our groups are angioplasty unit type and the blocks are the
balloon dilation catheter type. The response is the bursting pressure.

> angi <- read.table("eg6.11", header = T)
> friedman.test (angi$press, angi$angio, angi$balloon)

Friedman rank sum test

data: angi$press, angiPangio and angi$balloon
Friedman chi-squared = 20.7241, df = 3, p-value = 0.0001201

The second method requires the formula and the dataset to specified.
> friedman.test(press ~ angio | balloon, data = angi)

Friedman rank sum test

data: press and angio and balloon
Friedman chi-squared = 20.7241, df = 3, p-value = 0.0001201
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The last method requires manipulation of our dataset to form a matrix
of the response. Data will be in the columns according to the factor we
desire to test. The rows will contain the block factor.

> x1 <- angi[angi$angio == "typed", 1]
> x2 <- angilangi$angio == "typeB", 1]
> x3 <- angilangi$angio == "typeC", 1]
> x4 <- angilangi$angio == "typeD", 1]
> angi_data <- cbind(x1, x2, x3, x4)
> angi_data

x1 x2 x3 x4

[1,] 24 26 25 22
[2,] 27 27 26 24
[3,]1 19 22 20 16
[4,] 24 27 25 23
[5,1 22 25 22 21
[6,]1 26 27 24 24
[7,1 27 26 22 23
[8,]1 25 27 24 21
[9,1 22 23 20 19

Taking a look at the dataset, we see that it is identical to the table
diplayed in the textbook. Now we can demonstrate the final way of calling
the friedman.test () function.
> friedman.test (angi_data)

Friedman rank sum test

data: angi_data
Friedman chi-squared = 20.7241, df = 3, p-value = 0.0001201
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Chapter 7

Nested, or Hierarchical
Designs

At first look, nested designs look the same as two factor designs. It is crucial
to understand the difference though. With two factor designs, each level of
factor B (the row) stays the same across all levels of factor A (the column).
Whereas with nested designs, the level of factor B differs across factor A.
Using the example from ED, if it were a two factor experiment, the same
professor would teach all statistical packages. However, since it is a nested
design, different professors teach the different packages.

7.1 The Model and its Analysis

It will also be clear from the model that there is no interaction term in a
nested model. The reason being that the levels of the minor factor have no
link to the other levels of their major factor.

Yije = o+ pi + 765 + €Gijyk

where
1 = 1,2,3,....M
= 1,2,3,....m
= 1,2,3,...,n

number of levels of the major factor

= number of levels of the minor factor

> 3 R o
Il

= number of replicates per (z,j) combination

Building the model is really quite straightforward in R. It is a matter of
specifying the right formula for R to interpret. The dataset for this example
is in eg7.3.
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> stud <- read.table("eg7.3", header = T)
> mod7 <- aov(score ~
> summary (mod7)

Df Sum Sq Mean Sq F value Pr(>F)

statspkg 3 306.30 102.10 6.9080 0.005902 =*x*
statspkg:professor 8 162.56 20.32 1.3748 0.298572
Residuals 12 177.36 14.78

Signif. codes: O ‘**x’ 0.001 ‘**’> 0.01 ‘x’ 0.05 ¢.” 0.1 ¢ > 1

The never-before-seen term is the one with the colon. It informs R that
the levels of professor are nested within statspkg.
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Chapter 8

Designs with Three or More
Factors: Latin-Square and
Related Designs

Latin square designs are used when we have 3 factors, each with the same
number of levels, say m, but do not wish to carry out the full experiment
with m? treatment combinations. Instead, we can get by with just m? com-
binations. When we have more than 3 factors, the related Graeco-Latin
square designs are used. Since we are not carrying out the full experiment,
we have to make the assumption that there is no, or only negligible, inter-
action between the factors. In upcoming chapters, ED will cover two level
factorial designs, where this assumption need not be made and where the
interaction effects of interest can still be estimated.

First though, what is a Latin square? It is a matrix of size m by m, with
the entries in each row and column being 1 to m. Moreover, each number
appears exactly once in each row, and exactly once in each column. A 4x4
example is given below.

=] Wl N
=N e

LI =

DN| Q| = >

This is in fact the Latin square on which the valet-parking use example
in ED is based. The dataset is available in eg8.2. Once you have yourself a
Latin square, use the values in the matrix to index your “inside” factor, and
add the row and column factors to arrive at your experimental set-up.
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By | By | B3 | By
A1 | Cy | Cy | C3 | Oy
Ay | C3 | C1 | Cy | Oy
A3 | Cy | C3 ] C1 | O
Ay | C1 | Oy | Oy | C3

8.1 Latin Square Analysis with R
As mentioned earlier, the model will not include an interaction term.
Yijk = p+ pi + 75 + Yk + €k

where 7,j and k all run from 1 to m. Analysing the data is quite similar to
the designs in previous chapters.

> valuse <- read.table("eg8.2", header = T)
> mod8 <- aov(pats ~ cost + spaces + valets, data = valuse)
> summary (mod8)

Df Sum Sq Mean Sq F value Pr (>F)

cost 3 370.5 123.5 2.9173 0.122507
spaces 3 9025.0 3008.3 71.0630 4.441e-05 *x**
valets 3 1389.5 463.2 10.9409 0.007591 *x*

Residuals 6 254.0 42.3

Signif. codes: 0 ‘**x’> 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1

8.2 Other useful R Functions for ANOVA

Before moving on to Part II of ED, here we cover a couple of functions
that might be useful but do not fall into any specific chapter of ED. Firstly,
the function model.tables() can be used to list the means at the different
treatment combinations and the effects of the different factor levels. The first
argument to the function has to be the result of a call to the aov() function,
and the second specifies whether you desire the means or the estimated
effects.

> model.tables(mod8, "means")

Tables of means
Grand mean

51.75
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cost

cost

cosl cos2 cos3 cos4
49.50 50.75 47.00 59.75

spaces
spaces

spal spa2 spa3 spa4
87.5 59.0 31.0 29.5

valets
valets
vall val2 val3 val4
40.50 48.50 51.75 66.25

> model.tables (mod8, "effects')

Tables of effects

cost
cost
cosl cos2 cos3 cos4
-2.25 -1.00 -4.75 8.00

spaces
spaces

spal spa2 spa3 spad
35.756 7.25 -20.75 -22.25

valets
valets

vall val2 val3 vald
-11.25 -3.26 0.00 14.50

The output from the second call can be interpreted according to the
model in 8.1. Thus, g1 = —2.25, g2 = —1.00 and so on. The estimate for y
is given in the first line in the first function call, 51.75.

The second function of note, replications() is a quick way of checking
how many replicates there are at each level in the model. The input to the
function is the same as that to the aov call. The proposed model has to
be fully specified. The function returns a list only if the model is unbal-
anced. Hence using !is.list(replications(pats cost + spaces +
valets,data=valuse)) will allow you to test if the model is balanced.
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> replications(pats ~ cost + spaces + valets, data = valuse)

cost spaces valets
4 4 4

~

> lis.list(replications(pats
+ valets, data = valuse))

cost + spaces +

[1] TRUE

With this, we come to an end to Part I of ED.
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Part 11

Primary Focus on the
Number of Levels of a Factor
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Chapter 9

Two-Level Factorial Designs

This chapter in the book is concerned primarily with demonstrating how to
compute the effects, by hand, in a two level factorial experiment. However,
tasks such as noting the Yates order, assigning plus and minus signs should
be transparent to the user of a good software, such as R. Hence this chap-
ter is rather short compared to the textbook. We take the opportunity to
introduce another useful function in R, plot.design().

9.1 Analysing Two-Level Factorial Designs

The dataset used is available in eg9.5. The levels of high and low are used
in order to retain the terminology used in ED.

> rate <- read.table("eg9.5", header = T)
> mod9 <- aov(resp ~ postage * price * env_size, data = rate)

> summary (mod9)

Df Sum Sq Mean Sq

postage 1 0.0003125 0.0003125
price 1 0.0047045 0.0047045
env_size 1 0.0000720 0.0000720
postage:price 1 0.0000720 0.0000720
postage:env_size 1 0.0000045 0.0000045
price:env_size 1 0.0000405 0.0000405
postage:price:env_size 1 0.0000500 0.0000500

Since there is only one replicate at each treatment combination, no F-
values are computed. The magnitude of the estimated effects can be viewed
with
> model.tables (mod9, "effects")
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Tables of effects

postage
high low
0.00625 -0.00625
rep 4.00000 4.00000

price
high low
-0.02425 0.02425
rep 4.00000 4.00000

env_size
high low
0.003 -0.003

rep 4.000 4.000

postage:price
price
postage high 1low
high -0.003 0.003
rep 2.000 2.000
low 0.003 -0.003
rep 2.000 2.000

postage:env_size
env_size
postage high 1low
high 7e-04 -7e-04
rep 2e+00 2e+00
low -7e-04 T7e-04
rep 2e+00 2e+00

price:env_size
env_size
price high low
high 0.0022 -0.0022
rep 2.0000 2.0000
low -0.0022 0.0022
rep 2.0000 2.0000

postage:price:env_size
, » env_size = high
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price
postage high low
high -0.0025 0.0025
rep 1.0000 1.0000
low 0.0025 -0.0025
rep 1.0000 1.0000

, , env_size = low

price
postage high low
high 0.0025 -0.0025
rep 1.0000 1.0000
low -0.0025 0.0025
rep 1.0000 1.0000

The values are half of what are computed in ED because R provides
the change in response per unit change in the factor level, whereas the
book provides the change in response per two-unit change in the factor
level. To obtain a plot of the mean response at the various factor levels, use
plot.design.

> plot.design(resp ~ postage * price * env_size,
+ data = rate, main = "Main Effects Plot")
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Figure 9.1: Mean Response By Factor
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Chapter 10

Confounding/Blocking in ok
Designs

In our opinion, this chapter is where we begin to see the true beauty of
experimental design. The ability to choose which effect(s) we wish to con-
found is very useful when we cannot run all the treatments under the same
conditions. Computing of F-values are shown in Section 10.3.

The first two sections of this chapter are on choosing which effects to
confound and finding out which effects are confounded by our set-up. To
do this, it is necessary to install an add-on package for R. This is described
next. Remember that installation needs to be carried out as the root user
under *NIX environments and as the Administrator under WinXP.

10.1 Simple Confounding

The required package is called conf .design(). The first of the 3 steps below
is to download and install the packages. The second is to attach the new
library for this session. Lastly, we can read the online documentation with
the “?7” operator.

> install.packages("conf.design")
> library(conf.design)
> ?conf.design

Simple confounding occurs when only one effect is confounded, implying
that the treatments have been split into 2 blocks. The function conf .design()
will describe how the treatments should be split according to the specified
confounded effect. Suppose we have a 23 factorial experiment, which we
need to run in 2 blocks. Assume also that we do not mind being unable
to estimate the effect of factor C. In other words, the effect of C' will be
confounded.
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> conf.design(c(0, 0, 1), p = 2, block.name = "blk",
+ treatment.names = c("A", "B", "C"))

blk AB C
1 0000
2 0100
3 0010
4 0110
5 1001
6 1101
7 1011
g§ 1111

R tells us that treatments 1,a,b and ab should be run in block 0 and
the rest in block 1. The first input to the function is a vector specifying
the effect we wish to confound, in this case C. R will deduce the number
of factors from here. In Section 10.2 below, when we carry out multiple
confounding, this first entry will be a matrix. The second argument is the
number of levels of each factor. Third is a name for the blocks. Last of all
comes the names of the factors.

If we wish to carry out partial confounding, we merely have to specify
the different effects we wish to confound and run the function several times.

10.2 Multiple Confounding

Multiple confounding is carried out when the number of blocks is more than
2. In such situations it is crucial to know how many effects must be specified
and how many will be confounded in total. Imagine now we wish to run a 25
factorial experiment in 4 blocks of 8 treatment combinations each. In total
3 effects will be confounded, and we as the designers only have the leeway
to specify 2 of these three. Suppose we pick the effects AB and BCD to
throw away.

> G <- rbind(c(1, 1, 0, 0, 0), c(0, 1, 1, 1, 0))
> conf.design(G, p = 2, block.name = "blk",
+ treatment.names = c("A", "B", "C", "D", "E"))

blk ABCDE
1 0000000
2 0011100
3 0011010
4 0000110
5 0000001
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6 0011101
7 0011011
8§ 0000111
9 0111000
10 0100100
11 0100010
12 0111110
13 0111001
14 0100101
156 0100011
16 0111111
17 101 0000
18 1001100
19 1001010
20 1010110
21 1010001
22 1001101
23 1001011
24 1010111
25 1101000
26 1110100
2r 1110010
28 1101110
29 1101001
30 1110101
31 1110011
32 1101111

The first line is to specify the two effects in the form of a matrix. The
next command will output the desired blocks. When we only need to list all
the confounded effects, we can call on conf.set() and pass the effects we
have chosen as the argument. In the above example, we pass AB and BCD
as a matrix and the function will list all the 3 confounded effects.

> conf.set(G, p = 2)

[,11 [,2] [,3] [,4] [,5]
[1,] 1 1 0 0 0
[2,] 0 1 1 1 0
[3,] 1 0 1 1 0

10.3 Analysing Block Designs with R

The textbook ED does not demonstrate any example on the above, so we
have to make do with a purely pedantic dataset. It can be found in the file

53



eg10. Tt is from a 23 full factorial experiment with 2 replicates. It is run in
two blocks with the confounded effect being ABC. To run the model just
remember that when we split the treatments into blocks, we have assumed
that there is no interaction between the block factor and the other factors
of interest. Thus when specifying the formula, the block is purely additive.
Having replicates will allow us to estimate the error. Without it, all degrees
of freedom will be used up on the effects.

> library(conf.design)

> dat <- read.table("egl0", header = T)

> mod10 <- aov(resp ~ block + A * B ¥ C, data = dat)
> summary (mod10)

Df Sum Sqg Mean Sq F value Pr (>F)

block 1 1.808e-37 1.808e-37 1.647e-33 1.0000

A 1 5.529e-36 5.529e-36 5.038e-32 1.0000

B 1 0.0094090 0.0094090 85.7312 1.503e-05 *%**

C 1 0.0001440 0.0001440 1.3121 0.2851

A:B 1 4.516e-36 4.516e-36 4.115e-32 1.0000

A:C 1 1.176e-35 1.176e-35 1.072e-31 1.0000

B:C 1 0.0000810 0.0000810 0.7380 0.4153
Residuals 8 0.0008780 0.0001097

Signif. codes: O ‘**x’ 0.001 ‘**’> 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ * 1

Notice that there is no information on ABC as it is confounded.
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Chapter 11

Two-Level
Fractional-Factorial Designs

Most of the hard work in learning R has been done in the earlier chapters.
Here we go through two examples from ED - the one on after-hours training
and the magazine study. The former has replicates in its design, meaning
that R is able to compute F-values for inference.

11.1 After-Hours Training Example

The data for this example is in the eg71.7 file. In the data, a 0 indicates
a low level and 1 a high. The design is 237! half-replicate design. The
confounded effect comes from the relation I = ABC.

> train <- read.table("egll.7", header = T)
> summary(aov(resp ~ A * B * C, data = train))

Df Sum Sq Mean Sq F value Pr(>F)

A 1 294 294 14.7 0.001037 *x*

B 1 24 24 1.2 0.286338

C 1 6 6 0.3 0.589944

Residuals 20 400 20

Signif. codes: 0 ‘*xx’> 0.001 ‘**’ 0.01 ‘*x’> 0.05 ‘.” 0.1 ¢ > 1

Notice that R drops the two way interaction terms. Otherwise the table
produced is identical to Table 11.21 in ED.

11.2 Magazine Ad Study Example

The data for this set is contained in egf/1.8. The experiment is from a
26=2 quarter-replicate design. The confounded effects are defined by the
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I = ABCD = ABEF = CDEF relation.

> adstud <- read.table("eg11.8", header = T)
> summary(aov(Y ~ A ¥ B * C * D » E ¥ F, data = adstud))

Df Sum Sq Mean Sq
A 1 14 14
B 1 9264 9264
C 1 46 46
D 1 40100 40100
E 1 0.0625 0.0625
F 1 160601 160601
A:B 1 1 1
A:C 1 8 8
B:C 1 1 1
A:E 1 0.0625 0.0625
B:E 1 14 14
C:E 1 0.0625 0.0625
D:E 1 1 1
A:C:E 1 18 18
B:C:E 1 3 3

There are no F-values as the M SE cannot be estimated. Even though
the entries in the table seem to be different from Table 11.27 given in ED,
they are actually the same. It is just that R specifies different aliased effects
from SPSS.
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