
snpStats vignette
Example of genome-wide association testing

David Clayton and Chris Wallace

October 24, 2025

The snpMatrix and snpStats packages
The package “snpMatrix” was written to provide data classes and methods to facilitate the
analysis of whole genome association studies in R. In the data classes it implements, each
genotype call is stored as a single byte and, at this density, data for single chromosomes
derived from large studies and new high-throughput gene chip platforms can be handled
in memory by modern PCs and workstations. The object–oriented programming model
introduced with version 4 of the S-plus package, usually termed “S4 methods” was used to
implement these classes.

snpStats arose out of the need to store, and analyse, SNP genotype data in which sub-
jects cannot be assigned to the three possible genotypes with certainty. This necessitated a
change in the way in which data are stored internally, although snpStats can still handle con-
ventionally called genotype data stored in the original snpMatrix storage mode. snpStats
currently lacks some facilities which were present in snpMatrix (although, hopefully, the
important gaps will soon be filled) but it also includes several important new facilities. This
vignette currently exploits none of the new facilities; these are mainly used in the vignette
which deals with imputation and meta-analysis.

For population-based studies, both quantitative and qualitative phenotypes may be anal-
ysed but, at present, rather more limited facilities are available for family–based studies.
Flexible functions are provided which can carry out single SNP tests which control for po-
tential confounding by quantitative and qualitative covariates. Tests involving several SNPs
taken together as “tags” are also supported. The original snpMatrix package was described
by Clayton and Leung (2007) Human Heredity, 64: 45–51. Since this publication many new
facilities have been introduced; some of these are explored in further vignettes.

Getting started
We shall start by loading the the packages and the data to be used in the first part of this
exercise, which concerns a population–based case–control study:

1

> require(snpStats)
> require(hexbin)
> data(for.exercise)

In addition to the snpStats package, we have also loaded the hexbin package which
reduces file sizes and legibility of plots with very many data points.

The data have been created artificially from publicly available datasets. The SNPs have
been selected from those genotyped by the International HapMap Project1 to represent the
typical density found on a whole genome association chip, (the Affymetrix 500K platform2)
for a moderately sized chromosome (chromosome 10). A (rather too) small study of 500
cases and 500 controls has been simulated allowing for recombination using beta software
from Su and Marchini. Re-sampling of cases was weighted in such a way as to simulate three
“causal” locus on this chromosome, with multiplicative effects of 1.3, 1.4 and 1.5 for each
copy of the risk allele at each locus. It should be noted that this is a somewhat optimistic
scenario!

You have loaded three objects:

1. snps.10, an object of class “SnpMatrix” containing a matrix of SNP genotype calls.
Rows of the matrix correspond to subjects and columns correspond to SNPs:

> show(snps.10)

A SnpMatrix with 1000 rows and 28501 columns
Row names: jpt.869 ... ceu.464
Col names: rs7909677 ... rs12218790

2. snp.support, a conventional R data frame containing information about the SNPs
typed. To see its contents:

> summary(snp.support)

chromosome position A1 A2
Min. :10 Min. :1.02e+05 A:14019 C: 2349
1st Qu.:10 1st Qu.:2.90e+07 C:12166 G:12254
Median :10 Median :6.74e+07 G: 2316 T:13898
Mean :10 Mean :6.69e+07
3rd Qu.:10 3rd Qu.:1.02e+08
Max. :10 Max. :1.35e+08

Row names of this data frame correspond with column names of snps.10 and comprise
the (unique) SNP identifiers.

1http://www.hapmap.org
2http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype_data.affx

2

3. subject.support, another conventional R data frame containing further information
about the subjects. The row names coincide with the row names of snps.10 and
comprise the (unique) subject identifiers. In this simulated study there are only two
variables:

> summary(subject.support)

cc stratum
Min. :0.0 CEU :494
1st Qu.:0.0 JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max. :1.0

The variable cc identifies cases (cc=1) and controls (cc=0) while stratum, coded 1 or
2, identifies a stratification of the study population — more on this later.

In general, analysis of a whole–genome association study will require a subject support
data frame, a SNP support data frame for each chromosome, and a SNP data file for each
chromosome3.

A short summary of the contents of snps.10 is provided by the summary function. This
operation actually produces two “summaries of summaries”. First, summary statistics are
calculated for each row (sample), and their results summarised. Then summary statistics
are calculated for each column (SNP) and their results summarised.

> summary(snps.10)

$rows
Call.rate Certain.calls Heterozygosity

Min. :0.988 Min. :1 Min. :0.000
1st Qu.:0.990 1st Qu.:1 1st Qu.:0.299
Median :0.990 Median :1 Median :0.308
Mean :0.990 Mean :1 Mean :0.307
3rd Qu.:0.990 3rd Qu.:1 3rd Qu.:0.316
Max. :0.992 Max. :1 Max. :0.339

$cols
Calls Call.rate Certain.calls RAF MAF

Min. : 975 Min. :0.975 Min. :1 Min. :0.000 Min. :0.000
1st Qu.: 988 1st Qu.:0.988 1st Qu.:1 1st Qu.:0.230 1st Qu.:0.126
Median : 990 Median :0.990 Median :1 Median :0.503 Median :0.232

3Support files are usually read in with general tools such as read.table. The snpStats package contains
a number of tools for reading SNP genotype data into an object of class “SnpMatrix”.

3

Mean : 990 Mean :0.990 Mean :1 Mean :0.500 Mean :0.242
3rd Qu.: 992 3rd Qu.:0.992 3rd Qu.:1 3rd Qu.:0.767 3rd Qu.:0.358
Max. :1000 Max. :1.000 Max. :1 Max. :1.000 Max. :0.500

P.AA P.AB P.BB z.HWE
Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :-21.973
1st Qu.:0.0656 1st Qu.:0.208 1st Qu.:0.0646 1st Qu.: -2.850
Median :0.2688 Median :0.320 Median :0.2749 Median : -1.191
Mean :0.3462 Mean :0.307 Mean :0.3465 Mean : -1.861
3rd Qu.:0.6059 3rd Qu.:0.422 3rd Qu.:0.6036 3rd Qu.: -0.101
Max. :1.0000 Max. :0.550 Max. :1.0000 Max. : 3.708

NA's :4

The row-wise and column-wise summaries are calculated with the functions row.summary
and col.summary. For example, to calculate summary statistics for each SNP (column):

> snpsum <- col.summary(snps.10)
> summary(snpsum)

Calls Call.rate Certain.calls RAF MAF
Min. : 975 Min. :0.975 Min. :1 Min. :0.000 Min. :0.000
1st Qu.: 988 1st Qu.:0.988 1st Qu.:1 1st Qu.:0.230 1st Qu.:0.126
Median : 990 Median :0.990 Median :1 Median :0.503 Median :0.232
Mean : 990 Mean :0.990 Mean :1 Mean :0.500 Mean :0.242
3rd Qu.: 992 3rd Qu.:0.992 3rd Qu.:1 3rd Qu.:0.767 3rd Qu.:0.358
Max. :1000 Max. :1.000 Max. :1 Max. :1.000 Max. :0.500

P.AA P.AB P.BB z.HWE
Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :-21.973
1st Qu.:0.0656 1st Qu.:0.208 1st Qu.:0.0646 1st Qu.: -2.850
Median :0.2688 Median :0.320 Median :0.2749 Median : -1.191
Mean :0.3462 Mean :0.307 Mean :0.3465 Mean : -1.861
3rd Qu.:0.6059 3rd Qu.:0.422 3rd Qu.:0.6036 3rd Qu.: -0.101
Max. :1.0000 Max. :0.550 Max. :1.0000 Max. : 3.708

NA's :4

The second command duplicates the latter part of the result of summary(snps.10), and
the contents of snpsum are fairly self-explanatory. We could look at a couple of summary
statistics in more detail:

> par(mfrow = c(1, 2))
> hist(snpsum$MAF)
> hist(snpsum$z.HWE)

4

Histogram of snpsum$MAF

snpsum$MAF

F
re

qu
en

cy

0.0 0.2 0.4

0
10

00
20

00
30

00
Histogram of snpsum$z.HWE

snpsum$z.HWE

F
re

qu
en

cy

−20 −10 0 5

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

The latter should represent a z-statistic. i.e. a statistic normally distributed with
mean zero and unit standard deviation under the hypothesis of Hardy–Weinberg equilib-
rium (HWE). Quite clearly there is extreme deviation from HWE, but this can be accounted
for by the manner in which this synthetic dataset was created.

The function row.summary is useful for detecting samples that have genotyped poorly.
This calculates call rate and mean heterozygosity across all SNPs for each subject in turn:

> sample.qc <- row.summary(snps.10)
> summary(sample.qc)

Call.rate Certain.calls Heterozygosity

5

Min. :0.988 Min. :1 Min. :0.000
1st Qu.:0.990 1st Qu.:1 1st Qu.:0.299
Median :0.990 Median :1 Median :0.308
Mean :0.990 Mean :1 Mean :0.307
3rd Qu.:0.990 3rd Qu.:1 3rd Qu.:0.316
Max. :0.992 Max. :1 Max. :0.339

(note that the last command yields the same as the first part of summary(snps.10)). The
plot of heterozygosity against call rate is useful in detecting poor quality samples:

> par(mfrow = c(1, 1))
> plot(sample.qc)

6

Call.rate

0.
6

0.
8

1.
0

1.
2

1.
4

0.988 0.990 0.992

0.6 0.8 1.0 1.2 1.4

Certain.calls

0.
98

8
0.

99
0

0.
99

2
0.00 0.10 0.20 0.30

0.
00

0.
10

0.
20

0.
30

Heterozygosity

There is one clear outlier.

The analysis
We’ll start by removing the ‘outlying’ sample above (the sample with Heterozygosity near
zero):

> use <- sample.qc$Heterozygosity>0
> snps.10 <- snps.10[use,]
> subject.support <- subject.support[use,]

7

Then we’ll see if there is any difference between call rates for cases and controls. First
generate logical arrays for selecting out cases or controls:4

> if.case <- subject.support$cc == 1
> if.control <- subject.support$cc == 0

Now we recompute the genotype column summaries separately for cases and controls:

> sum.cases <- col.summary(snps.10[if.case,])
> sum.controls <- col.summary(snps.10[if.control,])

and plot the call rates, using hexagonal binning and superimposing a line of slope 1 through
the origin:

> hb <- hexbin(sum.controls$Call.rate, sum.cases$Call.rate, xbin=50)
> sp <- plot(hb)
> hexVP.abline(sp$plot.vp, 0, 1, col="black")

4These commands assume that the subject support frame has the same number of rows as the SNP matrix
and that they are in the same order. Otherwise a slightly more complicated derivation is necessary.

8

0.97 0.975 0.98 0.985 0.99 0.995 1

0.97

0.975

0.98

0.985

0.99

0.995

1

sum.controls$Call.rate

su
m

.c
as

es
$C

al
l.r

at
e

1
58

115
172
230
287
344
401
458
515
572
629
686
744
801
858
915

Counts

There is no obvious difference in call rates. This is not a surprise, since no such difference
was built into the simulation. In the same way we could look for differences between allele
frequencies, superimposing a line of slope 1 through the origin:

> sp <- plot(hexbin(sum.controls$MAF, sum.cases$MAF, xbin=50))
> hexVP.abline(sp$plot.vp, 0, 1, col="white")

9

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

sum.controls$MAF

su
m

.c
as

es
$M

A
F

1
13
26
38
50
63
75
88

100
112
125
137
150
162
174
187
199

Counts

This is not a very effective way to look for associations, but if the SNP calling algorithm
has been run separately for cases and controls this plot can be a useful diagnostic for things
going wrong (e.g. different labelling of clusters).

It should be stressed that, for real data, the plots described above would usually have
many more outliers. Our simulation did not model the various biases and genotype failures
that affect real studies.

The fastest tool for carrying out simple tests for association taking the SNP one at a
time is single.snp.tests. The output from this function is a data frame with one line of
data for each SNP. Running this in our data and summarising the results:

> tests <- single.snp.tests(cc, data = subject.support, snp.data = snps.10)

10

Some words of explanation are required. In the call, the snp.data= argument is mandatory
and provides the name of the matrix providing the genotype data. The data= argument gives
the name of the data frame that contains the remaining arguments — usually the subject
support data frame5.

Let us now see what has been calculated:

> summary(tests)

N Chi.squared.1.df Chi.squared.2.df P.1df
Min. :974 Min. : 0.000 Min. : 0.00 Min. :0.000
1st Qu.:987 1st Qu.: 0.172 1st Qu.: 0.79 1st Qu.:0.141
Median :989 Median : 0.773 Median : 1.86 Median :0.379
Mean :989 Mean : 1.561 Mean : 2.60 Mean :0.419
3rd Qu.:991 3rd Qu.: 2.167 3rd Qu.: 3.67 3rd Qu.:0.678
Max. :999 Max. :34.022 Max. :37.25 Max. :1.000

NA's :4 NA's :830 NA's :4
P.2df

Min. :0.000
1st Qu.:0.160
Median :0.395
Mean :0.428
3rd Qu.:0.674
Max. :1.000
NA's :830

We have, for each SNP, chi-squared tests on 1 and 2 degrees of freedom (df), together
with N , the number of subjects for whom data were available. The 1 df test is the familiar
Cochran-Armitage test for codominant effect while the 2 df test is the conventional Pear-
sonian test for the 3 × 2 contingency table. The large number of NA values for the latter
test reflects the fact that, for these SNPs, the minor allele frequency was such that one
homozygous genotype did not occur in the data.

We will probably wish to restrict our attention to SNPs that pass certain criteria. For
example

> use <- snpsum$MAF > 0.01 & snpsum$z.HWE^2 < 200

(The Hardy-Weinberg filter is ridiculous and reflects the strange characteristics of these
simulated data. In real life you might want to use something like 16, equivalent to a 4SE
cut-off). To see how many SNPs pass this filter

> sum(use)
5This is not mandatory — we could have made cc available in the global environment. However we would

then have to be careful that the values are in the right order; by specifying the data frame, order is forced
to be correct by checking the order of the row names for the data and snp.data arguments.

11

[1] 28184

We will now throw way the discarded test results and save the positions of the remaining
SNPs

> tests <- tests[use]
> position <- snp.support[use, "position"]

We now calculate p-values for the Cochran-Armitage tests and plot minus logs (base 10)
of the p-values against position

> p1 <- p.value(tests, df=1)
> plot(hexbin(position, -log10(p1), xbin=50))

12

2e+07 4e+07 6e+07 8e+07 1e+08

0

2

4

6

8

position

−
lo

g1
0(

p1
)

1
12
23
34
44
55
66
77
88
99

110
121
132
142
153
164
175

Counts

Clearly there are far too many “significant” results, an impression which is made even
clearer by the quantile-quantile (QQ) plot:

> chi2 <- chi.squared(tests, df=1)
> qq.chisq(chi2, df = 1)

N omitted lambda
28184.000 0.000 1.677

13

0 5 10 15

0

5

10

15

20

25

30

35

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

The three numbers returned by this command are the number of tests considered, the
number of outliers falling beyond the plot boundary, and the slope of a line fitted to the
smallest 90% of values (i.e. the multiple by which the chi-squared test statistics are over-
dispersed). The “concentration band” for the plot is shown in grey. This region is defined by
upper and lower probability bounds for each order statistic. The default is to use the 2.5%
and 95.7% bounds6.

This over-dispersion of chi-squared values was built into our simulation. The data were
constructed by re-sampling individuals from two groups of HapMap subjects, the CEU sam-

6Note that this is not a simultaneous confidence region; the probability that the plot will stray outside
the band at some point exceeds 95%.

14

ple (of European origin) and the JPT+CHB sample (of Asian origin). The 55% of the cases
were of European ancestry as compared with only 45% of the controls. We can deal with
this by stratification of the tests, achieved by adding the stratum argument to the call to
single.snp.tests (the remaining commands are as before)

> tests <- single.snp.tests(cc, stratum, data = subject.support,
+ snp.data = snps.10)
> tests <- tests[use]
> p1 <- p.value(tests, df = 1)
> plot(hexbin(position, -log10(p1), xbin=50))

2e+07 4e+07 6e+07 8e+07 1e+08

1

2

3

4

5

6

7

position

−
lo

g1
0(

p1
)

1
15
30
44
58
73
87

101
116
130
144
158
173
187
201
216
230

Counts

15

> chi2 <- chi.squared(tests, df=1)
> qq.chisq(chi2, df = 1)

N omitted lambda
28184.000 0.000 1.007

0 5 10 15

0

5

10

15

20

25

30

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

Most of the over-dispersion of test statistics has been removed (the residual is probably
due to “cryptic relatedness” owing to the way in which the data were simulated).

Now let us find the names and positions of the most significant 10 SNPs. The first step
is to compute an array which gives the positions in which the first, second, third etc. can be
found

16

> ord <- order(p1)
> top10 <- ord[1:10]
> top10

[1] 459 20174 20175 20173 20170 20171 20172 21134 26269 7981

We now list the 1 df p-values, the corresponding SNP names and their positions on the
chromosome:

> names <- tests@snp.names
> p1[top10]

rs870041 rs10882596 rs7088765 rs4918933 rs4918928 rs2025850 rs2274491
2.337e-08 1.207e-06 2.179e-06 3.296e-06 6.249e-06 8.307e-06 5.478e-05

rs17668255 rs7085895 rs11596495
1.341e-04 1.411e-04 1.486e-04

> names[top10]

[1] "rs870041" "rs10882596" "rs7088765" "rs4918933" "rs4918928"
[6] "rs2025850" "rs2274491" "rs17668255" "rs7085895" "rs11596495"

> position[top10]

[1] 2075671 97190034 97191413 97189084 97179410 97185949 97186968
[8] 101990691 127661165 33024457

The most associated SNPs lie within two small regions of the genome. To concentrate
on the rightmost region (the most associated region on the left contains just one SNP), we’ll
first sort the names of the SNPs into position order along the chromosome and select those
lying in the region approximately one mega-base either side of the second most associated
SNP:

> posord <- order(position)
> position <- position[posord]
> names <- names[posord]
> local <- names[position > 9.6e+07 & position < 9.8e+07]

The variable posord now contains the permutation necessary to sort SNPs into position
order and names and position have now been reordered in this manner. The variable
local contains the names of the SNPs in the selected 2 mega-base region.

Next we shall estimate the size of the effect at the most associated SNPs for each region
(rs870041, rs10882596). In the following commands, we extract each SNP from the matrix
as a numerical variable (coded 0, 1, or 2) and then, using the glm function, carry out a
logistic regression of case–control status on this numerical coding of the SNP and upon
stratum. The variable stratum must be included in the regression in order to allow for
the different population structure of cases and controls. We first make copies of the cc and
stratum variables in subject.support in the current working environment (where the other
variables reside):

17

> cc <- subject.support$cc
> stratum <- subject.support$stratum
> top <- as(snps.10[, "rs870041"], "numeric")
> glm(cc ~ top + stratum, family = "binomial")

Call: glm(formula = cc ~ top + stratum, family = "binomial")

Coefficients:
(Intercept) top stratumJPT+CHB

-0.405 0.510 -0.230

Degrees of Freedom: 988 Total (i.e. Null); 986 Residual
(10 observations deleted due to missingness)

Null Deviance: 1370
Residual Deviance: 1330 AIC: 1340

The coefficient of top in this regression is estimated as 0.5100, equivalent to a relative risk
of exp(.5100) = 1.665. For the other top SNP we have:

> top2 <- as(snps.10[, "rs10882596"], "numeric")
> fit <- glm(cc ~ top2 + stratum, family = "binomial")
> summary(fit)

Call:
glm(formula = cc ~ top2 + stratum, family = "binomial")

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.245 0.123 -2.00 0.04556 *
top2 0.458 0.095 4.82 1.4e-06 ***
stratumJPT+CHB -0.512 0.136 -3.76 0.00017 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1373.8 on 990 degrees of freedom
Residual deviance: 1343.9 on 988 degrees of freedom

(8 observations deleted due to missingness)
AIC: 1350

Number of Fisher Scoring iterations: 4

This relative risk is exp(0.4575) = 1.580. Both estimates are close to the values used to
simulate the data.

18

You might like to repeat the analysis above using the 2 df tests. The conclusion would
have been much the same. A word of caution however; with real data the 2 df test is less
robust against artifacts due to genotyping error. On the other hand, it is much more powerful
against recessive or near-recessive variants.

The snpStats package includes its own functions to fit generalized linear models. These
are much faster than glm, although not yet as flexible. They allow for a each of series of
SNPs to be entered into a GLM, either on the left hand side (i.e. as the dependent variable)
or on the right-hand side (as a predictor variable). In the latter case seveal SNPs can be
entered in each model fit. For example, to fit the same GLM as before, in which each SNP is
entered in turn on the right-hand side of a logistic regression equation, for each of the SNPs
in the 2 megabase “local” region:

> localest <- snp.rhs.estimates(cc~stratum, family="binomial", sets=local,
+ data=subject.support, snp.data=snps.10)

This function call has computed 371 GLM fits! The parameter estimates for the first five,
and for the second best SNP analyzed above (rs10882596) are shown by

> localest[1:5]

Model Y-variable Parameter Estimate S.E. z-value
--
rs9787457 cc rs9787457 0.14176 0.1016 1.395

--
rs7919320 cc rs7919320 0.15527 0.10145 1.530

--
rs4918184 cc rs4918184 0.075481 0.10391 0.726

--
rs11187837 cc rs11187837 -0.031994 0.12002 -0.267
--
rs7084339 cc rs7084339 0.10027 0.10235 0.980

--

> localest["rs10882596"]

Model Y-variable Parameter Estimate S.E. z-value
--
rs10882596 cc rs10882596 0.4575 0.094955 4.818
--

The parameter estimate for rs1088259 and its standard error agree closely with the values
obtained earlier, using the glm function.

The GLM code within snpStats allows a further speed-up which is not available in the
standard glm function. If a variable is to be included in the model as a “factor” taking many
levels then a more efficient algorithm can be invoked by using the strata function in the
model formula. For example, the following command fits the same model for all the 28184
SNPs we have decided to use in these analyses:

19

> allest <- snp.rhs.estimates(cc~strata(stratum), family="binomial", sets=use,
+ data=subject.support, snp.data=snps.10)
> length(allest)

[1] 28184

As expected, the parameter estimates and standard errors are unchanged, for example:

> allest["rs10882596"]

Model Y-variable Parameter Estimate S.E. z-value
--
rs10882596 cc rs10882596 0.4575 0.094955 4.818
--

Note that strata() can only be used once in a model formula.

Multi-locus tests
There are two other functions for carrying out association tests (snp.lhs.tests and snp.rhs.tests)
in the package. These are somewhat slower, but much more flexible. For example, the former
function allows one to test for differences in allele frequencies between more than two groups.
An important use of the latter function is to carry out tests using groups of SNPs rather
than single SNPs. We shall explore this use in the final part of the exercise.

A prerequisite to multi-locus analyses is to decide on how SNPs should be grouped in
order to “tag” the genome rather more completely than by use of single markers. Hopefully,
the snpMatrix package will eventually contain tools to compute such groups, for example, by
using HapMap data. The function ld.snp, which we encountered earlier, will be an essential
tool in this process. However this work is not complete and, for now, we demonstrate the
testing tool by grouping the 28184 SNPs we have decided to use into 20kB blocks. The
following commands compute such a grouping, tabulate the block size, and remove empty
blocks:

> blocks <- split(posord, cut(position, seq(100000, 135300000, 20000)))
> bsize <- sapply(blocks, length)
> table(bsize)

bsize
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

803 732 895 869 801 665 581 417 316 192 170 102 72 41 43 20 13 9 5 5
20 21 22 24
1 6 1 1

> blocks <- blocks[bsize>0]

20

You can check that this has worked by listing the column positions of the first 20 SNPs
together with the those contained in the first five blocks

> posord[1:20]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> blocks[1:5]

$`(1e+05,1.2e+05]`
[1] 1 2 3

$`(1.2e+05,1.4e+05]`
[1] 4

$`(1.4e+05,1.6e+05]`
[1] 5 6 7 8 9 10

$`(1.6e+05,1.8e+05]`
[1] 11 12 13 14

$`(1.8e+05,2e+05]`
[1] 15 16 17 18

Note that these positions refer to the reduced set of SNPs after application of the filter
on MAF and HWE. Therefore, before proceeding further we create a new matrix of SNP
genotypes containing only these 27,828:

> snps.use <- snps.10[, use]
> remove(snps.10)

The command to carry out the tests on these groups, controlling for the known population
structure differences is

> mtests <- snp.rhs.tests(cc ~ stratum, family = "binomial",
+ data = subject.support, snp.data = snps.use, tests = blocks)
> summary(mtests)

Chi.squared Df p.value
Min. : 0.00 Min. : 1.00 Min. :5.20e-06
1st Qu.: 1.44 1st Qu.: 2.00 1st Qu.:2.58e-01
Median : 3.48 Median : 4.00 Median :4.88e-01
Mean : 4.52 Mean : 4.51 Mean :4.95e-01
3rd Qu.: 6.53 3rd Qu.: 6.00 3rd Qu.:7.40e-01
Max. :32.29 Max. :24.00 Max. :1.00e+00

21

The first argument, together with the second, specifies the model which corresponds to
the null hypothesis. In this case we have allowed for the variation in ethnic origin (stratum)
between cases and controls. We complete the analysis by extracting the p–values and plotting
minus their logs (base 10):

> pm <- p.value(mtests)
> plot(hexbin(-log10(pm), xbin=50))

1000 2000 3000 4000 5000

1

2

3

4

5

Index

−
lo

g1
0(

pm
)

1
3
4
6
8
9
11
13
14
16
18
20
21
23
25
26
28

Counts

The same associated region is picked out, albeit with a rather larger p-value; in this case
the multiple df test cannot be powerful as the 1 df test since the simulation ensured that the
“causal” locus was actually one of the SNPs typed on the Affymetrix platform. QQ plots are

22

somewhat more difficult since the tests are on differing degrees of freedom. This difficulty
is neatly circumvented by noting that, under the null hypothesis, −2 log p is distributed as
chi-squared on 2 df:

> qq.chisq(-2 * log(pm), df = 2)

N omitted lambda
5957.000 0.000 1.056

0 5 10 15

0

5

10

15

20

25

QQ plot

Expected distribution: chi−squared (2 df)
Expected

O
bs

er
ve

d

23

