Computing and plotting agreement among ranked
vectors of features with matchBox.

Anuj Gupta! and Luigi Marchionni!

The Sidney Kimmel Comprehensive Cancer Center,
Johns Hopkins University School of Medicine

Modified: September 5, 2012. Compiled: October 24, 2025

Contents
1 Introduction
2 Preparing the Data

9]

2.1 Datastructure e e e
2.2 Removingredundancy e
23 Mergingthedata

Correspondance at the Top Curves
3.1 Computing CAT curves without a reference ranking
3.2 Computing CAT curves using a reference ranking

3.3 Computing Probability Intervals

Plotting the results

4.1 CAT curves based on equal ranks using areference.
4.2 CAT curves based on equal statistics using areference.
4.3 CAT curves based on equal ranks without using a reference.

4.4 CAT curves based on equal ranks, unspecified expected proportion of correspond-
ing features. e e e e e

System Information

10
11
12
13

14

15

¢ Literature Cited 15

1

Introduction

The mat chBox package allows to compare ranked vectors (i.e. by differential expression) of
features (i.e. genes, or probe sets), using Correspondence-At-the-Top (CAT) curves. A CAT curve
displays the overlapping proportion between two ranked vectors of identifiers against the number
of considered features. This techiques was originally envisaged for comparing differential gene
expression results obtained from distinct microarray platforms in different laboratories (see Irizarry
et al, Nat Methods (2005) [1]), and further used to compare differential gene expression across
distinct studies (see Ross et al, Prostate (2011) [2], and Benassi et al., Cancer Discovery (2012)

[3D).

The mat chBox package contains several utilities enabling the following:

1.

To filter redundant features in a data. frame (i.e. filtering multiple probe sets pointing to
the same gene);

To merge multiple data sets together based on a common set of identifiers;
To compute the CAT curves probability intervals;

To nicely plot the CAT curves.

Briefly, CAT curves enable to compare the correspondence of two vectors ordered by a predefined
ranking statistics at their top. This is accomplished through:

1.

4.

Ordering the two vectors according to a desired statistics (i.e. differential gene expression,
significance, probability, ...);

Computing the proportion of top ranking elements in common between the two vector for a
given vector size (i.e. top 5 features);

. Reiterating the two steps above increasing the vector size up to all common elements (i.e.

the top 6 identifiers, then the top 7, 8, 9, ..., all features);

Plotting the proportion of common elements against the increasing vector size.

Since CAT curves evaluate agreement at the top of ranked vectors they are particularly useful in
gene expression analysis, where only a small fraction of genes is expected to be differentially
expressed over the large total number of analyzed genes.

2 Preparing the Data

2.1 Data structure
Download and install the package mat chBox from Bioconductor.

> 1f (!requireNamespace ("BiocManager", quietly=TRUE))
install.packages ("BiocManager")
> BiocManager::install ("matchBox")

Load the library.

> require (matchBox)

Load the example data contained in the mat chBox package.

> data (matchBoxExpression)

The object matchBoxExpression is a list of data.frames containing differential gene expres-
sion analysis resulst from three distinct experiments. These data.frames will be used to retrieve the
identifiers and the ranking statistics for computing overlapping proportions displayed by the CAT
curves. Below is shown the structure of matchBoxExpression:

> sapply (matchBoxExpression, class)

dataSetA dataSetB dataSetC
"data.frame" "data.frame" "data.frame"

> sapply (matchBoxExpression, dim)

dataSetA dataSetB dataSetC
[1,] 1375 2358 1800
[2,1 9 9 9

> str (matchBoxExpression)

List of 3

S dataSetA:'data.frame': 1375 obs. of 9 variables:
..S SYMBOL : chr [1:1375] "KLK11" "CDKNIB" "LPAR1" "JAKMIPZ2"
..$ GENENAME : chr [1:1375] "kallikrein-related peptidase 11" "cyclin-dependent kinase
..S ENTREZID : chr [1:1375] "11012" "1027" "1902" "9832"
..S logFC : num [1:1375] -1.99 0.974 -1.027 1.376 1.376
..S AveExpr : num [1:1375] 10.1 10.6 10.7 11.4 11.4
..S5 t : num [1:1375] -8.13 6.96 —-6.73 6.42 6.42
..5 P.Value : num [1:1375] 8.44e-11 6.02e-09 1.37e-08 4.32e-08 4.32e-08
.S adj.P.Val: num [1:1375] 1.36e-07 4.45e-06 7.02e-06 1.67e-05 1.67e-05
..S B : num [1:1375] 15.53 11.71 10.96 9.92 9.92

S dataSetB: 'data.frame': 2358 obs. of 9 variables:
..S SYMBOL : chr [1:2358] "KLK11" "CDKNIB" "LPAR1" "JAKMIPZ2"

..S GENENAME : chr [1:2358] "kallikrein-related peptidase 11" "cyclin-dependent kinase

S ENTREZID : chr [1:2358] "11012" "1027" "1902" "9832"
S logFC : num [1:2358] 0.885 1.532 0.599 0.714 0.408
S AveExpr : num [1:2358] 8.72 8.49 12.29 7.37 10.79
S t : num [1:2358] 13.5 12.08 12.07 9.76 9.36
S P.Value : num [1:2358] 1.88e-19 2.18e-17 2.23e-17 8.62e-14 3.81e-13
S adj.P.Val: num [1:2358] 6.96e-16 4.06e-14 4.06e-14 6.12e-11 2.31e-10
..S B : num [1:2358] 33.7 29.5 28.6 22.2 20.8
S dataSetC:'data.frame': 1800 obs. of 9 variables:
.S SYMBOL : chr [1:1800] "CD38" "Clborfé6l" "PECI" "PSMC2"
S GENENAME : chr [1:1800] "CD38 molecule" "chromosome 15 open reading frame 61" "per
S ENTREZID : chr [1:1800] "952" "145853" "10455" "5701"
S logFC : num [1:1800] -0.699 0.24 0.366 0.405 0.442
S AveExpr : num [1:1800] 12.2 10.8 11.5 12.1 12.6
S t > num [1:1800] -10.77 10.11 9.13 9.09 8.82
S P.Value : num [1:1800] 1.14e-13 7.96e-13 1.59e-11 1.79e-11 4.11le-11
S adj.P.Val: num [1:1800] 2.29e-10 1.05e-09 1.22e-08 1.33e-08 2.28e-08
S B : num [1:1800] 22.1 20.4 17.6 17.5 16.7

2.2 Removing redundancy

In order to compute the CAT curves, and then compare the results obtained from the three exper-
iments, it is necessary to identify the set of non-redundant features in common among the three
data sets. The filterRedundant function enables to remove the redundant features within
each data.frame prior computing the subset of of common identifiers across the three data
sets. The argument 1dCol specifies the index or the name of the column containing redundant
identifiers, while the other arguments enable to control the method used to remove the redundancy,
as explained in the help for this function.

By default the filterRedundant function will keep the feature with the largest absolute rank-
ing statistics, as defined by the byCo1l argument. The method argument enables to control which
feature to keep and which to discard. Currently available methods are: maxORmin, geoMean,
random, mean, and median (see help for filterRedundant).

In the example below we are using an 1apply call to remove the redundant features from all the
three data.frames at once. To this end we will use gene symbols to identify the redundant features
and the t-statistics to select which feature to keep.

> sapply (matchBoxExpression, function (x) any (duplicated(x[, 1])))

dataSetA dataSetB dataSetC
TRUE TRUE TRUE

> allDataBySymbolAndT <- lapply (matchBoxExpression, filterRedundant,
idCol="SYMBOL", byCol="t", absolute=TRUE)

Each data.frame now contains only unique features.

> sapply(allDataBySymbolAndT, dim)

dataSetA dataSetB dataSetC
[1,] 1075 2058 1500
[2,1 9 9 9

> sapply(allDataBySymbolAndT, function (x) any (duplicated(x[, 1])))

dataSetA dataSetB dataSetC
FALSE FALSE FALSE

In the example below we are removing the redundant features using Enrez Gene identifiers to select
the redundant features and the signed log2 fold-change to select which feature to keep.

> sapply (matchBoxExpression, function(x) any (duplicated(x/[, 1])))
dataSetA dataSetB dataSet(C
TRUE TRUE TRUE
filterRedundant,

> allDataByEGIDAndLogFC <- lapply (matchBoxExpression,
absolute=FALSE)

1dCol="ENTREZID", byCol="logFC",

Each of the data.frame now contains only unique features.

> sapply(allDataByEGIDAndLogFC, dim)
dataSetA dataSetB dataSetC

[1,] 1075 2058 1500

[2,1 9 9 9

> sapply(allDataByEGIDAndLogFC, function(x) any (duplicated(x[, 1])))

dataSetA dataSetB dataSetC
FALSE FALSE FALSE

In the example below we are removing the redundant features using Enrez Gene identifiers to select
the redundant features, and the median adjusted P-value will be used to summarize the redundant

features.

function (x) any (duplicated(x[, 1])))

> sapply (matchBoxExpression,
dataSetA dataSetB dataSet(C
TRUE TRUE TRUE

> allDataByEGIDAndMedianFDR <- lapply (matchBoxExpression,
idCol="ENTREZID", byCol="adj.P.Val",

method="median")

filterRedundant,
absolute=FALSE,

Each of the data.frame now contains only unique features.

> sapply(allDataByEGIDAndMedianFDR, dim)

dataSetA dataSetB dataSet(C

1075 2058 1500

[1,]
9 9

[2,1] 9

> sapply (allDataByEGIDAndMedianFDR, function(x) any (duplicated(x/[, 1])))

dataSetA dataSetB dataSetC
FALSE FALSE FALSE

2.3 Merging the data

After removing the redundant features it is now possible to obtain the common unique features
across all the data sets using the function mergeData. This function finds the intersection across
all the data.frames, and extract the desired ranking statistics from each one.

> data <- mergeData (allDataBySymbolAndT, idCol="SYMBOL", byCol="t")

The object data is a data.frame containing only the common set of features across all three
data.frames and the ranking statistics values of choice collected from each data.frame.

> sapply(allDataBySymbolAndT, dim)

dataSetA dataSetB dataSet(C

[1,] 1075
[2,1] 9

> dim(data)
[1] 506 4
> str(data)

'data. frame':
S commonID

S dataSetA.t:
S dataSetB.t:
S dataSetC.t:

chr
num
num
num

2058 1500
9 9

506 obs. of 4 variables:
"AICF" "AARS2" "ABCB1" "ABCG8" ...
2.82 1.91 -2.27 2.26 -1.93 ...
-3.61 -2.8 -3.07 3.07 -2.81
-3.454 -0.319 1.324 -1.797 -4.777 ...

3 Correspondance at the Top Curves

The computeCat R function enables to compute the overlapping proportions of features among
ranked vectors of identifiers. Such proportions will be subsequently used to produce the CAT
curves. When computing CAT curves a number of paramenters must be specificied to control the
behaviour of the computeCat function. In particular the following information will determine
how the vectors of will be ordered, and which vectors will be compaired, and therefore must be

carefully considered:

* Whether or not the ranking statistics used to order the features is signed (i.e. t-statistics or
F-statistics like);

* Whether the ranking statistics should be used to order the features by decreasing or increas-
ing order. For instance in the case of differential gene expression between group A and

B:

— Ordering by decreasing signed t-statistics will compute the CAT curve for the genes
up-regulated in group A compared to group B;

6

— Ordering by increasing signed t-statistics will compute the CAT curve for the genes
down-regulated in group A compared to group B;

— Ordering by decreasing absolute t-statistics will compute the CAT curve for the dif-
ferentiallly expressed genes between the two groups;

— Ordering by increasing absolute t-statistics will compute the CAT curve for the genes
that are not differentially expressed between the two groups;

* Whether to compare all possible vector combinations, or to select one of the vectors as the
reference;

* Whether the overlapping proportion should be computed using equal ranks or equal statistics;

3.1 Computing CAT curves without a reference ranking

The example below shows how to compute CAT curves without selecting one of the vectors as the
reference, using decreasing ranks (i.e. up-regulated genes are at the top of the list):

> catHigh2LowNoRefByEqualRanks <- computeCat (data = data, idCol = 1,
method="equalRank", decreasing=TRUE)

The example below shows to compute CAT curves without selecting a vector as the reference,
using increasing ranks (i.e. down-regulated genes are at the top of the list):

> catLowZHighNoRefByEqualRanks <- computeCat (data = data, idCol = 1,
method="equalRank", decreasing=FALSE)

3.2 Computing CAT curves using a reference ranking

The example below shows how to compute CAT curves selecting one of the vectors as the refer-
ence, using decreasing ranks:

> catHighZ2LowWithRefByEqualRanks <—- computeCat (data = data, idCol = 1,
ref="dataSetA.t", method="equalRank",

The catHigh2LowWithRefByEqualRanks contains the computed overlaps, for decreasing
ranks (i.e. up-regulated genes are at the top of the list):

> str(catHighZ2LowWithRefByEqualRanks)

List of 2
S dataSetA.t.vs.dataSetB.t:List of 1
..S cat: num [1:506] 0 0.5 0.333 0.5 0.6 ..
S dataSetA.t.vs.dataSetC.t:List of 1
..S8 cat: num [1:506] 0 0 0 0 0 0 0 O 0 O

dec.

The example below shows to compute CAT curves selecting one of the data set as reference, using
decreasing t-statistics:

> catHighZ2LowWithRefByEqualStats <- computeCat (data = data, idCol = 1, ref="dataSetA.t",
method="equalStat", decreasing=TRUE)

The catHigh2LowWithRefByEqualStats contains the computed overlaps: for decreasing
t-statistics (i.e. down-regulated genes):

> str(catHighZ2LowWithRefByEqualStats)

List of 2
S dataSetA.t.vs.dataSetB.t:List of 2
..S5 cat: num [1:506] 0 0 0 0 0 0 0 0 0 O
..5 deg: num [1:506] 2 2 2 2 2 2 2 2 2 2
S dataSetA.t.vs.dataSetC.t:List of 2
..S8 cat: num [1:506] 0 0 0 0 0 0 0 O 0 O
..S5 deg: num [1:506] 2 2 2 2 2 2 2 2 2 2

3.3 Computing Probability Intervals

The calcHypPI R function enables to compute the probability intervals for the CAT curves
obtained using equal ranks. Such intervals are based on the hypergeometric distribution (see
Irizarry et al [1] and Ross et al. [2]). Briefly, the calcHypPTI uses ghyper quantile function to
compute the expected proportions of common features between two ordered vectors of identifiers
for a set of specified quantiles of the hypergeometric distribution.

To understand the way such proportions are obtained we can use the analogy of drawing a certain
number of balls from an urn containing black and white balls, where black represents a failure (the
vectors are in different order, and therefore the features do not overlap), and white represent a suc-
cess (the vectors are in the same order, and hence the features overlap). According to this analogy
the calcHypP I function uses the total number of features in common between the vectors as the
total number of balls in the urn, and the size of the vector being compared as the number of balls
drawn from the urn. Thus increasing vectors sizes (1, 2, 3, and so on until all features are used)
correspond to an increasing number of balls drawn from the urn at each attempt.

By default the calcHypPI function assumes that the top 10% of the features of the two vectors
are similarly ordered. In our analogy, therefore, the number of white balls in the urn corresponds
to 10% of the total common features between the vectors. This expectation can be modified by
the user with the expectedProp argument. When expectedProp is set equal to NULL the
number of white balls in the urn (i.e. the top ranking features in the correct order) corresponds to
the number of balls that are drawn at each attempt (i.e. the increasing size of top features from
each vector that are being compared).

The example below shows how to compute probability intervals for CAT curves, using the default

0.1 expected proportion of top ranked features:

> PIbyRefEqualRanks <- calcHypPI (data=data)

The PIbyRefEqualRanks contains the computed probability intervals for the CAT curves:

> head (PIbyRefEqualRanks)

[1,]
[2,1]
[3,]
[4,1
[5,1
[6,]

[1,]
[2,]
[3,]
(4,1
[5,1]
[6,1]

QDD DO

0.999999

.01960784
.03921569
.05882353
.07843137
.09803922
.09803922
.500000

0

e eBeNele)

0.000001

QO OO OO OO

e e ool eile)

0.999000 0.001000
.01960784
.03921569
.03921569
.05882353
.05882353
.07843137

e e eleNele)

QO OO OO O

0.990000 0.010000

.01960784
.01960784
.03921569
.03921569
.03921569
.05882353

QDO OO

QOO OO O

0.950000

.01960784
.01960784
.01960784
.03921569
.03921569
.03921569

0.050000

QOO O DO

The example below shows how to compute probability intervals for CAT curves, setting the ex-
pected proportion of top ranked features to 0.3:

> PIbyRefEqualRanks03 <—- calcHypPI (data=data,

expectedProp=0.3)

The PIbyRefEqualRanks03 contains the computed probability intervals for the CAT curves:

> head (PIbyRefEqualRanks03)

[1,1]
[2,]
[3,]
[4,1]
[5,1]
[6,]

[1,1]
[2,]
[3,1]
[4,]
[5,1
[6,]

QDD DD O O

0.999999

.006578947
.013157895
.019736842
.026315789
.032894737
.039473684
.050000

0

QOO OO
e e oo eile)

0.000001

QO O OO

0
0.500000

.000000000
.006578947
.006578947
.006578947
.006578947
.013157895

S e eBeleile)

0.999000 0.001000

.006578947
.013157895
.019736842
.026315789
.032894737
.032894737

e e eBelelle)

e eBelelle)

0.990000 0.010000

.006578947
.013157895
.019736842
.019736842
.026315789
.032894737

QO OO OO OO

S e eBeelle)

0.950000

.006578947
.013157895
.013157895
.019736842
.019736842
.026315789

The example below shows how to compute probability intervals for CAT curves, using the default
0.1 expected proportion of top ranked features, for a set of specific hypergeometric distribution
quantiles:

> PIbyRefEqualRanksQuant <- calcHypPI (data=data, prob=c(0.75, 0.9, 0.95, 0.99))

The PIbyRefEqualRanksQuant contains the computed probability intervals for the CAT
curves:

> head (PIbyRefEqualRanksQuant)

0.75 0.25 0.90 0.10 0.95 0.05 0.99 0.01 0.50
[1,] 0.00000000 0 0.01960784 0 0.01960784 0 0.01960784 0 0
[2,] 0.00000000 0 0.01960784 0 0.01960784 0 0.01960784 0 0
[3,] 0.01960784 0 0.01960784 0 0.01960784 0 0.03921569 0 0
[4,] 0.01960784 0 0.01960784 0 0.03921569 0 0.03921569 0 0
[5,] 0.01960784 0 0.01960784 0 0.03921569 0 0.03921569 0 0
[6,] 0.01960784 0 0.03921569 0 0.03921569 0 0.05882353 0 0

The example below shows how to compute probability intervals for CAT curves, without specify-
ing a proportion of expected top ranked features:

> PIbyRefEqualRanksNoExpectedProp <— calcHypPI (data=data, expectedProp=NULL)

The PIbyRefEqualRanksNoExpectedProp contains the computed probability intervals for
the CAT curves:

> head (PIbyRefEqualRanksNoExpectedProp)
0.999999 0.000001 0.999000 0.001000 0.990000 0.010000 0.950000 0.050000

[1,] 1.0000000 0 1.0000000 0 0.0000000 0 0.0000000 0

[2,] 1.0000000 0 0.5000000 0 0.0000000 0 0.0000000 0

[3,] 0.6666667 0 0.3333333 0 0.3333333 0 0.0000000 0

[4,] 0.5000000 0 0.2500000 0 0.2500000 0 0.0000000 0

[5,] 0.6000000 0 0.2000000 0 0.2000000 0 0.0000000 0

[6,] 0.5000000 0 0.3333333 0 0.1666667 0 0.1666667 0
0.500000

[1,] 0

[2,] 0

[3,1] 0

[4,] 0

[5,] 0

[6,] 0

4 Plotting the results

The plotCat function can be used to plot the CAT curves along with probability intervals, as
derived using the calcHypPI function (see Figures 1 and 2, for CAT curves computed using a
reference ranking, Figure 3 for examples in which the reference was not used, and Figure 4 for
CAT curves for which the proportion of expected top ranked features was not specified).

10

4.1 CAT curves based on equal ranks using a reference.

The example below shows how to plot CAT curves based on equal ranks, along with probability
intervals based on a fixed expected proportion of similarly ranked features of 30%, using the data

set A as the reference.

> plotCat (catData = catHighZLowWithRefByEqualRanks,
preComputedPI=PIbyRefEqualRanks03,

cex=1.2, 1lwd=1.2, cexPts=1.2, spacePts=30, col=c("red", "blue"),

main="CAT curves for decreasing t-statistics”,
where="center", legend=TRUE, legCex=1, ncol=1I,

plotLayout = layout (matrix(l1:2, ncol = 2), widths

[1] "Recycling colors"

CAT curves for decreasing t-statistics

1.0

0.8

0.6
I

c(2,1)))

0.4

Cat plot

—A— dataSetA.t.vs.dataSetB.t
-B- dataSetA.t.vs.dataSetC.t

Common Proportion

0.2

0.0

0 100 200 300 400 500
List Size

Figure 1: CAT-plot for curves based on equal ranks, using data set A as the reference. Lighter to darker grey
shades represent probability intervals for distinct quantiles of the hypergeometric distribution (0.999999,

0.999, 0.99, 0.95), assuming 30% of the features to be similarly ranked.

11

4.2 CAT curves based on equal statistics using a reference.

The example below shows how to plot CAT curves based on equal statistics, using the data set A as
the reference. When equal ranks are used each CAT curve has its own probability intervals, which
therefore cannot be shown on the plot.

> plotCat (catData = catHighZLowWithRefByEqualStats,
cex=1.2, 1lwd=1.2, cexPts=1.2, spacePts=30, col=c("red", "blue"),
main="CAT curves for decreasing t-statistics"”,
where="center", legend=TRUE, legCex=1, ncol=1,
plotLayout = layout (matrix(l1:2, ncol = 2), widths = c(2,1)))

[1] "Recycling colors"

CAT curves for decreasing t-statistics

o |

i

@ |

o
c
2
j=
S o
8 Cat plot
% —A— dataSetA.t.vs.dataSetB.t
o <« -B- dataSetA.t.vs.dataSetC.t
€ o
£
)
(@)

N

o

o |

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 2: CAT-plot for curves based on equal t-statistics, using data set A as the reference.

12

4.3 CAT curves based on equal ranks without using a reference.

The example below shows how to plot CAT curves based on equal ranks, along with probability
intervals based on a fixed expected proportion of similarly ranked features of 10%, without using
any data set as the reference (all pair combinations are shown).

> plotCat (catData = catHighZ2LowNoRefByEqualRanks,
preComputedPI=PIbyRefEqualRanks,
cex=1.2, 1lwd=1.2, cexPts=1.2, spacePts=30,
main="CAT curves for decreasing t-statistics",
where="center", legend=TRUE, legCex=1, ncol=1,
plotLayout = layout (matrix(l1:2, ncol = 2), widths = c(2,1)))

CAT curves for decreasing t-statistics

o

i

@ |

(=]
c
K]
‘g © |
g_o Cat plot
o —A— dataSetA.t.vs.dataSetB.t
< - B dataSetA.t.vs.dataSetC.t
= g = C- dataSetB.t.vs.dataSetC.t
£
)
¢

N

(=]

o |

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 3: CAT-plot for curves based on equal ranks for all possible combinations of vectors. Lighter to
darker grey shades represent probability intervals for the distinct quantiles of the hypergeometric distribution
(0.999999, 0.999, 0.99, 0.95), assuming 10% of the features to be similarly ranked.

13

4.4 CAT curves based on equal ranks, unspecified expected proportion of
corresponding features.

The example below shows how to plot CAT curves based on equal ranks, along with probability
intervals based on an unspecified expected proportion of similarly ranked features, without using
any data set as the reference (all pair combinations are shown).

> plotCat (catData = catHighZLowNoRefByEqualRanks,
preComputedPI=PIbyRefEqualRanksNoExpectedProp,
cex=1.2, 1lwd=1.2, cexPts=1.2, spacePts=30,
main="CAT curves for decreasing t-statistics”,
where="center", legend=TRUE, legCex=1, ncol=1I,
plotLayout = layout (matrix(1:2, ncol = 2), widths = c(2,1)))

CAT curves for decreasing t-statistics

o |

—

@ |

o
c
k<]
€ o |
%o Cat plot
a —A— dataSetA.t.vs.dataSetB.t
IS -8B dataSetA.t.vs.dataSetC.t
= g - C- dataSetB.t.vs.dataSetC.t
£
)
¢

N

o

o |

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 4: CAT-plot for curves based on equal ranks for all possible combinations of vectors. Lighter to
darker grey shades represent probability intervals for distinct quantiles of the hypergeometric distribution
(0.999999, 0.999, 0.99, 0.95). No expected proportion of similarly ranked features is specified.

14

5 System Information

Session information:

> toLatex (sessionInfo())

* R Under development (unstable) (2025-10-20 r88955), x86_64-pc—-1linux—gnu

* Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

* Time zone: America/New_York

* TZcode source: system (glibc)

* Running under: Ubuntu 24.04.3 LTS

* Matrix products: default

* BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1ibRblas.so

* LAPACK: /usr/1ib/x86_64-1linux—gnu/lapack/liblapack.s0.3.12.0
* Base packages: base, datasets, grDevices, graphics, methods, stats, utils

* Other packages: matchBox 1.51.0

* Loaded via a namespace (and not attached): compiler 4.6.0, tools 4.6.0

6 Literature Cited

References

[1] Rafael A Irizarry, Daniel Warren, Forrest Spencer, Irene F Kim, Shyam Biswal, Bryan C Frank,
Edward Gabrielson, Joe G N Garcia, Joel Geoghegan, Gregory Germino, Constance Griffin,
Sara C Hilmer, Eric Hoffman, Anne E Jedlicka, Ernest Kawasaki, Francisco Martinez-Murillo,
Laura Morsberger, Hannah Lee, David Petersen, John Quackenbush, Alan Scott, Michael Wil-
son, Yanqin Yang, Shui Qing Ye, and Wayne Yu. Multiple-laboratory comparison of microar-
ray platforms. Nat Methods, 2(5):345-350, May 2005.

15

[2] Ashley E Ross, Luigi Marchionni, Milena Vuica-Ross, Chris Cheadle, Jinshui Fan, David M
Berman, and Edward M Schaeffer. Gene expression pathways of high grade localized prostate
cancer. The Prostate, February 2011.

[3] B Benassi, R Flavin, L. Marchionni, S Zanata, Y Pan, D Chowdhury, M Marani, S Strano,
P Muti, and G Blandino. c-Myc is activated via USP2a-mediated modulation of microRNAs
in prostate cancer. Cancer Discovery, 2012.

16

	 Introduction
	 Preparing the Data
	Data structure
	Removing redundancy
	Merging the data

	 Correspondance at the Top Curves
	Computing CAT curves without a reference ranking
	Computing CAT curves using a reference ranking
	Computing Probability Intervals

	 Plotting the results
	CAT curves based on equal ranks using a reference.
	CAT curves based on equal statistics using a reference.
	CAT curves based on equal ranks without using a reference.
	CAT curves based on equal ranks, unspecified expected proportion of corresponding features.

	 System Information
	 Literature Cited

