
Hierarchical inference for genome-wide association studies

Claude Renaux, Laura Buzdugan, Markus Kalisch and Peter Bühlmann
Seminar for Statistics, ETH Zürich

October 24, 2025

This vignette is based on the pre-print Renaux et al. (2018) and contains the part
about the illustration of our R-package hierinf.

1 Cite hierinf

If you use the hierinf package, please cite the paper Renaux, C., Buzdugan, L., Kalisch, M.,
and Bühlmann, P. (2018). Hierarchical inference for genome-wide association studies: a view on
methodology with software. arXiv preprint arXiv:1805.02988.

2 Introduction

Hierarchical inference is a key technique for computationally and statistically efficient hypothesis
testing and multiple testing adjustment. We consider inference in a multivariate model which
quantifies effects after adjusting for all remaining single nucleotide polymorphism (SNP) covariates.
The hierarchy enables in a fully data-driven way to infer significant groups or regions of SNPs at an
adaptive resolution, by controlling the familywise error rate (FWER). We have recently proposed
high-dimensional hierarchical inference for assigning statistical significance in terms of p-values for
groups of SNPs being associated to a response variable: Buzdugan et al. (2016) considers this
approach for human GWAS and Klasen et al. (2016) for GWAS with plants. The methodological
and theoretical concepts have been worked out in Mandozzi and Bühlmann (2016a) and Mandozzi
and Bühlmann (2016b).

The R package hierinf is an implementation of the hierarchical inference described in Renaux
et al. (2018) and it is easy to use for GWAS. The package is a re-implementation of the R package
hierGWAS (Buzdugan, 2017) and includes new features like straightforward parallelization, an addi-
tionally option for constructing a hierarchical tree based on spatially contiguous genomic positions,
and the possibility of jointly analyzing multiple datasets.

3 Software

To summarize the method, one starts by clustering the data hierarchically. This means that the
clusters can be represented by a tree. The main idea is to pursue testing top-down and successively
moving downwards until the null-hypotheses cannot be rejected. The p-value of a given cluster is

1

calculated based on the multiple sample splitting approach and aggregation of those p-values as
described in Renaux et al. (2018).

The work flow is straightforward and is composed in two function calls. We note that the
package hierinf requires complete observations, i.e. no missing values in the data, because the
testing procedure is based on all the SNPs which is in contrast to marginal tests. If missing values
are present, they can be imputed prior to the analysis. This can be done in R using e.g. mice

(van Buuren and Groothuis-Oudshoorn, 2011), mi (Shi et al., 2011), or missForest (Stekhoven
and Bühlmann, 2012).

A small simulated toy example with two chromosomes is used to demonstrate the procedure.
The toy example is taken from (Buzdugan, 2017) and was generated using PLINK where the SNPs
were binned into different allele frequency ranges. The response is binary with 250 controls and
250 cases. Thus, there are n = 500 samples, the number of SNPs is p = 1000, and there are
two additional control variables with column names “age” and “sex”. The first 990 SNPs have no
association with the response and the last 10 SNPs were simulated to have a population odds ratio
of 2. The functions of the package hierinf require the input of the SNP data to be a matrix (or a
list of matrices for multiple datasets). We use a matrix instead of a data.frame since this makes
computation faster.

load the package

library(hierinf)

random number generator (for parallel computing)

RNGkind("L'Ecuyer-CMRG")

We use a small build-in dataset for our toy example.

data(simGWAS)

The genotype, phenotype and the control variables are saved in

different objects.

sim.geno <- simGWAS$x

sim.pheno <- simGWAS$y

sim.clvar <- simGWAS$clvar

The two following sections correspond to the two function calls in order to perform hierarchical
testing. The third section gives some notes about running the code in parallel.

3.1 Software for clustering

The package hierinf offers two possibilities to build a hierarchical tree for corresponding hierarchi-
cal testing. The function cluster_var performs hierarchical clustering based on some dissimilarity
matrix and is described first. The function cluster_position builds a tree based on recursive
binary partitioning of consecutive positions of the SNPs. For a short description, see at the end of
Section 2.3 in Renaux et al. (2018).

Hierarchical clustering is computationally expensive and prohibitive for large datasets. Thus,
it makes sense to pre-define dis-joint sets of SNPs which can be clustered separately. One would
typically assume that the second level of a cluster tree structure corresponds to the blocks given

2

by the chromosomes as illustrated in Figure 1. For the method based on binary partitioning of
consecutive positions of SNPs, we recommend to pre-define the second level of the hierarchical tree
as well. This allows to run the building of the hierarchical tree and the hierarchical testing for each
block or in our case for each chromosome in parallel, which can be achieved by adding the two
commented arguments in the function calls below. If one does not want to specify the second level
of the tree, then the argument block in both function calls can be omitted.

entire data

block 1

...
...

block 2

...
...

block k

...
...

· · ·

Figure 1: The top two levels of a hierarchical tree used to perform multiple testing. The user can
optionally specify the second level of the tree with the advantage that one can easily run the code in
parallel over different clusters in the second level, denoted by block 1, . . ., block k. A natural choice
is to choose the chromosomes as the second level of the hierarchical tree, which define a partition
of the SNPs. If the second level is not specified, then the first split is estimated based on clustering
the data, i.e. it is a binary split. The user can define the second level of the tree structure using the
argument block in the functions cluster_var / cluster_position. The function cluster_var

/ cluster_position builds a separate binary hierarchical tree for each of the blocks.

In the toy example, we define the second level of the tree structure as follows. The first and
second 500 SNPs of the SNP data sim.geno correspond to chromosome 1 and chromosome 2,
respectively. The object block is a data.frame which contains two columns identifying the two
blocks. The blocks are defined in the second column and the corresponding column names of the
SNPs are stored in the first column. The argument stringsAsFactors of the function data.frame

is set to FALSE because we want both columns to contain integers or strings.

Define the second level of the tree structure.

block <- data.frame("colname" = paste0("SNP.", 1:1000),

"block" = rep(c("chrom 1", "chrom 2"), each = 500),

stringsAsFactors = FALSE)

Cluster the SNPs

dendr <- cluster_var(x = sim.geno,

block = block)

the following arguments have to be specified

for parallel computation

parallel = "multicore",

ncpus = 2)

3

By default, the function cluster_var uses the agglomeration method average linkage and the
dissimilarity matrix given by 1− (empirical correlation)2.

Alternatively, cluster_position builds a hierarchical tree using recursive binary partitioning
of consecutive genomic positions of the SNPs. As for cluster_var, the function can be run
in parallel if the argument block defines the second level of the hierarchical tree and the two
commented arguments parallel and ncpus are added.

Store the positions of the SNPs.

position <- data.frame("colnames" = paste0("SNP.", 1:1000),

"position" = seq(from = 1, to = 1000),

stringsAsFactors = FALSE)

Build the hierarchical tree based on the position

The argument block defines the second level of the tree structure.

dendr.pos <- cluster_position(position = position,

block = block)

the following arguments have to be

specified for parallel computation

parallel = "multicore",

ncpus = 2)

3.2 Software for hierarchical testing

The function test_hierarchy is executed after the function cluster_var or cluster_position
since it requires the output of one of those two functions as an input (argument dendr).

The function test_hierarchy first randomly splits the data into two halves (with respect to the
observations), by default B = 50 times, and performs variable screening on the second half. Then,
the function test_hierarchy uses those splits and corresponding selected variables to perform
the hierarchical testing according to the tree defined by the output of one of the two functions
cluster_var or cluster_position.

As mentioned in Section 3.1, we can exploit the proposed hierarchical structure which assumes
the chromosomes to form the second level of the tree structure as illustrated in Figure 1. This
allows to run the testing in parallel for each block, which are the chromosomes in the toy example.

The following function call performs first the global null-hypothesis test for the group containing
all the variables/SNPs and continues testing in the hierarchy of the two chromosomes and their
children.

Test the hierarchy using multi sample split

set.seed(1234)

result <- test_hierarchy(x = sim.geno,

y = sim.pheno,

clvar = sim.clvar,

alternatively: dendr = dendr.pos

dendr = dendr,

4

family = "binomial")

the following arguments have to be

specified for parallel computation

parallel = "multicore",

ncpus = 2)

The function test_hierarchy allows to fit models with continuous or binary response, the
latter being based on logistic regression. The argument family is set to "binomial" because the
response variable in the toy example is binary.

The output looks as follows:

print(result, n.terms = 4)

block p.value significant.cluster

1 chrom 1 0.0372845 SNP.1, SNP.2, SNP.3, SNP.4, ... [496]

2 chrom 2 0.0253367 SNP.605, SNP.792, SNP.636, SNP.857, ... [21]

3 chrom 2 0.0015598 SNP.992

4 chrom 2 2.642e-05 SNP.991

5 chrom 2 0.0034648 SNP.1000

6 chrom 2 0.0152762 SNP.994

7 chrom 2 0.0005863 SNP.993

8 chrom 2 0.0117842 SNP.997

The output shows significant groups of SNPs or even single SNPs if there is sufficient strong
signal in the data. The block names, the p-values, and the column names (of the SNP data) of
the significant clusters are returned. There is no significant cluster in chromosome 1. That’s the
reason why the p-value and the column names of the significant cluster are NA in the first row of
the output. Note that the large significant cluster in the second row of the output is shortened
to better fit on screen. In our toy example, the last 8 column names are replaced by “... [8]”.
The maximum number of terms can be changed by the argument n.terms of the print function.
One can evaluate the object result in the console and the default values of the print function are
used. In this case, it would only display the first 5 terms.

The only difference in the R code when using a hierarchical tree based on binary recursive
partitioning of the genomic positions of the SNPs (whose output is denoted as dendr.pos) is to
specify the corresponding hierarchy: test_hierarchy(..., dendr = dendr.pos, ...).

We can access part of the output by result$res.hierarchy which we use below to calculate the
R2 value of the second row of the output, i.e. result$res.hierarchy[[2, "significant.cluster"]].
Note that we need the double square brackets to access the column names stored in the column
significant.cluster of the output since the last column is a list where each element contains
a character vector of the column names. The two other columns containing the block names
and the p-values can both be indexed using single square brackets as for any data.frame, e.g.
result$res.hierarchy[2, "p.value"].

(coln.cluster <- result$res.hierarchy[[2, "significant.cluster"]])

[1] "SNP.605" "SNP.792" "SNP.636" "SNP.857" "SNP.858" "SNP.911" "SNP.571"

5

[8] "SNP.998" "SNP.708" "SNP.867" "SNP.612" "SNP.932" "SNP.803" "SNP.920"

[15] "SNP.643" "SNP.653" "SNP.778" "SNP.808" "SNP.720" "SNP.714" "SNP.732"

[22] "SNP.854" "SNP.876" "SNP.727" "SNP.738"

The function compute_r2 calculates the adjusted R2 value or coefficient of determination of a
cluster for a continuous response. The Nagelkerke’s R2 (Nagelkerke et al., 1991) is calculated for a
binary response as e.g. in our toy example.

compute_r2(x = sim.geno, y = sim.pheno, clvar = sim.clvar,

res.test.hierarchy = result, family = "binomial",

colnames.cluster = coln.cluster)

[1] 0.07316735

The function compute_r2 is based on multi-sample splitting. The R2 value is calculated per
split based on the second half of observations and based on the intersection of the selected variables
and the user-specified cluster. Then, the R2 values are averaged over the different splits. If one does
not specify the argument colnames.cluster, then the R2 value of the whole dataset is calculated.

3.3 Software for parallel computing

The function calls of cluster_var, cluster_position, and test_hierarchy above are evaluated
in parallel since we set the arguments parallel = "multicore" and ncpus = 2. The argument
parallel can be set to "no" for serial evaluation (default value), to "multicore" for parallel evalu-
ation using forking, or to "snow" for parallel evaluation using a parallel socket cluster (PSOCKET);
see below for more details. The argument ncpus corresponds to the number of cores to be used
for parallel computing. We use the parallel package for our implementation which is already
included in the base R installation (R Core Team, 2017).

The user has to select the “L’Ecuyer-CMRG” pseudo-random number generator and set a
seed such that the parallel computing of hierinf is reproducible. This pseudo-random number
generator can be selected by RNGkind("L’Ecuyer-CMRG") and has to be executed once for every
new R session; see R code at the beginning of Section 3. This allows us to create multiple streams
of pseudo-random numbers, one for each processor / computing node, using the parallel package;
for more details see the vignette of the parallel package published by R Core Team (2017).

We recommend to set the argument parallel = "multicore" which will work on Unix/Mac
(but not Windows) operation systems. The function is then evaluated in parallel using forking
which is leaner on the memory usage. This is a neat feature for GWAS since e.g. a large SNP
dataset does not have to be copied to the new environment of each of the processors. Note that
this is only possible on a multicore machine and not on a cluster.

On all operation systems, it is possible to create a parallel socket cluster (PSOCKET) which
corresponds to setting the argument parallel = "snow". This means that the computing nodes
or processors do not share the memory, i.e. an R session with an empty environment is initialized
for each of the computing nodes or processors.

How many processors should one use? If the user specifies the second level of the tree, i.e. defines
the block argument of the functions cluster_var / cluster_position and test_hierarchy, then
the building of the hierarchical tree and the hierarchical testing can be easily performed in parallel

6

across the different blocks. Note that the package can make use of as many processors as there are
blocks, say, 22 chromosomes. In addition, the multi sample splitting and screening step, which is
performed inside the function test_hierarchy, can always be executed in parallel regardless if we
defined blocks or not. It can make use of at most B processors where B is the number of sample
splits.

4 Meta-analysis for several datasets

The naive (and conceptually wrong) approach would be to pool the different datasets and proceed
as if it would be one homogeneous dataset, say, allowing for a different intercept per dataset. We
advocate meta analysis and aggregating corresponding p-values; see (Renaux et al., 2018, Sec. 4)
for more details.

Fast computational methods for pooled GWAS. There has been a considerable interest
for fast algorithms for GWAS with very large sample size in the order of 105; see Lippert et al.
(2011); Zhou and Stephens (2014). Often though, such large sample size comes from pooling dif-
ferent studies or sub-populations. We argue in favor of meta analysis and aggregating correspond-
ing p-values. Besides more statistical robustness against heterogeneity (arising from the different
sub-populations), meta-analysis is also computationally very attractive: the computations can be
trivially implemented in parallel for every sub-population and the p-value aggregation step comes
essentially without any computational cost.

4.1 Software for aggregating p-values of multiple studies

It is very convenient to combine the information of multiple studies by aggregating p-values as
described in (Renaux et al., 2018, Sec. 4). The package hierinf offers two methods for jointly
estimating a single hierarchical tree for all datasets using either of the functions cluster_var or
cluster_position; compare with Section 3.1. Testing is performed by the function test_hierarchy
in a top-down manner given by the joint hierarchical tree. For a given cluster, p-values are cal-
culated based on the intersection of the cluster and each dataset (corresponding to a study) and
those p-values are then aggregated to obtain one p-value per cluster using either Tippett’s rule or
Stouffer’s method as in (Renaux et al., 2018, Sec. 4); see argument agg.method of the function
test_hierarchy. The difference and issues of the two methods for estimating a joint hierarchical
tree are described in the following two paragraphs.

The function cluster_var estimates a hierarchical tree based on clustering the SNPs from all
the studies. Problems arise if the studies do not measure the same SNPs and thus, some of the
entries of the dissimilarity matrix cannot be calculated. By default, pairwise complete observations
for each pair of SNPs are taken to construct the dissimilarity matrix. The issue affects the building
of the hierarchical tree but the testing of a given cluster remains as described before.

The function cluster_position estimates a hierarchical tree based on the genomic positions
of the SNPs from all the studies. The problems mentioned above do not show up here since SNPs,
may be different ones for various datasets, can still be uniquely assigned to genomic regions.

The only differences in the function calls are that the arguments x, y, and clvar are now each
a list of matrices instead of just a single matrix. Note that the order of the list elements of the
arguments x, y, and clvar matter, i.e. the user has to stick to the order that the first element

7

of the three lists corresponds to the first dataset, the second element to the second datasets, and
so on. One would replace the corresponding element of the list containing the control covariates
(argument clvar) by NULL if some dataset has no control covariates. If none of the datasets have
control covariates, then one can simply omit the argument. Note that the argument block defines
the second level of the tree which is assumed to be the same for all datasets or studies. The
argument block has to be a data.frame which contains all the column names (of all the datasets
or studies) and their assignment to the blocks. The aggregation method can be chosen using the
argument agg.method of the function test_hierarchy, i.e. it can be set to either "Tippett" or
"Stouffer". The default aggregation method is Tippett’s rule.

The example below demonstrates the functions cluster_var and test_hierarchy for two
datasets / studies measuring the same SNPs.

The datasets need to be stored in different elements of a list.

Note that the order has to be the same for all the lists.

As a simple example, we artificially split the observations of the

toy dataset in two parts, i.e. two datasets.

set.seed(89)

ind1 <- sample(1:500, 250)

ind2 <- setdiff(1:500, ind1)

sim.geno.2dat <- list(sim.geno[ind1,],

sim.geno[ind2,])

sim.clvar.2dat <- list(sim.clvar[ind1,],

sim.clvar[ind2,])

sim.pheno.2dat <- list(sim.pheno[ind1],

sim.pheno[ind2])

Cluster the SNPs

dendr <- cluster_var(x = sim.geno.2dat,

block = block)

the following arguments have to be specified

for parallel computation

parallel = "multicore",

ncpus = 2)

Test the hierarchy using multi sample split

set.seed(1234)

result <- test_hierarchy(x = sim.geno.2dat,

y = sim.pheno.2dat,

clvar = sim.clvar.2dat,

dendr = dendr,

family = "binomial")

Warning in test only hierarchy(x = res$x, y = res$y, dendr = dendr, res.multisplit

= res.multisplit, : There occurred some warnings while testing the hierarchy. See

attribute ’warningMsgs’ of the corresponding list element of the return object for

more details.

8

the following arguments have to be

specified for parallel computation

parallel = "multicore",

ncpus = 2)

The above R code can be evaluated in parallel if one adds the two commented arguments parallel
and ncpus; compare with Section 3.3 for more details about the software for parallel computing.

The output shows three significant groups of SNPs and one single SNP.

print(result, n.terms = 4)

block p.value significant.cluster

1 chrom 1 NA NA

2 chrom 2 0.0046333 SNP.991

3 chrom 2 0.0414371 SNP.994

4 chrom 2 0.0056558 SNP.993

5 chrom 2 0.0008686 SNP.997

The significance of a cluster is based on the information of both datasets. For a given cluster,
the p-values of each dataset were aggregated using Tippett’s rule as in (Renaux et al., 2018, Sec.
4) or Tippett (1931). Those aggregated p-values are displayed in the output above. We cannot
judge which dataset (or both or combined) inherits a strong signal such that a cluster is shown
significant but that is not the goal. The goal is to combine the information of multiple studies.

The crucial point is that the testing procedure goes top-down through a single jointly estimated
tree for all the studies and only continues if at least one child is significant (based on the aggregated
p-values of the multiple datasets) of a given cluster. The algorithm determines where to stop and
naturally we get one output for all the studies. A possible single jointly estimated tree of the above
R code is illustrated in Figure 2. In our example, both datasets measure the same SNPs. If that
would not be the case, then intersection of the cluster and each dataset is taken before calculating
a p-value per dataset / study and then aggregating those.

References

Buzdugan, L. (2017). hierGWAS: Asessing statistical significance in predictive GWA studies. R
package version 1.6.0.

Buzdugan, L., Kalisch, M., Navarro, A., Schunk, D., Fehr, E., and Bühlmann, P. (2016). Assess-
ing statistical significance in multivariable genome wide association analysis. Bioinformatics,
32:1990–2000.

Klasen, J., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., Busch, W., and
Schneeberger, K. (2016). A multi-marker association method for genome-wide association studies
without the need for population structure correction. Nature Communications, 7:Article number
13299 (doi:10.1038/ncomms13299).

Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., and Heckerman, D. (2011). Fast
linear mixed models for genome-wide association studies. Nature Methods, 8:833.

9

entire data

chrom 1

SNP.22
SNP.41
. . .

...
...

SNP.1
SNP.3
. . .

...
...

chrom 2

SNP.544
SNP.513
. . .

...
...

SNP.647
SNP.648
. . .

...
...

Figure 2: Illustration of a possible single jointly estimated tree for multiple studies based on
clustering the SNPs. The second level of the hierarchical tree is defined by chromosome 1 and 2
(defined by the argument block of the functions cluster_var / cluster_position). The function
cluster_var / cluster_position builds a separate hierarchical tree for each of the chromosomes.

Mandozzi, J. and Bühlmann, P. (2016a). Hierarchical testing in the high-dimensional setting with
correlated variables. Journal of the American Statistical Association, 111:331–343.

Mandozzi, J. and Bühlmann, P. (2016b). A sequential rejection testing method for high-dimensional
regression with correlated variables. International Journal of Biostatistics, 12:79–95.

Nagelkerke, N. J. et al. (1991). A note on a general definition of the coefficient of determination.
Biometrika, 78:691–692.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Renaux, C., Buzdugan, L., Kalisch, M., and Bühlmann, P. (2018). Hierarchical inference
for genome-wide association studies: a view on methodology with software. arXiv preprint
arXiv:1805.02988.

Shi, G., Boerwinkle, E., Morrison, A. C., Gu, C. C., Chakravarti, A., and Rao, D. (2011). Mining
gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.
Genetic epidemiology, 35:111–118.

Stekhoven, D. J. and Bühlmann, P. (2012). Missforest – non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1):112–118.

Tippett, L. H. C. (1931). Methods of statistics. Williams Norgate, London, 1st edition.

van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained
equations in R. Journal of Statistical Software, Articles, 45:1–67.

Zhou, X. and Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for genome-
wide association studies. Nature Methods, 11:407–409.

10

	Cite hierinf
	Introduction
	Software
	Software for clustering
	Software for hierarchical testing
	Software for parallel computing

	Meta-analysis for several datasets
	Software for aggregating p-values of multiple studies

