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1 Licensing

Under the Artistic License, you are free to use and redistribute this software for
academic and personal use.

2 Overview

The flowMatch package performs two major functions given a collection of flow
cytometry (FC) samples:

1. Match cell populations across FC samples

2. Compute meta-clusters and templates from a collection of FC samples

2.1 FC sample

A flow cytometry sample measuring p features for n cells is represented with
an n x p matrix A. The (4,7) entry of the matrix, A(i, j), represents the mea-
surement of the j** feature in the i** cell. We characterize a multi-parametric
sample with a finite mixture model of multivariate normal distributions, where
each component is a cluster of cells expressing similar phenotypes in the mea-
sured parameter space. Such a cluster of cells represents a particular cell type
and is called a cell population in cytometry. In the mixture model, a cell popu-
lation (cluster) is characterized by a multi-dimensional normal distribution and
is represented by two parameters p, the p dimensional mean vector, and ¥, the
p X p covariance matrix [5].

2.2 Population matching

Registering cell populations and tracking their changes across samples often
reveal the biological conditions the samples are subjected to. To study these
cross-condition changes we first establish the correspondence among cell popu-
lations by matching clusters across FC samples. We used a robust variant of
matching algorithm called the mixed edge cover (MEC) algorithm that allows
cell cluster from one sample to get matched to zero or more clusters in another
sample [2]. MEC algorithm covers possible circumstances when a cell population
in one sample is absent from another sample, or when a cell population in one
sample splits into two or more cell populations in a second sample, which can
happen due to biological reasons or due to the limitations of clustering methods.

2.3 Meta-clustering and construction of templates

In high throughput flow cytometry, large cohorts of samples belonging to some
representative classes are produced. Different classes usually represent mul-
tiple experiment conditions, disease status, time points etc. In this setting,
samples belonging to same class can be summarized by a template, which is



a summary of the sample’s expression pattern [1,3,/6]. The concept of cell
populations in a sample can be extended to meta-clusters in a collection of sim-
ilar samples, representing generic cell populations that appear in each sample
with some sample-specific variation. Each meta-cluster is formed by combin-
ing cell populations expressing similar phenotypes in different samples. Hence
mathematically a meta-cluster is characterized by a normal distribution, with
parameters computed from the distributions of the clusters included in it. Clus-
ters in a meta-cluster represent the same type of cells and thus have overlapping
distributions in the marker space.

A template is a collection of relatively homogeneous meta-clusters com-
monly shared across samples of a given class, thus describing the key immune-
phenotypes of an overall class of samples in a formal, yet robust, manner. Math-
ematically a template is characterized by a finite mixture of normal distribu-
tions. We summarize these concepts in Table [1| and in Figure Given the
inter-sample variations, a few templates can together concisely represent a large
cohort of samples by emphasizing all the major characteristics while hiding
unnecessary details. Thereby, overall changes across multiple conditions can be
determined rigorously by comparing just the cleaner class templates rather than
the noisy samples themselves [1L(6].
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Figure 1: Summary of terminology used in this package.

We build templates from a collection of samples by a hierarchical algorithm
that repeatedly merges the most similar pair of samples or partial templates
obtained by the algorithm thus far. The algorithm builds a binary tree called
the template tree denoting the hierarchical relationships among the samples. A
leaf node of the template tree represents a sample and an internal (non-leaf)
node represents a template created from the samples. Fig.[2|shows an example of
a template tree created from four hypothetical samples, S7, 53,53, and S;. An
internal node in the template tree is created by matching similar cell clusters
across the two children and merging the matched clusters into meta-clusters.
For example, the internal node T'(S1, S2) in Fig. [2| denotes the template from
samples S; and So. The mean vector and covariance matrix of a meta-cluster are
computed from the means and covariance matrices of the clusters participating
in the meta-cluster.



Terms meaning

Cell population (clus- a group of cells expressing similar features, e.g.,

ter) helper T cells, B cells

Sample a collection of cell populations within a single bi-
ological sample

Meta-cluster a set of biologically similar cell clusters from dif-
ferent samples

Template a collection of meta-clusters from samples of same
class

Table 1: Summary of terminology used in this package.
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Figure 2: An example of a hierarchical template tree created from four hypo-
thetical samples 57,53, S3 and Sy. A leaf node of the template tree represents
a sample and an internal node represents a template created from its children.



2.4 Related packages in Bioconductor

Several packages are available in Bioconductor (http://www.bioconductor.org/)
for analyzing flow cytometry data. The flowCore package provides basic struc-
tures for flow cytometry data. A number of packages are available for cluster-
ing or automated gating in a FC samples such as flowClust/flowMerge and
flowMeans. Given an FC samples these packages identify cell populations (cell
clusters) in the sample.

The flowMatch package starts working with the output of clustering/gating
results. Given a pair of FC sample, flowMatch registers corresponding pop-
ulations across the sample pair by using a combinatorial algorithm called the
mixed edge cover [2]. In addition to registering populations, the flowMatch
package merges corresponding clusters across samples to build meta-clusters. A
meta-cluster represents the core pattern of a particular cell population across a
large collection of samples. The collection of meta-clusters are then grouped
together to build templates for a collection of similar samples. Thus, the
flowMatch package works in a higher level than the other packages such as
flowClust/flowMerge, flowMeans, flowQ, flowTrans, etc.

The only package related to this package is flowMap that also matches
cell population across samples. However, flowMap uses the nonparametric
Friedman-Rafsky (FR) multivariate run test to compute the mapping of clus-
ters. By contrast, flowMatch uses Mahalanobis distance or Kullback-Leibler
divergence to compute cluster dissimilarity and then applies a combinatorial
algorithm to match clusters. Additionally, flowMatch performs meta-clustering
and creates templates, which are not performed by flowMap. FLAME (not a Bio-
conductor package) by Pyne et al. provides funtionalities similar to flowMatch.
The differences between these two approaches are discussed in [1].

2.5 Dataset for testing

In order to reduce the download size of flowMatch, I put an example dataset to
a Bioconductor data package (healthyFlowData). The data package contains a
dataset consisting of 20 FC samples where peripheral blood mononuclear cells
(PBMC) were collected from four healthy individuals. Each sample was divided
into five repplicates and each replicate was stained using labeled antibodies
against CD45, CD3, CD4, CD8, and CD19 protein markers. Therefore we have
total 20 samples from four healthy subjects. This is a part of a larger dataset
of 65 samples.
The healthyFlowData package can be downloaded in the usual way.

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install ("healthyFlowData")

To use the examples included in this package, we must load the flowMatch
and healthyFlowData packages:



> library(healthyFlowData)
> library(flowMatch)

3 Data structures

We summarized the concept of cluster, sample, meta-cluster and template in
Table |1} and in Figure [l In this package we represent these terms with four S4
classes. Additionally we represent matching of clusters across a pair of sample
with another S4 class. We describe the classes in Table Pl Details about this
classes will be discussed in their related sections.

Terms S4 class

Cell population (cluster) Cluster

Sample ClusteredSample
Cluster matching ClusterMatch
Meta-cluster MetaCluster
Template Template

Table 2: S4 classes used in this package.

4 Population identification by using clustering al-
gorithms

Since flowMatch package can work with any clustering algorithm, we did not
include any clustering algorithm in this package.

We first identify cell populations in each sample by using any suitable cluster-
ing algorithm. We then create an object of class ClusteredSample to encapsulate
all necessary information about cell populations in a sample. An object of class
ClusteredSample stores a list of clusters (objects of class Cluster) and other
necessary parameters. Since we characterize a sample with a finite mixture of
normal distribution, the user can supply centers or cov of the clusters esti-
mated by methods of their choice. When centers or cov of the clusters are
not provided by user, they are estimated from the FC sample. The center of a
cluster is estimated with the mean of points present in the cluster. An unbiased
estimator of covariance is estimated using function cov from stats package.

> BH o e e
> ## load data and retrieve a sample

> A o
>

>

data(hd)



sample = exprs(hd.flowSet[[1]])
o
## cluster sample using kmeans algorithm

B oo
km = kmeans (sample, centers=4, nstart=20)
cluster.labels = km$cluster

A e
## Create ClusteredSample object (Option 1 )

## without specifying centers and covs

## we need to pass FC sample for paramter estimation
HH mmmm e

clustSample = ClusteredSample (labels=cluster.labels, sample=sample)
B o

## Create ClusteredSample object (Option 2)

## specifying centers and covs

## no need to pass the sample

2 ettt ettt

centers = list()
covs = list()
num. clusters = nrow(km$centers)
for(i in 1:num.clusters)
{
centers[[i]] = km$centers(i,]
covs[[i]] = cov(sample[cluster.labels==1i,])
}
# Now we do not need to pass sample
clustSample = ClusteredSample(labels=cluster.labels, centers=centers, covs=covs)
B o
## Show summary and plot a clustered sample
L ettt e

VVVVVVYV++++VVVVVVVVVVVVVVVVVVVVYVVYV

summary (clustSample)

An Object of class 'ClusteredSample'
Number of clusters: 4

Number of cells in cluster
Number of cells in cluster

4399 [ 22.8 % 1]
2729 [ 14.1 % 1]
1658 [ 8.6 % 1]

10535 [ 54.5 ¥ ]

Number of cells in cluster
Number of cells in cluster

DWW N e

> plot(sample, clustSample)
>
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5 Computing distance between clusters

The mixed edge cover algorithm matches similar clusters based on a dissimi-
larity measure between a pair of clusters. In flowMatch package we included
Euclidean distance, Mahalanobis distance and KL divergence for computing the
dissimilarities. These distances are computed from a pair of Cluster objects by
using their distribution parameters.

D —
> ## load data and retrieve a sample

> A m e
>

>

data(hd)



> sample = exprs(hd.flowSet[[1]])

> BB m o

> ## cluster sample using kmeans algorithm

> BB e

>

> km = kmeans (sample, centers=4, nstart=20)

> cluster.labels = km$cluster

> HH —mm -

> ## Create ClusteredSample object

> ## and retrieve two clusters (cluster from different samples can be used as well)
> BH o

>

> clustSample = ClusteredSample(labels=cluster.labels, sample=sample)
> clustl = get.clusters(clustSample) [[1]]

> clust2 = get.clusters(clustSample) [[2]]

> B .

> ## compute dissimilarity between the clusters

> BB m o

>

>

dist.cluster(clustl, clust2, dist.type='Mahalanobis')
[1] 7.658469

> dist.cluster(clustl, clust2, dist.type='KL')

(1] 55.5178

> dist.cluster(clustl, clust2, dist.type='Euclidean')
[1] 2.711378

>

6 Matching cell clusters across a pair of samples

Given a pair of ClusteredSample objects we match clusters by using the MEC al-
gorithm [2]. MEC algorithm allows a cluster to get matched to zero, one or more
than one clusters from another sample. The penalty for leaving a cluster un-
matched is empirically selected, see |2] for a discussion. When unmatch.penalty
is set to a very large value every cluster get matched.

> HH —m e
> ## load data and retrieve two samples

> B o
>

> data(hd)

> samplel = exprs(hd.flowSet[[1]])



sample2 = exprs(hd.flowSet[[2]])

B —mm e
## cluster samples using kmeans algorithm
e e et S L L L L

clustl
clust2
cluster.labelsl = clusti$cluster
cluster.labels2 clust2$cluster
B e

>

>

>

>

>

> kmeans (samplel, centers=4, nstart=20)
>
>
>
>
> ## Create ClusteredSample objects
>
>
>
>
>
>
>
>
>
>
>

kmeans (sample2, centers=4, nstart=20)

BH oo e

clustSamplel = ClusteredSample (labels=cluster.labelsl, sample=samplel)
clustSample2 = ClusteredSample(labels=cluster.labels2, sample=sample2)
L et

## Computing matching of clusteres

## An object of class "ClusterMatch" is returned

B mmm

mec = match.clusters(clustSamplel, clustSample2, dist.type="Mahalanobis", unmatch.penalty:
class(mec)

[1] "ClusterMatch"
attr(, "package")
[1] "flowMatch"

> summary (mec)

clusters/meta-clusters matched clusters/meta-clusters
from samplel/templatel sample2/template?2

1 2

2 4

3 3

4 1

7 Computing template from a collection of sam-
ples

We now build a template by merging corresponding clusters from different sam-
ples of a class. A template is constructed by repeatedly matching clusters across

a pair of samples and merging the matched clusters into meta-cluster. The al-
gorithm is similar in spirit to the UPGMA algorithm from phylogenetics and
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the hierarchy of the samples can be visualized by a dendrogram. Note that, the
samples in the attached dataset are from four subjects each of them is replicated
five times. The template tree preserves this structure by maintaining four well

separated branches.

## load data (20
##

data(hd)
#it

>
>
>
>
>
>
>
> ##
>

>

Clustering samples:

clustSamples = 11

{
cat(i, '
samplel =

")

cluster.labelsl
clustSamplel =
clustSamples =

}

1 2 3 4 5 6 7

>
>
+
+
+
+
+
+
+
+

##

samples in total)

")

st()

for(i in 1:length(hd.flowSet))

exprs(hd.flowSet[[i]])
clustl = kmeans (samplel, centers=4, nstart=20)

= clusti$cluster

set.seed(1234) # for reproducable clustering
cat ('Clustering samples:

## Retrieve each sample, clsuter it and store the
## clustered samples in a list

ClusteredSample(labels=cluster.labelsl, sample=samplel)
c(clustSamples, clustSamplel)

8 9 10 11

12

13

14

15

16 17

## Create a template from the list of clustered samples

##

template =

Number of Meta Cluster =

mel = [11; 21; 3
mc2 = [1 2; 2 2; 3
me3 = [1 3; 2 4; 3
mcd = [1 4; 2 3; 3

> summary (template)

An Object of class
Number of metaclust

1
3
4;
2

4

>

>

> >
>
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'Template'

ers: 4
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create.template(clustSamples)

we

we

0 00 00
=N Wb

we

we

© © ©O ©
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we

we

>
>
> ## the function returns an object of class "Template"
>
>
>

18

19 20

16

16

16 ¢
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Number
Number
Number
Number

of
of
of
of

cells
cells
cells
cells

in metacluster
in metacluster
in metacluster
in metacluster

W N -

12

195568 [ 53.16 % ]
80884 [ 21.99 % 1
45748 [ 12.44 ¥, ]
45682 [ 12.42 ¥ ]



7.1 Plotting templates

All samples within a template are organized as binary tree. We can plot the
hierarchy of samples established while creating a template-tree: Note that, the
samples in the attached dataset are from four subjects each of them is replicated
five times. The template tree preserves this structure by maintaining four well
separated branches.

> template.tree(template)

Number of objects: 20
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We plot a template as a collection of bivariate contour plots of its meta-
clusters. To plot each meta-cluster we consider the clusters within the meta-
cluster normally distributed and represent each cluster with an ellipsoid. The
axes of an ellipsoid is estimated from the eigen values and eigen vectors of the
covariance matrix of a cluster . We then plot the bivariate projection of the
ellipsoid as 2-D ellipses. There are several options to draw a template.

Option-1 (default): plot contours of each cluster of the meta-clusters

> plot(template)

FL2
1
|
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5
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4
I

FL3
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FL4
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Option-2: plot contours of each cluster of the meta-clusters with defined
color

> plot(template, color.mc=c('blue', 'black', 'green3', 'red'))

FL2
1
|
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5
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4
1

FL3
2

-1
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Option-3: plot contours of the meta-clusters with defined color

> plot(template, plot.mc=TRUE, color.mc=c('blue', 'black', 'green3', 'red'))
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Option-4: plot contours of each cluster of the meta-clusters with different
colors for different samples

> plot(template, colorbysample=TRUE)

FL2
1
|

FL3
2

FL4
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7.2 Retrieving and plotting a meta-cluster from a tem-
plate

Similar to template, we plot a meta-cluster as a contour plot of the distribution
of the underlying clusters or the combined meta-cluster. We consider cells in
clusters or in the meta-cluster are normally distributed and represent the dis-
tribution with ellipsoid. The axes of an ellipsoid is estimated from the eigen
values and eigen vectors of the covariance matrix. We then plot the bi-variate
projection of the ellipsoid as 2-D ellipses.

> # retrieve a metacluster from a template
> mc = get.metaClusters(template) [[1]]
> summary (mc)

An Object of class 'MetaCluster'
Number of clusters in this MetaCluster: 20
MetaCluster size = 195568

MetaCluster center:
[1] 1.54021923 0.06349614 3.47060192 0.29862616

MetaCluster covariance matrix:

[,1] [,2] [,3] [,4]
1,] 0.1165207491 0.0001517564 0.0036705228 -0.0049142970
2,] 0.0001517564 0.0500229560 -0.0062793598 -0.0288248427
[3,] 0.0036705228 -0.0062793598 0.1173861123 -0.0002442223
4,]

[ -0.0049142970 -0.0288248427 -0.0002442223 0.1082847736
> # plot all participating cluster in this meta-cluster

> plot(mc)

>
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We can plot the outline of the combined meta-cluster as well.

> plot(mc, plot.mc=TRUE)
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