flowFP: Fingerprinting for Flow Cytometry

H. Holyst and W. Rogers

October 24, 2025

Abstract

Background A new software package called flowFP for the analysis of flow cytometry data is in-
troduced. The package, which is tightly integrated with other Bioconductor software for analysis of
flow cytometry, provides tools to transform raw flow cytometry data into a form suitable for direct
input into conventional statistical analysis and empirical modeling software tools. The approach
of flowFP is to generate a description of the multivariate probability distribution function of flow
cytometry data in the form of a “fingerprint”. As such, it is independent of a presumptive func-
tional form for the distribution, in contrast with model-based methods such as Gaussian Mixture
Modeling. flowFP is computationally efficient, and able to handle extremely large flow cytometry
data sets of arbitrary dimensionality. Algorithms and software implementation of the package are
described.

Methods flowFP implements several S4 classes and methods, and rests upon the flowCore foun-
dation classes for flow cytometry data.

Results Use of the software is exemplified with applications to data quality control and to the au-
tomated classification of Acute Myeloid Leukemia.

keywords Flow cytometry, fingerprinting, high throughtput, software

1 Introduction

Flow cytometry (FC) produces multi-dimensional biological information at the level of the cellular
compartment, and over very large numbers of cells. As such it is ideally suited for a wide variety of in-
vestigations for which cellular context and large sample observations are important. In recent years the
technology of FC has undergone appreciable development (Chattopadhyay et al., 2008;|J. P.,|2002) with
the introduction of digital signal processing electronics (Murthi et al.,2005)), multiple lasers, increasing
numbers of fluorescence detectors, and robotic automation, both in sample preparation (Kelliher et al.,
20035) and in instrumental data collection (Gates et al., 2009). The recent development of new reagents
(Chattopadhyay et al., 2006) that enable increasing assay complexity has also been rapid and acceler-
ating. Given the scope and pace of these developments, the bottleneck in many FC experiments has
shifted from the wet laboratory to the computer laboratory; that is to say, data analysis(Chattopadhyay
et al.| [2008)).

FC data are typically analyzed using graphically-driven approaches. Subsets of cells (events) are
delineated usually in one- or two-dimensional histograms or “dotplots” in a procedure termed “gating”.

The gating process is often applied in a sequential fashion, with the numbers of events inside successive
gates falling monotonically from step to step. Subsets determined via gating are typically then quan-
tified with respect to their expression patterns in the dimensions of multiparameter space not utilized
for gating, often by simply counting proportions of the subsets that are positive or negative for each
of the markers of interest for that subset. Several commercially available software packages have been
extensively optimized to support this kind of visually-guided analysis workflow, for example, FlowJo
(Treestar Inc, Ashland, OR), WinList (Verity Software House, Topsham, ME) and FCSExpress (De
Novo Software, Los Angeles, CA).

Despite near-universality of this data analysis approach within the flow cytometry community, the
procedure has three main drawbacks. First, the choice of gates is often subjective, particularly in the
not-unusual situation where the gating distribution is broad and smooth. This leads to an inherent lack
of reproducibility from sample-to-sample, or even for the re-analysis of the same sample, as well as
presenting audit trail difficulties that compromise verifiability of results. Second, because gates are
specified by manually drawing regions on a graph using a computer mouse, the process is very labor-
intensive and time-consuming, and in most cases takes many times longer than the actual acquisition
of the data. Finally, because gating and analytical regions are determined by the data analyst based on
his or her experience, there may be interesting and informative features that exist within the full, un-
gated multivariate distribution of events but that nevertheless escape detection in this analysis paradigm.

flowFP is designed to address these limitations in conventional approaches to the analysis of FC
data. The broad aim of flowFP is to directly transform raw FC list-mode data into a form suitable
for direct input to other statistical analysis and empirical modeling tools. Thus, it is useful to think of
flowFP as an intermediate step between the acquisition of high- throughput FC data on the one hand,
and empirical modeling, machine learning, and knowledge discovery on the other.

2 Algorithm Description

flowFP implements and integrates ideas put forth in (Roederer et al.,[2001) and (Rogers et al., [2008]).
FlowFP utilizes the Probability Binning (PB) algorithm (Roederer et al.,|2001) to subdivide multivari-
ate space into hyper-rectangular regions that contain nearly equal numbers of events. Regions (bins)
are determined by (a) finding the parameter whose variance is highest, (b) dividing the population at the
median of this parameter which results in two bins, each with half of the events, and (c) repeating this
process for each subset in turn. Thus, at the first level of binning the population is divided into two bins.
At the second level, each of the two “parent” bins is divided into two “daughter” bins, and so forth. The
final number of bins # is determined by the number of levels [of recursive subdivision, such that n = 2.

This binning procedure is typically carried out for a collection of samples (instances), called a
“training set”. The result of this process is in essence a description of the subdivision of a multipara-
metric space into sub-regions, and is thus termed a “model” of the space (not to be confused with
modeling approaches that fit data to a parameterized model or set of models). The model is then ap-
plied to another set of samples (which may or may not include instances from the training set). This
operation results in a feature vector of event counts in each bin of the model for each instance in the set.
These feature vectors are, in the context of a specific model, a unique description of the multivariate

probability distribution function for each instance in the set of samples, and thus are aptly referred to
as “fingerprints”.

Although flowFP generates bins using the PB algorithm, the way it utilizes the resulting fingerprints
is similar to the methods described in (Rogers et al.,[2008]). Each element of a fingerprint represents the
number of events in a particular sub-region of the model. Although it may not be known a priori which
of these regions are informative with respect to an experimental question, it is possible to determine
this by using appropriate statistical tests, along with corrections for multiple comparisons, to ascertain
which regions (if any) are differentially populated in two or more groups of samples. If we regard the
number of events in a bin as one of n features describing an instance, then the statistical determination
of informative sub-regions is clearly seen to be a feature selection procedure.

Fingerprint features are useful in two distinct modes. First, all or a selected subset of features can
be used in clustering or classification approaches to predict the class of an instance based on its similar-
ity to groups of instances. Second, the events within selected, highly informative bins can be visualized
within their broader multivariate context in order to interpret the output of the modeling process. This
step is crucial in that it provides a means to develop new hypotheses for FC-derived biomarkers within
the context of existing reagent panels.

3 Fingerprint Representation

FlowFP is one of a growing number of Bioconductor packages integrated within the framework pro-
vided by flowCore and is thus able to interoperate with other flowCore-compliant tools as well as with
the full range of downstream statistical analysis and machine learning tools available in R. This inte-
gration enables flexible creation of powerful high-throughput analysis procedures for large FC data sets.

FlowFP uses the S4 object-oriented facility of R. Computationally intensive parts are written in
the C programming language for efficiency. FlowFP is built around a set of three S4 classes, each
with a constructor of the same name as the class name. In addition there are a number of methods for
accessing, manipulating and visualizing the data in each of the classes.

3.1 The flowFPModel Class

SflowFPModel is the fundamental class for the flowFP package. The f1owFPModel constructor takes
a collection of one or more list-mode instances which are represented in the flowCore framework as a
SflowFrame (for a single instance) or a flowSet (for a collection of instances), respectively (henceforth
we shall refer to flowFrames and flowSets, the original list-mode data being implied). In addition to
the required argument, £ lowFPModel has optional arguments that allow control over the number of
levels of recursive subdivision and the set of parameters to be considered in the binning process. By
default all parameters in the input flowSet are considered, but if this argument is provided, any param-
eters not listed are ignored. The constructor emits an object of type flowFPModel, which encapsulates
a complete representation of the binning process that is used later to construct fingerprints.

To see how this works, let’s build a flowFPModel for a small data set. fs/ is a flowSet comprised of
7 flowFrames, one for each tube in a sample. The tubes are stained with different antibody conjugates,
but CD45-ECD is common to all of the tubes in order to support gating of the entire panel from one of
the tubes using CD45 vs. SSC.

> data (fsl)
> fsl

A flowSet with 7 experiments.

column names(7): FS Lin SS Log ... FL4 Log FL5 Log
One of the tubes (the first one) looks like this:

> fs1[[1]]

flowFrame object 'FI05_000942_001.LMD'
with 30000 cells and 7 observables:

name desc range minRange maxRange
$P1 FS Lin FS Lin 1024 0.0000 1023
SP2 SS Log SS Log 1024 0.1024 1023
$SP3 FL1 Log IgGl-FITC 1024 0.0000 1023
SP4 FL2 Log IgGl-PE 1024 0.0000 1023
$P5 FL3 Log CD45-ECD 1024 0.0000 1023
SP6 FL4 Log IgGl-PC5 1024 0.0000 1023
$SP7 FL5 Log IgGl-PC7 1024 0.0000 1023

166 keywords are stored in the 'description' slot

Let’s construct a model, using SSC (parameter 2) and CD45 (parameter 5). We will specify the
number of recursions to be 7, resulting in 27 = 128 bins in the model:

> mod <- flowFPModel (fsl, name="CD45/SS Model", parameters=c(2,5), nRecursions=7,
> show (mod)

A flowFPModel:

Name = CD45/SS Model
nRecursions (max) = 7 (7)
Dequantize = TRUE
Parameters Considered:

SS Log, FL3 Log
Parameters Used:

SS Log, FL3 Log
Training Set:

FI05_000942_001.1LMD

FI05_000942_002.LMD
FI05_000942_003.LMD
FI05_000942_004.LMD
FI05_000942_005.LMD
FI05_000942_006.LMD
FI05_000942_007.LMD

> plot (mod)

FL3 Log
600 800 1000
L L

400
|

200
|

I I I I
200 400 600 800 1000

o —

SS Log

Usage and argument descriptions for £ 1owFPModel are as follows:

Usage:

flowFPModel (obj, name="Default Model", parameters=NULL, nRecursions="auto",
dequantize=TRUE, sampleSize=NULL, verbose=FALSE)

obj Training data for model, either a flowFrame or flowSet.
parameters A vector of parameters to be considered during model construction. You may
provide these as a vector of parameter indices (as shown above) or as a charac-
ter vector. For example, parameters = ¢("SS Log", "FL3 Log") would yield the
same result as shown in the example.
nRecursions Number of times the FCS training data will be sub divided. Each recursion
doubles the number of bins, so that npy;,s = 2nfecursions A warning will be
generated if the number of expected events in each bin is < 1. (e.g. if your
training set had 1000 events, and you specified nRecursions = 10.)
dequantize If TRUE, all of the event values in the training set will be made unique by
adding a tiny value (proportional to the ordinal position of each event) to the
data.
sampleSize Used to specify the per-flowFrame sample size of the data to use in model
generation. If NULL, all of the data in x is used. Setting this to a smaller
number will speed up processing, at the cost of accuracy.
name A descriptive name assigned to the model.
verbose If TRUE, prints out information as it constructs the model. Useful for debug-

ging.

3.2 The flowFP Class

The £1owFP constructor takes a flowFrame or a flowSet as its only required argument, and an optional
SflowFPModel. If no flowFPMaodel is supplied, £ 1owFP computes a model (by calling £1owFPModel
internally). Regardless the source of the model, £1owFP applies the model to each of the instances
in its input. The resulting flowFP object extends the flowFPModel class and contains two additional
important slots to store a matrix of counts and a list of tags. The counts matrix has dimensions m x n,
where m is the number of instances in the input flowSet (or one if a flowFrame is provided), and n is
the number of features in the model. The tags slot is a list of m vectors, each of which has e elements,
where e is the number of events in the corresponding frame in the input flowSet. The value for each
element of the tag vector represents the bin number into which the corresponding event fell during the
fingerprinting procedure. This is useful for visualization or gating based on fingerprints, as will be
illustrated below.

A set of fingerprints is obtained by applying the model to a flowSet. In this case we will apply the
model derived from fs/ to the same flowSet:

> fp <- flowFP (fsl, mod)
> show (fp)
A flowFP containing 7 instances with 128 features.

[1] "FIO05_000942_001.LMD" "FIO05_000942_002.LMD" "FI05_000942_003.LMD"
[4] "FIO05_000942_004.LMD" "FIO05_000942_005.LMD" "FI05_000942_006.LMD"
[7] "FI05_000942_007.LMD"

Extends A flowFPModel:

Name = CD45/SS Model

nRecursions (max)
Dequantize = TRUE

Parameters Considered:

SS Log, FL3 Log
Parameters Used:

SS Log, FL3 Log
Training Set:

FI05_000942_001.
FI05_000942_002.
FI05_000942_003.
FI05_000942_004.
FI05_000942_005.
FI05_000942_006.
FI05_000942_007.

= 7

LMD
LMD
LMD
LMD
LMD
LMD
LMD

(7)

> plot (fp, type="stack")

Fingerprints

FI05_000942_001.LMD

WWMWWWN

FI105_000942_002.LMD

N\W-W\AW

FI05_000942_004.LMD

300
I |

150

300

150

300

150

300
I I |

150

FI05_000942_005.LMD

300

150

FI05_000942_006.LMD

300

150

F105_000942_007.LMD

300

150

Usage and argument descriptions for £ 1owFP are as follows:

Usage:

flowFP (obj, model=NULL, sampleClasses=NULL, verbose=FALSE, ...)

fcs A flowFrame or flowSet for which fingerprint(s) are desired.
model A model generated with the £1owFPModel constructor, or NULL. If NULL,
a default model will be silently generated from all instances in x.
sampleClasses An optional character vector describing modeling classes. If supplied, there
must be exactly one element for each flowFrame in the flowSet in x (see De-
tails).
verbose If TRUE, prints out information as it constructs the fingerprint and possibly the
model. Useful for debugging.
If model is NULL, additional arguments are passed on to the model constructor.
see f1lowFPModel for details.

3.3 The flowFPPlex Class

The flowFPPlex is a container object which facilitates combining, processing and visualizing large col-
lections of flowFP objects which are all derived from the same set of instances. The flowFPPlex
constructor takes a list of flowFP objects. The flowFPPlex manages the logical association of a set of
SflowF P descriptions. In particular, it extends the counts matrices of its members “horizontally” so as to
create a unified representation of the entire collection of fingerprints.

For example, let’s load data for another sample, similar to fs/. We will then use both flowSets as
model bases, and fingerprint fs/ with respect to both of them. Then we’ll load both sets of fingerprints
into a flowFPPlex and visualize the result:

data (fsZ2)

modl <- flowFPModel (fsl, name="CD45/SS Model vs fsl", parameters=c("SS Log", "l
mod2 <- flowFPModel (fs2, name="CD45/SS Model vs fs2", parameters=c("SS Log", "l
fpl 1 <- flowFP (fsl, modl)

fpl 2 <- flowFP (fsl, modZ2)

plex <- flowFPPlex (c(fpl_1, fpl_2))

plot (plex, type='grid', vert_scale=10)

vV V.V Vv Vv VvV

Fingerprints

FI05_000942_001.LMD| FI05_000942_002.LMD| FI05_000942_003.LMD| FI05_000942_004.LMD

l

F105_000942_005.LMD| FI0O5_000942_006.LMD| FI05_000942_007.LMD|

In the figure, the light blue vertical lines show the division of the fingerprints resulting from the
two models. Notice that, as one might expect, when fingerprinting fs/ against a model constructed
from itself, the deviations from the norm are small, whereas when fingerprinting fs/ against a model
constructed from a different flowSet, the deviations in the fingerprint values are large.

We might also wish to use the flowFPPlex to facilitate exploration of the effect on fingerprints due
to variation of the number of levels of recursion.

fp <- flowFP (fsl, param=c("SS Log", "FL3 Log"), nRecursions=8)
plex <— flowFPPlex()
for (levels in 8:5) {
nRecursions (fp) <- levels
plex <- append (plex, fp)
}

plot (plex, type="tangle", transformation="norm")

vV + + + Vv Vv Vv

10

Fingerprints

1.6 1.8

1.4

1.2

normalized Fingerprint
1.0

0.8

Feature Index

Notice that as the fingerprint resolution (determined by the number of recursions) is reduced from
left to right, the number of features in each fingerprint falls, but the size of the variations from the norm
also falls. Evidently, the more local the modeling, the larger the variations from instance to instance
we can expect.

Also notice a couple of other features we illustrate in this example. First, we only computed the
model once, but we can change the effective number of recursions (and thus the resolution of the fin-
gerprints) to any integer less than that at which the model was computed, using the accessor function
nRecursions. Second, we can initialize an empty flowFPPlex, and then use the function append
to add flowFPs one at a time.

Usage and argument descriptions for f lowFPP lex are as follows:

Usage:

flowFPPlex (fingerprints=NULL)

fingerprints List of flowFPs.

11

3.4 Generic functions

A number of other methods have been provided to facilitate interaction with and analysis of fingerprint-
ing results. Chief among these are visualization methods that aid in the understanding and interpretation
of fingerprinting results. They are provided as overloads to the generic plot function. In addition, a
few other accessor methods deserve special mention.

nRecursions(obj). This generic function returns the number of levels of recursive subdivision of its
argument. FlowFP, flowFPPlex and flowFPModel all implement the method. Furthermore, the
flowFP class implements the “set” method. This enables the user to compute a model at some
fairly high resolution, and then to derive fingerprints at that resolution or any lower resolution
without re-computing the model. This is possible because fingerprinting is recursive, so that
given any high-resolution model, all models of lower resolution can be derived from it.

counts(obj). This generic function returns a matrix of the number of events per instance and per bin.
FlowFP and flowFPPlex classes implement this method, facilitating creation of fingerprint matri-
ces suitable for processing by downstream methods outside of the flowFP package. The method
has an optional argument “transformation” that can take on values “raw” (returns the actual event
counts for each bin), “normalize” (normalizes by dividing raw counts by the expected number of
events), or “log2norm” (like normalize except that it further takes the log2 of the result).

sampleNames(obj) and sampleClasses(obj). These generic functions set or get sample identifiers for
objects of class flowFP or flowFPPlex. By default, for flowFPs, sample names are derived from
the flowSet. However they can be overridden by the set method, providing flexibility to handle
cases where the sample names in a flowSet are not appropriate. When adding fingerprints to a
flowFPPlex, sample names, and if present sample classes, are compared, and the join operation
is not permitted unless names and classes among all fingerprints in the flowFPPlex are identical.

parameters(obj). This generic function returns the light scatter and/or fluorescence parameters in-
volved in binning, either for a flowFPModel or a flowFP. The function is able to report both the
parameters that were considered for binning as well as those that actually participating (i.e. ones
that were subdivided at during recursive subdivision).

tags(fp). This generic function returns the tags slot of a flowFP object. This is useful for visualization
and gating operations.

binBoundary(obj). This generic function reports a list of multivariate rectangles corresponding to the
limits of the bins. FlowFP and flowFPModel classes both implement this method. This informa-
tion is also useful for visualization and gating operations.

12

4 Fingerprinting for Gating Quality Control

As alluded to in Section 3.1, a common practice, especially in some clinical settings, is the collection
of data in several aliquots, each stained with different reagent cocktails in order to see all of the markers
of interest, but including in all of the tubes at least one common marker. Using parameters common
to all of the tubes (CD45 and SSC are frequently used for this purpose (Borowitz et al.,[1993))) subsets
of cells can be delineated by drawing gates on one tube and then applying the gates to all of the tubes.
This saves time, but relies on the assumption that the probability distribution is stationary over all of
the tubes. If this assumption is not valid, subsetting errors will occur, but may not be readily apparent
without careful study of the gating plots.

Using flowFP, in order to rapidly detect consistency of CD45 vs. SSC distributions without the
need to look at dotplots, we can fingerprint a collection of tubes and look for outliers.

> fpl <- flowFP (fsl, parameters=c("SS Log", "FL3 Log"), name="self model: fsl1l", 1
> plot (fpl, type="gc", main="Gate QC for Sample fs1")

Gate QC for Sample fs1
method = sd [—
vertical scale factor = 3.0 00 10

13

In this plot the fingerprints for each of the 7 tubes is shown in a grid. The color of the grid square
for a tube indicates the standard deviation of the normalized and log-transformed fingerprint feature
vector for that tube according to the color scale at the top of the figure. The standard deviation value is
printed in the grid square.

The following figure shows an example where the gate deviation is large. Note the fact that tube 4
and especially tube 5 are the outliers. Also note how easy it is to spot this problem.

> fp2 <- flowFP (fs2, parameters=c("SS Log", "FL3 Log"), name="self model:

> plot (fp2, type="qc", main="Gate QC for Sample fs2")

Gate QC for Sample fs2

method = sd [— |

vertical scale factor = 3.0 00 10

FI05_000599_001.LMD FI05_000599_002.LMD FI05_000599_003.LMD FI05_000599_004.LMD

FI05_000599_006.LMD FI05_000599_007.LMD

0.31

W

> xyplot ("FL3 Log™ ~ °SS Log" | Tube, data=fsZ2)

£s2",

0 200 400 600 8001000 0 200 400 600 8001000
| | | | | \ | | | \ | | | \ | |

1000 — [] -
800 — -
600 — —
8 400 - —
i 200 - -
1) 0 - -
3
@) 5
e
3 7] * — 1000
N . — 800
w
- - 600
- ~ 400
- - 200

0 200 400 600 8001000 O 200 400 600 8001000
SS Log SS Log

In the above flowViz plot it is certainly possible to spot the inconsistency, but it’s not so easy as in
the fingerprint-based QC picture. On the other hand ...

> plot (fp2, fs2, hi=5, showbins=c(6,7,10,11), pch=20, cex=.3, transformation='no.

15

Fingerprints

o
o _|
S
=
o
o —]
@
8
8’ ©
A
™
il
L o
o —]
g
o
o —]
«
o —]
I I I I I I
0 200 400 600 800 1000
E
S
@
o
c
=
e
I
N
IS
£
S
c

0 5 10 15 20 25 30

Feature Index

In this figure we can follow the fingerprint bins containing excess events in Tube 5 by way of the color
map shown below the fingerprint. By comparing the bin indices 6, 7, 10 and 11 corresponding to green
to blue-green colors, it’s easy now to localize the place where Tube 5 differs from the rest.

Quality control for individual multi-tube samples is tedious, but not crazily impossible. 96-well

16

plate data will drive you nuts with the need to examine gating data for each well and for many plates.
Try this instead:

> data (plate)
> fp <- flowFP (plate, parameters=c("SSC-H","FL3-H","FL4-H"), nRecursions=5)
> plot (fp, type='plate')

Fingerprint Deviation Plot

Ugﬁir::%cli s:cgije factor = 3.0 oﬂ):mmto
5 6 7 8 9 10 11 12
0.39 0.36 0.41 % j:\ZfW 0.44 0.51
AW A WA
0.31 0.45 0.20 0.34 0.32 0.53 0.45 0.30
T Wy AN PN M A W M«M MMy Ay
0.58 0.47 0.40 0.47 0.51 0.41 0.37 0.31 0.31 0.28 0.35
C N Py A A A A AN A A AN APV AN AN A
0.53 0.40 0.33 0.53 0.28 0.34 0.34 0.39 0.53 0.34 0.35 0.48
0.49 0.50 0.45 0.39 0.37 0.41 0.40 0.44 0.41 0.48 0.38 0.39
E iy i may a i AANAA A IS IS A A A
0.48 0.57 0.55 0.75 0.49 0.43 0.39 0.46 0.53 0.53 0.39
G 0.54 0.58 0.37 0.42 0.46 0.57 0.60 0.33 0.44 0.54 0.40
0.48 0.53 0.36 0.39 0.31 0.50 0.49 0.54 0.48 0.43 0.35 0.41

This is a stimulation dataset, described in (Inokuma et al.| [2007) (data were drastically sampled
down to 1000 events per well so that they could be included in the package for illustration purposes).
The original data are available at (Inokuma et al., [2008)).

5 Limitations, Caveats and Comments

It is important to note that fingerprinting of FC data is not without limitations. First, we note that
fingerprinting approaches are sensitive to differences in multivariate probability distributions no matter
their origin. Thus, instrumental, reagent or other systematic variations may cause spurious signals as
large, or larger than true biological effects. For this reason it is important to measure and control for
these effects(Chattopadhyay et al.,2008)). In fact, fingerprinting itself can be used to assess and to help
control for systematic effects, as was illustrated in Section 4.

Second, because fingerprinting is, in essence, the creation of a multivariate histogram, it responds
to factors that might artificially emphasize certain bins in preference to others. In particular, events
may pile up on either the zero or full- scale axis for one or more parameters. This situation frequently

17

results from values that would be negative due to compensation or background subtraction (causing
pile-up on the zero axis) or at the other end of the scale, values that exceed the dynamic range of the
signal detection apparatus causing pile-up at full scale. At either end this results falsely in an apparent
high density of events. Fingerprinting bins are thus “attracted” to these locations, causing a distortion
in the proper characterization of the true multivariate probability distribution function.

Just as scaling and transformation of data are important for visualization of multi- parameter dis-
tributions(Parks et al., 2006; [Tung et al., [2004; Novo and Wood, |2008)), so they are also important for
fingerprinting. Data acquired using linear amplifiers such as exist in some modern instruments, or data
that have been “linearized” from instruments with logarithmic amplifiers, tend to be heavily skewed to
the left, since in most cases data distributions are quasi-log-normally distributed. Bins determined from
such data thus have extreme variations in size. A good rule of thumb is to use a data transformation
that produces the most spread-out distribution, which also is often the transformation most effective for
clear visualization of the distribution.

A key limitation for fingerprinting approaches, including flowFP, relates to the number of events
available for analysis. Since the objective of probability binning is to find bins containing equal num-
bers of events, it follows that once the number of bins is on the order of the number of events in an
instance, the expected number of events per bin will be of order unity. In this case differences in bin
counts will not be statistically significant. On the other hand, if the dimensionality of the data set is
high, the average number of times any parameter will be divided in the binning process will be small.
For example, in a dataset with 18 parameters, if we demand at least, say, 10 events per bin for statistical
accuracy, about 2.6 x 105 events would be required in order that each parameter be divided on average
into at least two bins. Thus, the spatial resolution of binning is limited by the number of events col-
lected, and as the number of parameters increases, the number of events needed to maintain resolution
increases geometrically.

Finally, although flowFP is computationally fast, because of the way that flow cytometric data are
represented in R large datasets consume vast amounts of memory. If you need to process 96-well data
for example, you will probably either need a machine with lots of memory (>4 GByte), or you will have
to use some tricks, like sampling the data in order to reduce memory footprint. Fortunately, memory
is cheap and 64-bit operating systems are becoming commonplace. For example, just reading in the
data in (Inokuma et al., [2008)) consumed 3.1 GB on a Linux 64-bit machine with 32 GB of memory.
Fingerprinting required (briefly) an additional 2.5 GB for a total of 5.6 GB. However the whole process
(reading in the data, computing the fingerprints, and displaying the result similar to the 96-well figure
above) only took about 1 minute.

With recent technological advances, FC is now capable of operating as a true high-throughput tech-
nique. A key enabling requirement is the need to automate data analysis for speed, much as automation
in sample preparation and data acquisition have accelerated the rate of generation of data and thereby
enabled high-throughput FC. This requirement inevitably drives movement away from human-drawn,
visually-based gating which is the single most significant obstacle preventing a true high-throughput
FC workflow. We hope you find flowFP a useful tool in your toolbox to help you achieve this goal.

18

6 Acknowledgements

We wish to express our deep gratitude to Jonni Moore and all of the people of the University of Penn-
sylvania Flow Cytometry Resource. We thank Florian Hahne, Nolwenn Le Meur and Ryan Brinkman
for advice and assistance in programming in R and integration with flowCore. We are most espe-

cially grateful to Clarient, Inc. for generously making available data sets used to illustrate the utility of
flowFP.

19

References

M. J. Borowitz, K. L. Guenther, K. E. Shults, and G. T. Stelzer. Immunophenotyping of acute leukemia
by flow cytometric analysis. use of cd45 and right-angle light scatter to gate on leukemic blasts in
three-color analysis. Am J Clin Pathol, 100(5):534-40, Nov 1993.

P. K. Chattopadhyay, D. A. Price, T. F. Harper, M. R. Betts, J. Yu, E. Gostick, S. P. Perfetto, P. Goepfert,
R. A. Koup, S. C. De Rosa, M. P. Bruchez, and M. Roederer. Quantum dot semiconductor nanocrys-
tals for immunophenotyping by polychromatic flow cytometry. Nat Med, 12(8):972-7, Aug 2006.

P. K. Chattopadhyay, C. M. Hogerkorp, and M. Roederer. A chromatic explosion: the development and
future of multiparameter flow cytometry. Immunology, 125(4):441-9, Dec 2008.

L. V. Gates, Y. Zhang, C. Shambaugh, M. A. Bauman, C. Tan, and J. L. Bodmer. Quantitative mea-
surement of varicella zoster virus infection using semi-automated flow cytometry. Appl Environ
Microbiol, Feb 5 2009.

M. Inokuma, C. dela Rosa, C. Schmitt, P. Haaland, J. Siebert, D. Petry, M. Tang, M. A. Suni, S. A.
Ghanekar, D. Gladding, J. F. Dunne, V. C. Maino, M. L. Disis, and H. T. Maecker. Functional t
cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine
signature. J Immunol, 179(4):2627-33, Aug 15 2007.

M. Inokuma, C. dela Rosa, C. Schmitt, P. Haaland, J. Siebert, D. Petry, M. Tang, M. A. Suni, S. A.
Ghanekar, D. Gladding, J. F. Dunne, V. C. Maino, M. L. Disis, and H. T. Maecker, 2008.

McCoy Jr. J. P. Basic principles of flow cytometry. Hematol Oncol Clin North Am, 16(2):229-43, Apr
2002.

A. S. Kelliher, D. W. Parent, D. C. Anderson, M. E. Dorn, J. L. Hahn, S. Eapen, and F. I. Preffer. Novel
use of the bd facs spa to automate custom monoclonal antibody panel preparations for immunophe-
notyping. Cytometry B Clin Cytom, 66(1):40-5, Jul 2005.

S. Murthi, S. Sankaranarayanan, B. Xia, G. M. Lambert, J. J. Rodriguez, and D. W. Galbraith. Perfor-
mance analysis of a dual-buffer architecture for digital flow cytometry. Cytometry A, 66(2):109-18,
Aug 2005.

D. Novo and J. Wood. Flow cytometry histograms: transformations, resolution, and display. Cytometry
A, 73(8):685-92, Aug 2008.

D. R. Parks, M. Roederer, and W. A. Moore. A new "logicle" display method avoids deceptive effects
of logarithmic scaling for low signals and compensated data. Cytometry A, 69(6):541-51, Jun 2006.

M. Roederer, W. Moore, A. Treister, R. R. Hardy, and L. A. Herzenberg. Probability binning compar-
ison: a metric for quantitating multivariate distribution differences. Cytometry, 45(1):47-55, Sep 1
2001.

W. T. Rogers, A. R. Moser, H. A. Holyst, A. Bantly, E. R. Mohler 3rd, G. Scangas, and J. S. Moore.
Cytometric fingerprinting: quantitative characterization of multivariate distributions. Cytometry A,
73(5):430-41, may 2008.

20

J. W. Tung, D. R. Parks, W. A. Moore, and L. A. Herzenberg. New approaches to fluorescence com-
pensation and visualization of facs data. Clin Immunol, 110(3):277-83, Mar 2004.

21

	Introduction
	Algorithm Description
	Fingerprint Representation
	The flowFPModel Class
	The flowFP Class
	The flowFPPlex Class
	Generic functions

	Fingerprinting for Gating Quality Control
	Limitations, Caveats and Comments
	Acknowledgements

