
snpMatrix vignette
Example of genome-wide association testing

David Clayton and Chris Wallace

October 24, 2025

The snpMatrix package
The package “snpMatrix” was written to provide data classes and methods to facilitate
the analysis of whole genome association studies in R. In the data classes it implements,
each genotype call is stored as a single byte and, at this density, data for single chromo-
somes derived from large studies and new high-throughput gene chip platforms can be
handled in memory by modern PCs and workstations. The object–oriented programming
model introduced with version 4 of the S-plus package, usually termed “S4 methods” was
used to implement these classes.

At the current state of development the package only supports population–based stud-
ies, although we would hope to provide support for family–based studies soon. Both
quantitative and qualitative phenotypes may be analysed. Flexible association testing
functions are provided which can carry out single SNP tests which control for poten-
tial confounding by quantitative and qualitative covariates. Tests involving several SNPs
taken together as “tags” are also supported. Efficient calculation of pair-wise linkage dis-
equilibrium measures is implemented and data input functions include a function which
can download data directly from the international HapMap project website.

The package is described by Clayton and Leung (2007) Human Heredity, 64: 45–51.

Getting started
We shall start by loading the the packages and the data to be used in this exercise:

> library(chopsticks)
> library(hexbin)
> data(for.exercise)

In addition to the snpMatrix package, we have also loaded the hexbin package which
reduces file sizes and legibility of plots with very many data points.

The data have been created artificially from publicly available datasets. The SNPs
have been selected from those genotyped by the International HapMap Project1 to repre-
sent the typical density found on a whole genome association chip, (the Affymetrix 500K

1http://www.hapmap.org

1

platform2) for a moderately sized chromosome (chromosome 10). A (rather too) small
study of 500 cases and 500 controls has been simulated allowing for recombination using
beta software from Su and Marchini. Re-sampling of cases was weighted in such a way
as to simulate three “causal” locus on this chromosome, with multiplicative effects of 1.3,
1.4 and 1.5 for each copy of the risk allele at each locus. It should be noted that this is a
somewhat optimistic scenario!

You have loaded three objects:

1. snps.10, an object of class “snp.matrix” containing a matrix of SNP genotype
calls. Rows of the matrix correspond to subjects and columns correspond to SNPs:

> show(snps.10)

A snp.matrix with 1000 rows and 28501 columns
Row names: jpt.869 ... ceu.464
Col names: rs7909677 ... rs12218790

2. snp.support, a conventional R data frame containing information about the SNPs
typed. To see its contents:

> summary(snp.support)

chromosome position A1 A2
Min. :10 Min. : 101955 A:14019 C: 2349
1st Qu.:10 1st Qu.: 28981867 C:12166 G:12254
Median :10 Median : 67409719 G: 2316 T:13898
Mean :10 Mean : 66874497
3rd Qu.:10 3rd Qu.:101966491
Max. :10 Max. :135323432

Row names of this data frame correspond with column names of snps.10 and
comprise the (unique) SNP identifiers.

3. subject.support, another conventional R data frame containing further informa-
tion about the subjects. The row names coincide with the row names of snps.10
and comprise the (unique) subject identifiers. In this simulated study there are only
two variables:

> summary(subject.support)

cc stratum
Min. :0.0 CEU :494
1st Qu.:0.0 JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max. :1.0

2http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype_data.affx

2

The variable cc identifies cases (cc=1) and controls (cc=0) while stratum, coded
1 or 2, identifies a stratification of the study population — more on this later.

In general, analysis of a whole–genome association study will require a subject support
data frame, a SNP support data frame for each chromosome, and a SNP data file for each
chromosome3.

You may have noticed that it was not suggested that you should examine the contents
of snps.10 by typing summary(snps.10). The reason is that this command produces
one line of summary statistics for each of the 12,400 SNPs. Instead we shall compute the
summary and then summarise it!

> snpsum <- summary(snps.10)
> summary(snpsum)

Calls Call.rate MAF P.AA
Min. : 975 Min. :0.975 Min. :0.0000 Min. :0.00000
1st Qu.: 988 1st Qu.:0.988 1st Qu.:0.1258 1st Qu.:0.06559
Median : 990 Median :0.990 Median :0.2315 Median :0.26876
Mean : 990 Mean :0.990 Mean :0.2424 Mean :0.34617
3rd Qu.: 992 3rd Qu.:0.992 3rd Qu.:0.3576 3rd Qu.:0.60588
Max. :1000 Max. :1.000 Max. :0.5000 Max. :1.00000

P.AB P.BB z.HWE
Min. :0.0000 Min. :0.00000 Min. :-21.9725
1st Qu.:0.2080 1st Qu.:0.06465 1st Qu.: -2.8499
Median :0.3198 Median :0.27492 Median : -1.1910
Mean :0.3074 Mean :0.34647 Mean : -1.8610
3rd Qu.:0.4219 3rd Qu.:0.60362 3rd Qu.: -0.1014
Max. :0.5504 Max. :1.00000 Max. : 3.7085

NA's :4

The contents of snpsum are fairly obvious from the output from the last command.
We could look at a couple of summary statistics in more detail:

> par(mfrow = c(1, 2))
> hist(snpsum$MAF)
> hist(snpsum$z.HWE)

3Support files are usually read in with general tools such as read.table(). The snpMatrix package
contains a number of tools for reading SNP genotype data into an object of class “snp.matrix”.

3

Histogram of snpsum$MAF

snpsum$MAF

F
re

qu
en

cy

0.0 0.2 0.4

0
10

00
20

00
30

00

Histogram of snpsum$z.HWE

snpsum$z.HWE

F
re

qu
en

cy

−20 −10 0 5

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

The latter should represent a z-statistic. i.e. a statistic normally distributed with mean
zero and unit standard deviation under the hypothesis of Hardy–Weinberg equilibrium
(HWE). Quite clearly there is extreme deviation from HWE, but this can be accounted for
by the manner in which this synthetic dataset was created.

A useful tool to detect samples that have genotyped poorly is row.summary(). This
calculates call rate and mean heterozygosity across all SNPs for each subject in turn:

> sample.qc <- row.summary(snps.10)
> summary(sample.qc)

Call.rate Heterozygosity
Min. :0.9879 Min. :0.0000
1st Qu.:0.9896 1st Qu.:0.2993
Median :0.9900 Median :0.3078
Mean :0.9900 Mean :0.3074
3rd Qu.:0.9904 3rd Qu.:0.3159
Max. :0.9919 Max. :0.3386

> par(mfrow = c(1, 1))
> plot(sample.qc)

4

0.988 0.989 0.990 0.991 0.992

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Call.rate

H
et

er
oz

yg
os

ity

The analysis
We’ll start by removing the three ‘outlying’ samples above (the 3 samples with Heterozy-
gosity near zero):

> use <- sample.qc$Heterozygosity > 0
> snps.10 <- snps.10[use,]
> subject.support <- subject.support[use,]

Then we’ll see if there is any difference between call rates for cases and controls. First
generate logical arrays for selecting out cases or controls:4

> if.case <- subject.support$cc == 1
> if.control <- subject.support$cc == 0

Now we recompute the genotype summary separately for cases and controls:

> sum.cases <- summary(snps.10[if.case,])
> sum.controls <- summary(snps.10[if.control,])

4These commands assume that the subject support frame has the same number of rows as the SNP matrix
and that they are in the same order. Otherwise a slightly more complicated derivation is necessary.

5

and plot the call rates, using hexagonal binning and superimposing a line of slope 1
through the origin:

> hb <- hexbin(sum.controls$Call.rate, sum.cases$Call.rate, xbin = 50)
> sp <- plot(hb)
> hexVP.abline(sp$plot.vp, a = 0, b = 1, col = "black")

0.97 0.975 0.98 0.985 0.99 0.995 1

0.97

0.975

0.98

0.985

0.99

0.995

1

sum.controls$Call.rate

su
m

.c
as

es
$C

al
l.r

at
e

1
58

115
172
230
287
344
401
458
515
572
629
686
744
801
858
915

Counts

There is
no obvious difference in call rates. This is not a surprise, since no such difference was
built into the simulation. In the same way we could look for differences between allele
frequencies, superimposing a line of slope 1 through the origin:

> sp <- plot(hexbin(sum.controls$MAF, sum.cases$MAF, xbin = 50))
> hexVP.abline(sp$plot.vp, a = 0, b = 1, col = "white")

6

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

sum.controls$MAF

su
m

.c
as

es
$M

A
F

1
13
26
38
50
63
75
88

100
112
125
137
150
162
174
187
199

Counts

This is not a very effective way to look for associations, but if the SNP calling algo-
rithm has been run separately for cases and controls this plot can be a useful diagnostic
for things going wrong (e.g. different labelling of clusters).

It should be stressed that, for real data, the plots described above would usually have
many more outliers. Our simulation did not model the various biases and genotype fail-
ures that affect real studies.

The fastest tool for carrying out simple tests for association taking the SNP one at a
time is single.snp.tests. The output from this function is a data frame with one line
of data for each SNP. Running this in our data and summarising the results:

> tests <- single.snp.tests(cc, data = subject.support, snp.data = snps.10)

Some words of explanation are required. In the call, the snp.data= argument is manda-
tory and provides the name of the matrix providing the genotype data. The data= argu-
ment gives the name of the data frame that contains the remaining arguments — usually
the subject support data frame5.

Let us now see what has been calculated:

> summary(tests)
5This is not mandatory — we could have made cc available in the global environment. However we

would then have to be careful that the values are in the right order; by specifying the data frame, order is
forced to be correct by checking the order of the row names for the data and snp.data arguments.

7

chi2.1df chi2.2df p.1df p.2df
Min. : 0.0000 Min. : 0.0000 Min. :0.0000 Min. :0.0000
1st Qu.: 0.1724 1st Qu.: 0.7915 1st Qu.:0.1410 1st Qu.:0.1601
Median : 0.7729 Median : 1.8562 Median :0.3793 Median :0.3953
Mean : 1.5608 Mean : 2.5961 Mean :0.4192 Mean :0.4281
3rd Qu.: 2.1670 3rd Qu.: 3.6635 3rd Qu.:0.6780 3rd Qu.:0.6732
Max. :34.0217 Max. :37.2487 Max. :1.0000 Max. :1.0000
NA's :4 NA's :826 NA's :4 NA's :826

N
Min. :974
1st Qu.:987
Median :989
Mean :989
3rd Qu.:991
Max. :999

We have, for each SNP, chi-squared tests on 1 and 2 degrees of freedom (df), together
with N, the number of subjects for whom data were available. The 1 df test is the familiar
Cochran-Armitage test for codominant effect while the 2 df test is the conventional Pear-
sonian test for the 3× 2 contingency table. The large number of NA values for the latter
test reflects the fact that, for these SNPs, the minor allele frequency was such that one
homozygous genotype did not occur in the data.

We will probably wish to restrict our attention to SNPs that pass certain criteria. For
example

> use <- snpsum$MAF > 0.01 & snpsum$z.HWE^2 < 200

(The Hardy-Weinberg filter is ridiculous and reflects the strange characteristics of these
simulated data. In real life you might want to use something like 16, equivalent to a 4SE
cut-off). To see how many SNPs pass this filter

> sum(use)

[1] 28184

We will now throw way the discarded test results and save the positions of the remaining
SNPs

> tests <- tests[use,]
> position <- snp.support[use, "position"]

We now calculate p-values for the Cochran-Armitage tests and plot minus logs (base
10) of the p-values against position, with a horizontal line corresponding to p = 10−6:

> p1 <- pchisq(tests$chi2.1df, df = 1, lower.tail = FALSE)
> plot(hexbin(position, -log10(p1), xbin = 50))

8

2e+07 4e+07 6e+07 8e+07 1e+08

0

2

4

6

8

position

−
lo

g1
0(

p1
)

1
12
23
34
44
55
66
77
88
99

110
121
132
142
153
164
175

Counts

Clearly there are far too many “significant” results, an impression which is made even
clearer by the quantile-quantile (QQ) plot:

> qq.chisq(tests$chi2.1df, df = 1)

N omitted lambda
28184.000000 0.000000 1.676657

9

0 5 10 15

0
5

10
15

20
25

30
35

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

The three numbers returned by this command are the number of tests considered, the
number of outliers falling beyond the plot boundary, and the slope of a line fitted to the
smallest 90% of values. The "concentration band" for the plot is shown in grey. This
region is defined by upper and lower probability bounds for each order statistic. The
default is to use the 2.5% and 95.7% bounds6.

This over-dispersion of chi-squared values was built into our simulation. The data
were constructed by re-sampling individuals from two groups of HapMap subjects, the
CEU sample (of European origin) and the JPT+CHB sample (of Asian origin), The 55%
of the cases were of European ancestry as compared with only 45% of the controls. We
can deal with this by stratification of the tests, achieved by adding the stratum argument
to the call to single.snp.tests (the following commands are as before)

> tests <- single.snp.tests(cc, stratum, data = subject.support,
+ snp.data = snps.10)
> tests <- tests[use,]
> p1 <- pchisq(tests$chi2.1df, df = 1, lower.tail = FALSE)
> plot(hexbin(position, -log10(p1), xbin = 50))

6Note that this is not a simultaneous confidence region; the probability that the plot will stray outside
the band at some point exceeds 95%.

10

2e+07 4e+07 6e+07 8e+07 1e+08

1

2

3

4

5

6

7

position

−
lo

g1
0(

p1
)

1
15
30
44
58
73
87

101
116
130
144
158
173
187
201
216
230

Counts

> qq.chisq(tests$chi2.1df, df = 1)

N omitted lambda
28184.000000 0.000000 1.006562

11

0 5 10 15

0
5

10
15

20
25

30

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

Most of the over-dispersion of test statistics has been removed (the residual is probably
due to “cryptic relatedness” owing to the way in which the data were simulated).

Now let us find the names and positions of the most significant 10 SNPs. The first
step is to compute an array which gives the positions in which the first, second, third etc.
can be found

> ord <- order(p1)
> top10 <- ord[1:10]
> top10

[1] 459 20174 20175 20173 20170 20171 20172 21134 26269 7981

We now list the 1 df p-values, the corresponding SNP names and their positions on
the chromosome:

> names <- rownames(tests)
> p1[top10]

[1] 2.336964e-08 1.206772e-06 2.179028e-06 3.296406e-06 6.248970e-06
[6] 8.306560e-06 5.478332e-05 1.340763e-04 1.411405e-04 1.485893e-04

> names[top10]

12

[1] "rs870041" "rs10882596" "rs7088765" "rs4918933" "rs4918928"
[6] "rs2025850" "rs2274491" "rs17668255" "rs7085895" "rs11596495"

> position[top10]

[1] 2075671 97190034 97191413 97189084 97179410 97185949 97186968
[8] 101990691 127661165 33024457

The most associated SNPs lie within 3 small regions of the genome. To concentrate on
the rightmost region (the most associated region on the left contains just one SNP), we’ll
first sort the names of the SNPs into position order along the chromosome and select those
lying in the region approximately one mega-base either side of the second most associated
SNP:

> posord <- order(position)
> position <- position[posord]
> names <- names[posord]
> local <- names[position > 9.6e+07 & position < 9.8e+07]

The variable posord contains the permutation necessary to sort SNPs into position or-
der and names and position have now been reordered in this manner. the variable local
contains the names of the SNPs in the selected 2 mega-base region. Now create a matrix
containing just these SNPs, in position order, and compute the linkage disequilibrium
(LD) between them:

> snps.2mb <- snps.10[, local]
> ld.2mb <- ld.snp(snps.2mb)

Information: The input contains 999 samples with 371 snps
... Done

A plot of the D′ values across the region may be written to a file (in encapsulated
postscript format) as follows:

plot(ld.2mb, file="ld2.eps")

This can be viewed (outside R) using a postscript viewer such as “gv” or “ggv”. Alter-
natively it can be converted to a .pdf file and viewed in a pdf viewer such as “acroread”.
The associated SNPs fall in a region of tight LD towards the middle of the plot.

Next we shall estimate the size of the effect at the most associated SNPs for each
region (rs870041, rs7088765, rs1916572). In the following commands, we extract this
SNP from the matrix as a numerical variable (coded 0, 1, or 2) and then, using the glm()
function, carry out a logistic regression of case–control status on this numerical coding of
the SNP and upon stratum. The variable stratum must be included in the regression in
order to allow for the different population structure of cases and controls. We first attach
subject.support so that we can refer to cc and stratum variables directly:

> attach(subject.support)
> top <- snps.10[, "rs870041"]
> top <- as.numeric(top)
> glm(cc ~ top + stratum, family = "binomial")

13

Call: glm(formula = cc ~ top + stratum, family = "binomial")

Coefficients:
(Intercept) top stratumJPT+CHB

-0.8953 0.5048 -0.2453

Degrees of Freedom: 998 Total (i.e. Null); 996 Residual
Null Deviance: 1385
Residual Deviance: 1345 AIC: 1351

The coefficient of top in this regression is estimated as 0.5048, equivalent to a relative
equivalent to a relative risk of exp() = 1.657. For the other top SNPs we have:

> top2 <- snps.10[, "rs7088765"]
> top2 <- as.numeric(top2)
> glm(cc ~ top2 + stratum, family = "binomial")

Call: glm(formula = cc ~ top2 + stratum, family = "binomial")

Coefficients:
(Intercept) top2 stratumJPT+CHB

1.0238 -0.4097 -0.4978

Degrees of Freedom: 998 Total (i.e. Null); 996 Residual
Null Deviance: 1385
Residual Deviance: 1358 AIC: 1364

> top3 <- snps.10[, "rs1916572"]
> top3 <- as(top3, "numeric")
> glm(cc ~ top3 + stratum, family = binomial)

Call: glm(formula = cc ~ top3 + stratum, family = binomial)

Coefficients:
(Intercept) top3 stratumJPT+CHB

-0.4752 0.3783 -0.2189

Degrees of Freedom: 986 Total (i.e. Null); 984 Residual
(12 observations deleted due to missingness)

Null Deviance: 1368
Residual Deviance: 1350 AIC: 1356

So the relative risks are, respectively, exp(−0.4097) = 0.664 and exp(0.3783) =
1.460.

Finally you might like to repeat the analysis above using the 2 df tests. The conclusion
would have been much the same. A word of caution however; with real data the 2 df test
is less robust against artifacts due to genotyping error. On the other hand, it is much more
powerful against recessive or near-recessive variants.

14

Advanced topics: multi-locus tests
There are two other functions for carrying out association tests (snp.lhs.tests() and
snp.rhs.tests()) in the package. These are somewhat slower, but much more flexible.
For example, the former function allows one to test for differences in allele frequencies
between more than two groups. An important use of the latter function is to carry out tests
using groups of SNPs rather than single SNPs. We shall explore this use in the final part
of the exercise.

A prerequisite to multi-locus analyses is to decide on how SNPs should be grouped
in order to “tag” the genome rather more completely than by use of single markers. The
snpMatrix package will eventually contain tools to compute such groups, for example,
by using HapMap data. The function ld.snp(), which we encountered earlier, will be
an essential tool in this process. However this work is not complete and, for now, we
demonstrate the testing tool by grouping the 27,828 SNPs we have decided to use into
20kB blocks. The following commands compute such a grouping, tabulate the block size,
and remove empty blocks:

> blocks <- split(posord, cut(position, seq(1e+05, 135300000, 20000)))
> bsize <- sapply(blocks, length)
> table(bsize)

bsize
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

803 732 895 869 801 665 581 417 316 192 170 102 72 41 43 20 13 9 5 5
20 21 22 24
1 6 1 1

> blocks <- blocks[bsize > 0]

You can check that this has worked by listing the column positions of the first 20 SNPs
together with the those contained in the first five blocks

> posord[1:20]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> blocks[1:5]

$`(1e+05,1.2e+05]`
[1] 1 2 3

$`(1.2e+05,1.4e+05]`
[1] 4

$`(1.4e+05,1.6e+05]`
[1] 5 6 7 8 9 10

$`(1.6e+05,1.8e+05]`
[1] 11 12 13 14

$`(1.8e+05,2e+05]`
[1] 15 16 17 18

15

Note that these positions refer to the reduced set of SNPs after application of the filter
on MAF and HWE. Therefore, before proceeding further we create a new matrix of SNP
genotypes containing only these 27,828:

> snps.use <- snps.10[, use]
> remove(snps.10)

The command to carry out the tests on these groups, controlling for the known popu-
lation structure differences is

> mtests <- snp.rhs.tests(cc ~ stratum, family = "binomial",
+ data = subject.support, snp.data = snps.use, tests = blocks)
> summary(mtests)

Chi.squared Df Df.residual
Min. : 0.000004 Min. : 1.000 Min. :771.0
1st Qu.: 1.273069 1st Qu.: 2.000 1st Qu.:935.0
Median : 3.162559 Median : 4.000 Median :957.0
Mean : 4.161161 Mean : 4.148 Mean :951.1
3rd Qu.: 5.994639 3rd Qu.: 6.000 3rd Qu.:974.0
Max. :32.290273 Max. :24.000 Max. :995.0

The first argument, together with the second, specifies the model which corresponds
to the null hypothesis. In this case we have allowed for the variation in ethnic origin
(stratum) between cases and controls. We complete the analysis by calculating the p–
values and plotting minus their logs (base 10):

> pm <- pchisq(mtests$Chi.squared, mtests$Df, lower.tail = FALSE)
> plot(hexbin(-log10(pm), xbin = 50))

16

1000 2000 3000 4000 5000

1

2

3

4

5

Index

−
lo

g1
0(

pm
)

1
3
5
6
8
10
12
14
16
17
19
21
23
25
26
28
30

Counts

The same associated region is picked out, albeit with a rather larger p-value; in this
case the multiple df test cannot be powerful as the 1 df test since the simulation ensured
that the “causal” locus was actually one of the SNPs typed on the Affymetrix platform.
QQ plots are somewhat more difficult since the tests are on differing degrees of freedom.
This difficulty is neatly circumvented by noting that −2log p is, under the null hypothesis,
distributed as chi-squared on 2 df:

> qq.chisq(-2 * log(pm), df = 2)

N omitted lambda
5957.000000 0.000000 1.037329

17

0 5 10 15

0
5

10
15

20
25

QQ plot

Expected distribution: chi−squared (2 df)
Expected

O
bs

er
ve

d

18

