Rsubread package: high-performance read alignment,
quantification and mutation discovery

Wei Shi
21 November 2022

1 Introduction

This vignette provides a brief description to the Rsubread package. For more details,
please refer to the Users Guide which can brought up in your R session via the following
commands:

> library(Rsubread)
> RsubreadUsersGuide()

The Rsubread package provides facilities for processing short and long reads gen-
erated from the sequencing technologies. These facilities include quality assessment,
read alignment, read summarization, exon-exon junction detection, absolute expression
calling and SNP discovery.

The Subread aligner (align function) is a highly efficient and accurate aligner for
mapping genomic DNA and RNA sequencing reads. It adopts a novel mapping paradigm
called “seed-and-vote". Under this paradigm, a number of 16mers (called seeds or sub-
reads) are extracted from each read and they were mapped to the reference genome
to vote for the mapping location of the read. Read mapping performed under this
paradigm has been found to be more efficient and accurate than that carried out under
the conventional “seed-and-extend" paradigm (Liao et al. 2013).

Another aligner included in Rsubread is the Subjunc aligner (subjunc function). It
was also developed under the “seed-and-vote" paradigm, but different from the Subread
aligner it performs full alignment for exon spanning reads and reports exon-exon junc-
tions in addition to the read mapping results. The Subread aligner is recommended for
gene-level expression analysis. For other types of RNA-seq analyses such as alternative
splicing analysis, the Subjunc aligner should be used.

An important step in processing next-gen sequencing data is to assign mapped reads
to genomic features such as genes, exons and genomic windows. This package includes a
general-purpose read summarization function featureCounts that takes mapped reads

as input and assigns them to genomic features. In-built annotations are provided for
users convenience.

Different from microarray technologies, the next-gen sequencing technologies do not
provide Present/Absent calls for genomic features such as genes. We have developed
an algorithm to use the background noise measured from the RNA-seq data to call
absolutely expressed genes. The function detectionCall returns a detection p value
for each gene from the read mapping results.

We have also developed a new SNP calling algorithm which is being implemented
in function exactSNPs. Our results showed that it compared favorably to competing
methods, but was an order of magnitude faster.

This package also includes some other useful functions such as quality assessment
(qualityScores, atgcContent), duplicate read removal (removeDupReads) and map-
ping percentage calculation (propmapped).

2 Read alignment

An index needs to be built first and then alignments can be carried out. Building the
index is an one-off operation. The generated index can be re-used in subsequent read
alignments.

Step 1: Index building

The Rsubread package includes a dummy reference sequence that was generated by
concatenating 900 100bp reads that were taken from a pilot dataset generated from the
SEquencing Quality Control (SEQC) project. We further extracted 100 reads from the
same dataset and combine them with the 900 reads to make a read dataset for mapping.
Below is the command for building an index for the reference sequence:

> library(Rsubread)
> ref <- system.file("extdata","reference.fa",package="Rsubread")
> buildindex (basename="reference_index",reference=ref)

===== /oL b NE_oNE /N N
===== G) R DD Y B /N L]
==== N NP o<t/ 2/ /NN
====) D NN o /N]
s========= |_____ /N /12 N ______/_/ N\ _ /
Rsubread 2.23.8
setting

Index name : reference_index
Index space : base space
Index split : no-split
Repeat threshold : 100 repeats
Gapped index : no

—_—_——— — — — — X
—_—_—— — — — — — N

—_——— - —_——
_—————— =

Free / total memory : 41.4GB / 125.4GB

Input files : 1 file in total
o reference.fa

~—_- — — —
~—_— — — —

Running

//

Il

|| Check the integrity of provided reference sequences ...
|| No format issues were found

|| Scan uninformative subreads in reference sequences ...
|| 1 uninformative subreads were found.

|| These subreads were excluded from index building.

|| Estimate the index size...

I 8%, mins elapsed, rate=38.5k bps/s

Il 16%, mins elapsed, rate=76.6k bps/s

I 24%, mins elapsed, rate=114.2k bps/s

Il 33%, mins elapsed, rate=151.4k bps/s

I 41%, mins elapsed, rate=188.2k bps/s

I 49%, mins elapsed, rate=224.6k bps/s

Il 58%, mins elapsed, rate=260.6k bps/s

Il 66%, mins elapsed, rate=296.2k bps/s

Il 4%, mins elapsed, rate=331.4k bps/s

|1 83%, mins elapsed, rate=366.3k bps/s

Il 91%, mins elapsed, rate=400.8k bps/s

Il 3.0 GB of memory is needed for index building.

|| Build the index...

Il 8%, mins elapsed, rate=4.0k bps/s

Il 16%, mins elapsed, rate=8.0k bps/s

Il 24%, mins elapsed, rate=12.0k bps/s

|1 33%, mins elapsed, rate=15.9k bps/s
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
\\

o

[l elelNeNeNe NeNeNe el

41%, mins elapsed, rate=19.9k bps/s

49%, mins elapsed, rate=23.8k bps/s

58%, mins elapsed, rate=27.8k bps/s

66%, mins elapsed, rate=31.7k bps/s

74%, mins elapsed, rate=35.6k bps/s

83%, mins elapsed, rate=39.5k bps/s

91%, O mins elapsed, rate=43.4k bps/s
Save current index block...

[0.0% finished]
10.07% finished
20.0% finished
30.0% finished
40.0% finished
50.0% finished
60.0% finished
70.0% finished
80.0% finished
90.0% finished
100.0% finished]

[l elelNeNeoNeNeNeoNeNe]

L e I s W B s W W W B B |
e e e e e e

Total running time: 0.1 minutes.
Index reference_index was successfully built.

~N—f———-—- - - - - - - - ————————_—_—_—— e —_———— =~
N—————————— — — — e — — — — =

The generated index files were saved to the current working directory. Rsubread
creates a hash table for indexing the reference genome. Keys in the hash table are the
16bp sequences and hash values are their corresponding chromosomal locations. Color
space index can be built by setting the colorsapce argument to TRUE.

A unique feature of Rsubread is that it allows users to control the computer memory
usage in read mapping process. Users can do this by tuning the amount of memory (in
MB) to be used in read mapping.

Step 2: read mapping

After the index was successfully built, we map the read dataset (including 1,000
reads) to the reference sequence:

> reads <- system.file("extdata", "reads.txt.gz",package="Rsubread")
> align.stat <- align(index="reference_index",readfilel=reads,output_file="alignResults.BAM",phredOffset=64)

[

(I D T D I () P /N L
<t _ /1 L/ /NN
P NN T/ N2
[/N /12 N ______/_/ N\ __ /
Rsubread 2.23.8

setting

Function : Read alignment (RNA-Seq)
Input file : reads.txt.gz

Output file : alignResults.BAM (BAM)
Index name : reference_index

Phred offset : 64
Min votes : 3 / 10
Max mismatches : 3
Max indel length : 5
Report multi-mapping reads : yes
Max alignments per multi-mapping read : 1

~N—— ————————— — — — — —
N——————————— — — — — —

/
|
|
|
|
|
|
|
|
| Threads : 1
|
|
|
|
|
|
|
\

Check the input reads.

The input file contains base space reads.
Initialise the memory objects.

Estimate the mean read length.

The range of Phred scores observed in the data is [2,34]
Create the output BAM file.

Check the index.

Init the voting space.

Global environment is initialised.

Load the 1-th index block...

The index block has been loaded.

Start read mapping in chunk.

Completed successfully.

~N——— ——_—_—————————— -
N—————————— — — — — — —

// Summary \\

Total reads : 1,000
Mapped : 904 (90.47%)
Uniquely mapped : 904
Multi-mapping : O
Unmapped : 96
Indels : O

Running time : 0.6 minutes

S —— e — =
=
~N— — — — — — —————
~N—_— — — — — — ——— —

Map paired-end reads:

> readsl <- system.file("extdata", "readsl.txt.gz",package="Rsubread")

> reads2 <- system.file("extdata", "reads2.txt.gz",package="Rsubread")

> align.stat2 <- align(index="reference_index",readfilel=readsl,readfile2=reads2,
+ output_file="alignResultsPE.BAM",phredOffset=64)

/oL bbb ONE N /N N

G 0 A T) I I /N T

Neco N o</ 2 /NN

) oD P ENNE s /N
|

N __// |V /
// setting A\
Il Il
|| Function : Read alignment (RNA-Seq) Il
|| Input file 1 : readsl.txt.gz Il
|| Input file 2 : reads2.txt.gz Il
|| Output file : alignResultsPE.BAM (BAM) Il
|| Index name : reference_index Il
Il Il
i Il
Il Il
Il Threads : 1 Il
Il Phred offset : 64 Il
Il # of extracted subreads : 10 Il
Il Min readl vote : 3 Il
Il Min read2 vote : 1 Il
|| Max fragment size : 600 Il
I Min fragment size : 50 Il
Il Max mismatches : 3 Il
I Max indel length : 5 Il
Il Report multi-mapping reads : yes Il
|| Max alignments per multi-mapping read : 1 Il
Il Il
\\ //
/=============== Running (24-0ct-2025 17:54:03, pid=1479025) ================\

Check the input reads.

The input file contains base space reads.

Initialise the memory objects.

Estimate the mean read length.

The range of Phred scores observed in the data is [2,34]
Create the output BAM file.

Check the index.

Init the voting space.

Global environment is initialised.

—_————————— =

Load the 1-th index block...
The index block has been loaded.
Start read mapping in chunk.

Completed successfully.

~—_— — — — — —
~—_—— — — — —

Il
Il
Il
Il
Il
Il
\\

// Summary \\
Il Il
I Total fragments : 1,000 Il
I Mapped : 909 (90.9%) Il
Il Uniquely mapped : 909 I'l
Il Multi-mapping : O I
I Il
Il Unmapped : 91 Il
Il Il
Il Properly paired : 897 Il
Il Not properly paired : 12 Il
I Singleton : 10 Il
Il Chimeric : 0 Il
Il Unexpected strandness : 0 Il
|| Unexpected fragment length : 2 Il
Il Unexpected read order : O Il
Il Il
i Indels : O Il
Il Il
Il Running time : 0.6 minutes Il
Il Il
|| NOTE : No enough read-pairs to derive expected fragment length. Il
Il Il
\\ /7

3 Counting mapped reads for genomic features

The featureCounts function is a general-purpose read summarization function that
assigns mapped reads (RNA-seq or gDNA-seq reads) to genomic features such as genes,
exons, promoters, gene bodies and genomic windows.

This function takes as input a set of files that contain read mapping results and an
annotation file that includes genomic features. It automatically detects the format of
input read files (supported formats include SAM and BAM). Input reads can be name-
sorted or location-sorted. Users do not need to resort the reads before feeding them to
featureCounts.

In-built NCBI RefSeq gene annotations for genomes mm9, mm10, hgl9 and hg38 are
provided for convenience. These annotations include chromosomal coordinates of exons
of each gene. When these annotations are used for summarization, only reads overlapping
with exons will be counted by featureCounts. Users can use getInBuiltAnnotation
function to retrieve these annotations.

Below gives the example code of assigning reads and fragments, generated in the last
section, to two artificial genes. Assign single end reads to genes:
> ann <- data.frame(

+ GeneID=c("genel", "genel", "gene2", "gene2"),
+ Chr="chr_dummy",

+ Start=c (100, 1000,3000,5000),
+ End=c (500, 1800,4000,5500),
+ Strand=c("+","+", -0 1),
+ stringsAsFactors=FALSE)
> ann

GeneID Chr Start End Strand
1 genel chr_dummy 100 500 +
2 genel chr_dummy 1000 1800 +
3 gene2 chr_dummy 3000 4000 -
4 gene2 chr_dummy 5000 5500 -

> fc_SE <- featureCounts("alignResults.BAM",annot.ext=ann)

Rsubread 2.23.8

SN Y A I -\
[0 200 Y DD I (!
N 7 /AN
[T NN oo /o N
/! |V G /

// featureCounts setting
Il
Il Input files : 1 BAM file
Il
Il alignResults.BAM
Il
Il Paired-end : no
Il Count read pairs : no
Il Annotation : R data.frame
Il Dir for temp files : .
Il Threads : 1
Il Level : meta-feature level
Il Multimapping reads : counted
|| Multi-overlapping reads : not counted
|| Min overlapping bases : 1
Il
\\
// Running
Il
|| Load annotation file .Rsubread_UserProvidedAnnotation_pid1479025 ...
Il Features : 4
Il Meta-features : 2
Il Chromosomes/contigs : 1
Il
|| Process BAM file alignResults.BAM...
Il Single-end reads are included.
Il Total alignments : 1000
I Successfully assigned alignments : 31 (3.1%)
I Running time : 0.00 minutes
Il
Il Write the final count table.
|| Write the read assignment summary.
Il
\\
> fc_SE
$counts
alignResults.BAM
genel 14

~N—————_——————————
~N——————————— — — — —

~N—— - ——————_——————
N—————————— — — — — —

gene2 17

$annotation

GenelID Chr Start End Strand Length
1 genel chr_dummy;chr_dummy 100;1000 500;1800 +;+ 1202
2 gene2 chr_dummy;chr_dummy 3000;5000 4000;5500 -- 1502
$targets

[1] "alignResults.BAM"

$stat

Status alignResults.BAM
1 Assigned 31
2 Unassigned_Unmapped 96
3 Unassigned_Read_Type 0
4 Unassigned_Singleton 0
5 Unassigned_MappingQuality 0
6 Unassigned_Chimera 0
7 Unassigned_FragmentLength 0
8 Unassigned_Duplicate 0
9 Unassigned_MultiMapping 0
10 Unassigned_Secondary 0
11 Unassigned_NonSplit 0
12 Unassigned_NoFeatures 873
13 Unassigned_Overlapping_Length 0
14 Unassigned_Ambiguity 0

Assign fragments (read pairs) to the two genes:

> fc_PE <- featureCounts("alignResultsPE.BAM",annot.ext=ann, isPairedEnd=TRUE)

/oL NN /N N
===== G Y 0 R A D I /N L
==== N N o</ b /NN
) D P ENNE o /N]
[/N NN/ N\ /
Rsubread 2.23.8

// featureCounts setting

Il

Il Input files : 1 BAM file

Il

I alignResultsPE.BAM

Il

Il Paired-end : yes

I Count read pairs : yes

Il Annotation : R data.frame

Il Dir for temp files : .

Il Threads : 1

Il Level : meta-feature level

Il Multimapping reads : counted

|| Multi-overlapping reads : not counted

Il Min overlapping bases : 1

Il

A\

~N—————_————— — — — — —
N—————————— — — — — —

Running

Load annotation file .Rsubread_UserProvidedAnnotation_pid1479025 ...
Features : 4
Meta-features : 2
Chromosomes/contigs : 1

—_———
_———

Process BAM file alignResultsPE.BAM...
Paired-end reads are included.
Total alignments : 1000
Successfully assigned alignments : 35 (3.5%)
Running time : 0.00 minutes

Write the final count table.
Write the read assignment summary.

S —— e — — — =
e — — — — =
~ — — — ———————
~—_ — — — — — — — — —

> fc_PE
$counts
alignResultsPE.BAM

genel 16
gene2 19
$annotation

GenelID Chr Start End Strand Length
1 genel chr_dummy;chr_dummy 100;1000 500;1800 +;+ 1202
2 gene2 chr_dummy;chr_dummy 3000;5000 4000;5500 -3- 1502
$targets

[1] "alignResultsPE.BAM"

$stat

Status alignResultsPE.BAM
1 Assigned 35
2 Unassigned_Unmapped 91
3 Unassigned_Read_Type 0
4 Unassigned_Singleton 0
5 Unassigned_MappingQuality 0
6 Unassigned_Chimera 0
7 Unassigned_FragmentLength 0
8 Unassigned_Duplicate 0
9 Unassigned_MultiMapping 0
10 Unassigned_Secondary 0
11 Unassigned_NonSplit 0
12 Unassigned_NoFeatures 874
13 Unassigned_Overlapping_Length 0
14 Unassigned_Ambiguity 0

4 Quantifying 10x scRNA-seq data

The cellCounts function can be used to quantify the scRNA-seq data generated by the
10x Genomics Chromium platform. It employs the seed-and-vote strategy to align reads
to a reference genome, collapses reads to UMIs (Unique Molecular Identifiers) and then
assigns UMIs to genes based on the featureCounts program. cellCounts starts with
processing raw reads and finishes with outputting a UMI count matrix and also other
information. It is able to take both BCL and FASTQ format reads as input. When input
format is BCL, cellCounts directly processes reads from the raw data files instead of
converting them into FAST(Q) reads before processing. cellCounts supports barcode
correction and whitelisting. It utilizes a barcode whitelist, a list of barcode sequences
included in the Chromium assay kit that can be freely downloaded from 10x Genomics

website, to detect valid barcodes from experimental data. When matching cell barcodes
observed in a 10x dataset against the barcode whitelist, ce11Counts allows for one base
mismatch to account for sequencing errors so as to detect more valid cell barcodes. After
obtaining UMI counts for each gene in each cell, cellCounts uses the EmptyDrops
algorithm to call valid cell barcodes. cellCounts reports both high-confidence and
rescued cells. The rescued cells have low total UMI count but are found to have a gene
expression profile that is distinct from that of ambient RNAs. Below is an example of
using cellCounts to quantify a very small 10x scRNA-seq dataset.

> if(grepl("linux", R.version$os) && grepl("x86_64", R.version$arch)) {

+ md5.zip <- "ffd5036b36e25e9b61efc412e71820dd"
+ URL <- "https://shilab-bioinformatics.github.io/cellCounts-Example/cellCounts-Example.zip"
+ temp.file <- tempfile()
+ temp.dir <- tempdir()
+ downloaded <- tryCatch({
+ download.file(URL, destfile = temp.file)
+ tools: :md5sum(temp.file) 7inj, md5.zip
+ },
+ error = function(cond){
+ return (FALSE)
+ }
+)
+ if(!downloaded) cat("Unable to download the file.\n")
+ } else downloaded <- FALSE
> if (downloaded){
+ unzip(temp.file, exdir=pasteO(temp.dir,"/cellCounts-Example"))
+ library(Rsubread)
+ buildindex(pasteO(temp.dir,"/chr1l"),
+ pasteO(temp.dir,"/cellCounts-Example/hg38_chrl.fa.gz"))
+}
/oL b NE N /N N
G Y Y 0 R A D I /N L
NN o<t/ 8/ /NN
= e L D NN s /N
s========= |_____ /N N N/ AV N /
Rsubread 2.23.8
// setting \\
Il Il
Il Index name : chril Il
Il Index space : base space Il
Il Index split : no-split I'l
Il Repeat threshold : 100 repeats Il
Il Gapped index : no Il
Il Il
I Free / total memory : 41.9GB / 125.4GB Il
Il Il
Il Input files : 1 file in total Il
I o hg38_chrl.fa.gz Il
Il Il
\\ !/
Running

Check the integrity of provided reference sequences ...

There were 2 notes for reference sequences.

The notes can be found in the log file, '/tmp/RtmpXrpSLs/chrl.log'.
Scan uninformative subreads in reference sequences ...

—_——
———

10

51717 uninformative subreads were found.
These subreads were excluded from index building.
Estimate the index size...

8%, O mins elapsed, rate=5544.1k bps/s
16%, 0 mins elapsed, rate=5535.3k bps/s
247, O mins elapsed, rate=5493.4k bps/s
33%, 0 mins elapsed, rate=5467.7k bps/s
41%, 0 mins elapsed, rate=5403.1k bps/s
49%, 0 mins elapsed, rate=5225.0k bps/s
58%, 0 mins elapsed, rate=5723.8k bps/s
66%, O mins elapsed, rate=5483.7k bps/s
74%, 0 mins elapsed, rate=5398.0k bps/s
83%, 0 mins elapsed, rate=5398.1k bps/s
91%, 0 mins elapsed, rate=5402.1k bps/s

4.2 GB of memory is needed for index building.
Build the index...

Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
Il Il
I Il
Il Il
Il 8%, 0 mins elapsed, rate=1204.6k bps/s il
Il 16%, O mins elapsed, rate=1282.4k bps/s Il
|1 24%, 0 mins elapsed, rate=1429.2k bps/s I
Il 33%, O mins elapsed, rate=1534.5k bps/s Il
Il 41%, 1 mins elapsed, rate=1597.9k bps/s Il
Il 49%, 1 mins elapsed, rate=1668.2k bps/s Il
Il 58%, 1 mins elapsed, rate=1860.2k bps/s Il
|1 66%, 1 mins elapsed, rate=1880.5k bps/s |
|l 74%, 1 mins elapsed, rate=1894.5k bps/s Il
|1 83%, 1 mins elapsed, rate=1902.0k bps/s I
Il 91%, 2 mins elapsed, rate=1901.5k bps/s Il
|| Save current index block... |

|1 [0.0% finished] Il
Il [10.0% finished 1] |1
Il [20.0% finished 1] I
Il [30.0% finished] |1
Il [40.0% finished] I
Il [50.0% finished 1] Il
|1 [60.0% finished] I
Il [70.0% finished] I
Il [80.0% finished] |1
Il [90.0% finished] I
|l [100.0% finished] |1
Il Il
Il Total running time: 4.4 minutes. Il
I Index /tmp/RtmpXrpSLs/chrl was successfully built. |

Il Il
\\ /7

> if (downloaded){

+ sample.sheet <- data.frame(

+ BarcodeUMIFile = pasteO(temp.dir,"/cellCounts-Example/reads_R1.fastq.gz"),
+ ReadFile = pasteO(temp.dir,"/cellCounts-Example/reads_R2.fastq.gz"),

+ SampleName="Example", stringsAsFactors=FALSE

+)

+ counts <- cellCounts(pasteO(temp.dir,"/chrl"), sample.sheet, nthreads=1,

+ input.mode="FASTQ", annot.inbuilt="hg38")

+}

NCBI RefSeq annotation for hg38 (build 38.2) is used.

Found 3 known cell barcode sets.

Testing the cell barcodes in 3M-february-2018.txt.gz.

Loaded 6794880 cell barcodes from /home/biocbuild/.Rsubread/cellCounts/3M-february-2018.txt.gz
Cell barcode supporting rate : 100.0%.

Found cell-barcode list '3M-february-2018.txt.gz' for the input data: supported by 100.0% reads.
Number of chromosomes/contigs matched between reference sequences and gene annotation is 1.

S bbb NP N /N O
G A A S0 A D I I /N
|V N e e O N 2 L L A AN N I B
) D NN T /N
B V2R NS/ /) DR B VR VR S N\ /

Rsubread 2.23.8

// cellCounts settings \\
Il Il
Il Index : /tmp/RtmpXrpSLs/chril Il
I Input mode : FASTQ files Il
Il Il
A\ //
//=============== Running (24-0ct-2025 17:59:44, pid=1479025) ================\\
Il Il
|| Sort the 28395 genes... Il
|l Load the 1-st index block... Il
|| The index block has been loaded. Now map the reads... Il
Il Il
Il Il
|| Generate UMI count tables... Il
Il Il
\\ //

Perform cell rescuing for sample 1 ...
Note: not enough cells in the data for performing cell rescuing.

The cellCounts program has finished successfully.
> if(downloaded) print(counts$sample.info)

SampleName TotalCells HighConfidenceCells RescuedCells TotalUMI MinUMI

1 Example 100 100 0 112846 268
MedianUMI MaxUMI MeanUMI TotalReads MappedReads AssignedReads
1 1216.5 1807 1128.46 403390 403215 394860

> if(downloaded) print(dim(counts$counts$Example))

[1] 28395 100

5 Finding exon junctions

The RNA-seq technology provides a unique opportunity to identify the alternative splic-
ing events that occur during the gene transcription process. The subjunc function can
be used to detect exon-exon junctions. It first extracts a number of subreads (16mers)
from each read, maps them to the reference genome and identifies the two best map-
ping locations for each read (representing potential locations of exons spanned by the
read). Then, it builds a junction table including all putative junctions. Finally, it carries
out a verification step to remove false positives in junction detection by realigning all
the reads. The donor (‘GT’) and receptor sites(‘AG’), are required to be present when
calling exon-exon junctions. Output of this function includes the discovered exon-exon
junctions and also read mapping results.

12

6 Base quality scores

Quality scores give the probabilities of read bases being incorrectly called, which is useful
for examining the quality of sequencing data. The qualityScores function can be used
to quickly retrieve and display the quality score data extracted from a read file.

> x <- qualityScores(filename=reads,offset=64,nreads=1000)

qualityScores Rsubread 2.23.8

Scan the input file...
Totally 1000 reads were scanned; the sampling interval is 1.
Now extract read quality information...

Completed successfully. Quality scores for 1000 reads (equally spaced in the file) are returned.
> x[1:10,1:10]

1 2 3 4 5 6 7 8 910
[1,] 33 33 33 20 20 24 31 15 21 16
[2,]1 33 33 30 33 33 30 34 30 32 28
[3,] 32 33 33 32 33 33 33 20 32 24
[4,] 33 33 33 33 33 30 29 34 31 25
[56,] 33 33 33 33 33 34 34 34 33 30
[6,] 33 30 31 24 24 28 33 33 30 32
[7,]1 33 33 33 33 30 28 17 25 31 33
[6,1 3332 2 2 2 2 2 2 2 2
[9,]1 33 33 33 34 33 33 31 33 33 33
[10,] 33 33 33 33 28 24 33 33 33 28

7 GC content

The atgcContent function returns fractions of A, T, G and C bases at each base location
of reads or in the entire dataset.

8 Mapping percentage

Function propmapped returns the proportion of mapped reads included in a SAM/BAM
file. For paired end reads, it can return the proportion of mapped fragments (ie. read
pairs).

> propmapped ("alignResults.BAM")

NumTotal NumMapped PropMapped
alignResults.BAM 1000 904 0.904

13

9 C(Citation

Yang Liao, Gordon K Smyth and Wei Shi (2013). The Subread aligner: fast, accurate
and scalable read mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108.

Yang Liao, Gordon K Smyth and Wei Shi (2014). featureCounts: an efficient gen-
eral purpose program for assigning sequence reads to genomic features. Bioinformatics,
30(7):923-30

10 Authors

Wei Shi and Yang Liao

Bioinformatics Division

The Walter and Eliza Hall Institute of Medical Research
1G Royal Parade, Parkville, Victoria 3052

Australia

11 Contact

Please post to the Bioconductor Support site (https://support.bioconductor.org/)
if you have any questions or suggestions.

14

https://support.bioconductor.org/

	Introduction
	Read alignment
	Counting mapped reads for genomic features
	Quantifying 10x scRNA-seq data
	Finding exon junctions
	Base quality scores
	GC content
	Mapping percentage
	Citation
	Authors
	Contact

