
GraphAlignment Package Manual

Jörn P. Meier, Michal Kolář, Ville Mustonen,
Michael Lässig, and Johannes Berg

Institut für Theoretische Physik, Universität zu Köln
Zülpicherstr. 77, 50937 Köln, Germany

October 24, 2025

Contents
1 Introduction 3

2 Releases 4

3 Installation 4
3.1 Importing the package . 5
3.2 Documentation . 5
3.3 License . 6

4 Definitions 6
4.1 Networks and network alignments . 6
4.2 Alignment scores . 7
4.3 Scoring parameters . 8

5 Sample sessions 9

6 Implementation 16

7 Package Contents 18
7.1 Functions . 18

7.1.1 GenerateExample . 18
7.1.2 InitialAlignment . 19
7.1.3 InvertPermutation . 19
7.1.4 Permute . 19

1

7.1.5 GetBinNumber . 19
7.1.6 VectorToBin . 20
7.1.7 MatrixToBin . 20
7.1.8 ComputeLinkParameters . 20
7.1.9 ComputeNodeParameters . 20
7.1.10 EncodeDirectedGraph . 21
7.1.11 ComputeM . 21
7.1.12 AlignNetworks . 22
7.1.13 AlignedPairs . 22
7.1.14 LinearAssignment . 23
7.1.15 ComputeScores . 23
7.1.16 AnalyzeAlignment . 23
7.1.17 Trace . 23
7.1.18 CreateScoreMatrix . 24

2

1 Introduction
GraphAlignment is an extension package for the R programming environment. It
provides functions for finding an alignment between two networks based on link and
node similarity [1].

Figure 1: An alignment A between two networks A,B is a mapping (indicated by
dashed lines) between nodes of the subsets Â, B̂.

Finding similarities between networks is an algorithmically hard problem well
known in computer science. In this package, the assessment of link and node similarity
(scoring) is designed specifically for the cross-species analysis of biological networks.
A key feature is that network nodes may be aligned on the basis of their link similarity
only, without any sequence similarity. It thus goes beyond selecting node pairs with
high link similarity from sequence homologs. The algorithmic problem of finding the
alignment of two networks with the maximum score is solved using an iterative heuris-
tic based on the linear assignment problem [2]. The iterative scheme a small amount
of noise in order to escape possible local score maxima. For details on the scoring and
the algorithmic method implemented here, see [1].

R is a language and environment for statistical computing and graphics, particu-
larly useful for exploratory data analysis. It is available freely and for many different
platforms from the website http://www.r-project.org/. The website also offers a
manual and introductions to the R language. Very little knowledge of the R language
is required to use this package. Users experienced with Matlab or Mathematica will
find the worked examples in this manual self-explanatory.

The following sections cover downloading the source, the installation process, and
definitions related to GraphAlignment . Examples sessions are given and the functions

3

provided by this package are discussed in detail.

2 Releases
Release tarballs of the package can be obtained from the following location:

http://www.thp.uni-koeln.de/∼berg/GraphAlignment/distfiles/releases/

You can always get the latest development version of the GraphAlignment package
from the Subversion repository at:

http://gap:gap@xi.ionflux.org/svn/GraphAlignment/trunk/

To get the GraphAlignment package from Subversion, you need to have Subversion
installed (http://subversion.tigris.org/). Then change to a directory of your
choice (for example GraphAlignment) and type:

svn co http://gap:gap@xi.ionflux.org/svn/GraphAlignment/trunk/

This, however, is a development version, and might possibly be unstable. You should
not use this unless you want to help with debugging and testing of new features.

3 Installation
The GraphAlignment package can be installed using the standard R package installa-
tion procedure. If you have downloaded a release tarball of the package (named, for
example, GraphAlignment_1.0-0.tar.gz), use the following command line to install
in the specified location:

R CMD INSTALL PATH_TO_PACKAGE −−library=R_EXTENSION_PATH

PATH_TO_PACKAGE is the relative or absolute path to the package tarball (for ex-
ample GraphAlignment_1.0-0.tar.gz or
/home/someuser/downloads/GraphAlignment_1.0-0.tar.gz). R_EXTENSION_PATH
is the path where the package should be installed. This option may be omitted if you
intend to install the package in the default location.

Otherwise, if you have downloaded a snapshot release or got the latest development
version from the respository, change to the directory which contains the (unpacked and
untarred) GraphAlignment distribution directory (named GraphAlignment) and type

4

R CMD INSTALL GraphAlignment −−library=R_EXTENSION_PATH

Please note that since GraphAlignment is a source package, a working R command
line interface and build tools such as a bash compatible shell, make and a C compiler
are required for installation.

3.1 Importing the package

The package is imported into the R workspace by starting up R and entering:

library("GraphAlignment", lib.loc="R_EXTENSION_PATH")

R_EXTENSION_PATH is the path where the package has been installed. The extension
path may be omitted if the package has been installed in the default location.

3.2 Documentation

The GraphAlignment package provides two types of documentation: Documentation
for the R user interface and API documentation for the C implementation of some of
the features provided by the package.

User documentation, besides this manual, is available through the built-in help sys-
tem of the R programming environment, usually by typing help(<function name>)
or ?<function name>, where <function name> is the name of a function which is
provided by the GraphAlignment package.

The user documentation generated by R can also be browsed online in HTML format
here:

http://www.thp.uni-koeln.de/∼berg/GraphAlignment/R-docs/

Documentation for the C implementation part is available in Doxygen format and
may be extracted from the source files by typing doxygen in the distribution base
directory. HTML documentation will be generated in the docs/html directory and
can be viewed with a web browser. Doxygen is free software and can be obtained from
http://www.doxygen.org/.

A current version of the code documentation is also available online at
http://www.thp.uni-koeln.de/∼berg/GraphAlignment/.

5

3.3 License

Authors: Jörn P. Meier (mail@ionflux.org), Michal Kolář, Ville Mustonen, Michael
Lässig, and Johannes Berg.

The package can be used freely for non-commercial purposes. If you use this
package, the appropriate paper to cite is

J. Berg and M. Lässig, "Cross-species analysis of biological networks by
Bayesian alignment", PNAS 103 (29), 10967-10972 (2006)

available from http://www.pnas.org/cgi/content/full/103/29/10967.
This software is made available in the hope that it will be useful, but without

any warranty, without even the implied warranty of merchantability or fitness for any
particular purpose.

This software contains code implementing the Jonker-Volgenant algorithm [2] to
solve linear assignment problems (LAP). The code was written by Roy Jonker, Mag-
icLogic Optimization Inc.. and is copyrighted, © 2003 MagicLogic Systems Inc.,
Canada. It may be used freely for non-commercial purposes.See
http://www.magiclogic.com/assignment.html for the latest version of the LAP
code and details on licensing.

4 Definitions

4.1 Networks and network alignments

Networks are represented by their adjacency matrices. The rank dimA of the adjacency
matrix of matrix a equals the number of nodes in the network. The adjacency matrix
may be symmetric (undirected networks), or asymmetric (directed networks). For
directed networks, only binary links are currently implemented. Simple networks for
trial purposes can be generated randomly using the function GenerateExample.

A (local) alignment between two graphs A and B is defined as a mapping A be-
tween two subgraphs Â ⊂ A and B̂ = A(Â) ⊂ B as shown in Fig. 1. Aim of
the alignment is to detect cross-species functional relationships between aligned node
pairs based on the similarity of either nodes or links. Due to gain or loss of genes in
either species, not every gene in one network has a functional equivalent in the other,
and the alignment algorithm has to determine the aligned subnetworks Â and B̂ with
significant correlations. Currently the package supports only one-to-one mappings A,
which is appropriate for most gene pairs but neglects multi-valued functional relation-
ships resulting, e.g., from gene duplications. The scoring scheme and algorithm can in
principle deal with many-to-many mappings, the implementation will follow in a later
version.

6

The pairwise similarity between genes in networks A and B is given by a matrix
R, whose entries Rij quantify, for example, the overall sequence similarity between the
gene sequences i ∈ A and j ∈ B or a biochemical similarity between the corresponding
proteins.

4.2 Alignment scores

For details on scoring and the statistical models behind the scoring parameters see [1].
Each aligned pair of links aij, bA[i]A[j] contributes a link score of sl(aij, bA[i]A[j]), yield-
ing a total link score of

Sl = c0
∑

i,i′∈A,i ̸=i′

sl(aii′ , bA(i)A(i′))

+
∑
i∈A

slself (aii, bA(i)A(i)) , (1)

where c0 = (1/2) if the adjacency matrix for the network is symmetric, i.e. the network
is undirected, and c0 = 1 for directed networks. The notation i ∈ A means that the
sum is over all aligned nodes in network A, i.e. i ≤ dimA and A(i) ≤ dimB.

The function s(a, b) is a scoring parameter.

(a) Link strength (b) Node similarity

Figure 2: (a) The local link score Sl
i,A(i) evaluates all pairwise similarities between

links aii′ and bA(i)A(i′) (solid lines) for a given pair of aligned nodes. (b) The local node
similarity score Sn

i,A(i) evaluates the overlap of the alignment with the node similarity
Ri,A(i) (dotted line). Top to bottom: Aligned node pairs (i) without similarity to any
other node, (ii) with mutual node similarity, (iii) with (at least one) node similarity
mismatch.

The node score assesses the sequence similarity between aligned genes. Each aligned
node pair i,A(i) contributes a score s1(RiA(i)). In order to assess the sequence simi-
larities with nodes other than the alignment partner, the score s2(Rij) is summed over

7

all nodes in B i is not aligned to (an vice versa). See figure 2 for details. The total
node score is

sn =
∑
i∈A

s1(RiA(i)) +
∑

i∈A,j≤dimB,j ̸=A(i)

wijs2(Rij)

+
∑

j∈A,i≤dimA,i ̸=A−1(j)

wijs2(Rij) . (2)

j denotes a node in network B, so j ∈ A means j ≤ dimB and A−1(j) ≤ dimA. A−1

denotes the mapping from nodes in B to nodes in A. wij takes on the value 1 if i or j
have an alignment partner (but not both). wij takes on the value 1/2 if i and j both
have an alignment partner. This is done in order to avoid double counting.

Given an alignment and the scoring parameters the link and node score can be
computed using the function ComputeScores.

4.3 Scoring parameters

As in the alignment of biological sequences, the choice of scoring parameters is highly
non-trivial. Setting, for instance, s1(R) to infinity for all values of R above a threshold
will always align nodes with a partner with high sequence similarity. Depending on the
evolutionary dynamics since the last common ancestor of the two networks, different
choices of the scoring parameters will be appropriate.

Given a (preliminary) alignment, the log-likelihood estimates of the optimal scor-
ing parameters can be computed using the functions ComputeLinkParameters and
ComputeNodeParameters. These log-likelihood estimates of the scoring parameters
are computed as follows.

We describe the statistics of correlated networks by a probabilistic ensemble. Qkl

gives the probability of having aii′ = k between a given pair of nodes i ̸= i′ in network
A and bA(i)A(i′) = l between the alignment partners of these nodes in network B. For
binary links k, l ∈ {0, 1} so Qkl is a 2× 2 matrix. For weighted networks, where links
have continuous values, k and l will be real numbers; Qkl is a probability density. The
continuous link may be assigned to discrete bins defined by the user, see sections 5
and 6.

We may further distinguish between self links (links going from a node to itself),
with a distribution Qkl,self . We denote the corresponding marginal distributions pAk =∑

l Qkl, pBl =
∑

k Qkl and correspondingly for Qkl,self .
For a given alignment, these probability ensembles can be estimated directly from

the data. Pseudocounts are employed to avoid empty matrix entries. Log-likelihood
scores are set up in the usual way, comparing the likelihoods of links k and l the
two ensembles, Qkl, describing links correlated between the two networks, and pAk p

B
l

describing uncorrelated links The elements of the resulting link score matrices are given

8

by slkl = log(Qkl/(p
A
k p

B
l)) for the link score and slkl,self = log(Qkl,self/(p

A
k,selfp

B
l,self)) for

the self link score.
For node scores, q1(R) describes the distribution of the node similarity Rij of

aligned node pairs i, j = A(i). The function q0(R) gives the distribution of R for
node pairs i, j with at least one aligned node (either the one in A, or the one in B, or
both), where the nodes i, j are not aligned to each other. The function p0(R) describes
the distribution of the node similarity R of all nodes pairs i, j in A,B with at least
one aligned node (either the one in A, or the one in B or both). The corresponding
node scores are then given by s1(R) = log

(
q1(R)
p0(R)

)
and s0(R) = log

(
q0(R)
p0(R)

)
. Having

obtained an alignment with some parameters derived from an initial alignment, one
may compute the scoring parameters with the new alignment and repeat the procedure
until convergence.

5 Sample sessions
Here we give three simple examples of possible applications of this package. The
detailed description of the functions used follows in section 7.

To access the code examples from within R, you can use the following commands:

> vignette(all=FALSE)
> edit(vignette("GraphAlignment"))

The following code configures some output options and then loads the GraphAlignment
library.

> options(width = 40)
> options(digits = 3);
> library(GraphAlignment)

We start by generating example networks, here weighted symmetric networks.

> library(GraphAlignment)
> ex<-GenerateExample(dimA=22, dimB=22, filling=.5,
+ covariance=.6, symmetric=TRUE, numOrths=10, correlated=seq(1,18))

generates the two matrices ex$a and ex$b, both of rank 22, with random entries taken
from a Gaussian distribution with mean zero and variance one. The entries of the first
18 rows and columns are pairwise correlated with covariance 0.6. To make the task
harder a fraction 1− 0.5 of the entries has been set to zero. The adjacency matrix can
be visualized with image(ex$a).

A third matrix ex$r, a matrix of artificial node similarities with entries set equal
to 0 or 1, specifies 10 sequence homologs between the two networks.

We chose an initial alignment given by the reciprocal best sequence matches

9

> pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

In the present case, pinitial simply specifies the 10 homologs encoded in matrix r.
The size of the alignment psize=34 was chosen such that each of the 22 − 10 = 12
nodes without a reciprocal best sequence match has a formal alignment partner in a
so-called dummy node. In total 10+2×12 = 34 nodes are required, see section 6. The
routine InitialAlignment will give a suitable error message if psize is chosen too
small. The choice psize = dimA + dimB is always correct, yet it is computationally
the most intensive one.

The score is evaluated by binning the link weights according to a grid specified by
lookupLink, see figure 4. A fairly wide-meshed grid is created by

> lookupLink<-seq(-2,2,.5)

The log-likelihood parameters for the link score, based on the alignment pinitial can
be calculated using

> linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

The routine ComputeLinkParameters returns an estimate of the score linkParams$ls
of interactions between distinct nodes as well as the score linkParams$lsSelf of self-
interactions. Since, in the present example, self-interactions follow the same statistics
as links between distinct nodes we use only the linkParams$ls. The score matrix can
be plotted using image(linkParams$ls).
The nodescore is computed analogously,

> lookupNode<-c(-.5,.5,1.5)
> nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,
+ pinitial, lookupNode)

The command

> al<-AlignNetworks(A=ex$a, B=ex$b, R=ex$r, P=pinitial,
+ linkScore=linkParams$ls,
+ selfLinkScore=linkParams$ls,
+ nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
+ lookupLink=lookupLink, lookupNode=lookupNode,
+ bStart=.1, bEnd=30,
+ maxNumSteps=50)

10

computes the alignment resulting from maxNumSteps=50 iterations of the algorithm,
starting from pinitial.

The algorithm uses a certain amount of random noise at each step in order to
escape from local maxima of the score. The amplitude of the noise is parameterized by
T = 1/β. The parameter T may be interpreted as an artificial temperature; taking the
system slowly to low temperatures yields final states close to the global optimum. This
procedure is known as simulated annealing [3]. Here, we take the inverse temperature
β linearly from bStart=.1 to bEnd=30. The output al of the algorithm gives the
alignment finally reached by the algorithm.

The element i of vector al specifies the alignment partner j in network B of node
i in network A. If j > dimB then i has no alignment partner. Typically, all of the
18 nodes with correlated interactions are correctly aligned, the remaining 4 nodes are
given no alignment partner.

The command

> ComputeScores(A=ex$a, B=ex$b, R=ex$r, P=al,
+ linkScore=linkParams$ls,
+ selfLinkScore=linkParams$ls,
+ nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
+ lookupLink=lookupLink, lookupNode=lookupNode,
+ symmetric=TRUE)

$sl
[1] 52.7

$sn
[1] 33.7

computes the resulting link and node scores.

> AnalyzeAlignment(A=ex$a, B=ex$b, R=ex$r, P=al, lookupNode,
+ epsilon=.5)

$na
[1] 15

$nb
[1] 5

$nc
[1] 0

11

returns the number of aligned nodes pairs na, the number of aligned node pairs where
neither partner has appreciable sequence similarity with any node in the other network,
nb, and the number of aligned node pairs with no significant similarity among each
other, but where one node (or both) have significant similarity with some other node,
nc. The required sequence similarity is set by epsilon.

In the second example we align directed binary networks. The commands

> ex<-GenerateExample(30, 30, filling=1, covariance=.95,
+ numOrths=20, symmetric=FALSE)
> a=ex$a;b=ex$b
> a[a>.5]=1;a[a<=.5]=0
> b[b>.5]=1;b[b<=.5]=0
> pinitial<-InitialAlignment(psize=40, r=ex$r, mode="reciprocal")
> lookupLink<-c(-.5,.5,1.5)
> linkParams<-ComputeLinkParameters(a, b, pinitial, lookupLink,
+ clamp=FALSE)

generate two binary networks a,b of size 30 with 20 homologs, an initial alignment
and the 2× 2 matrices of link scores. As node scores we choose 1

> lookupNode<-c(-.5,.5,1.5)
> nsS0<-c(.025,-.025)
> nsS1<-c(-.025,4)
> al<-AlignNetworks(A=a, B=b, R=ex$r, P=pinitial,
+ linkScore=linkParams$ls,
+ selfLinkScore=linkParams$lsSelf,
+ nodeScore1=nsS1, nodeScore0=nsS0,
+ lookupLink=lookupLink, lookupNode=lookupNode,
+ bStart=.1, bEnd=100,
+ maxNumSteps=500, clamp=FALSE, directed=TRUE)

Depending on the difference between the networks (set by covariance) and the frac-
tion of node pairs with sequence similarity (set by numOrths) the algorithm recovers
the correct alignment. Exceptions are node pairs with low connectivity or a larger-
than-average number of links which differ between the two networks. For details of
the algorithm for directed networks, see section 7 and [1].

1The log-likelihood scores based on the initial alignment do not yield suitable scoring parameters
in this example. In the initial alignment no nodes without sequence similarity are aligned; hence
the corresponding parameters s0(1) and s1(0) are large and negative. An alternative strategy is to
update the scoring parameters during the alignment procedure.

12

A

A

A

A

4

1

3

2 B

B

B

B

4

1

3

2P

P

P

P

4

1

3

2

Figure 3: The ancestral (progenitor) network P has after speciation diverged into
species’ networks A and B. While the sequence (node) similarity of the proteins A1

and B1, and A2 and B2 is still detected (red connections), there is no such similarity
for the other two nodes. We try to infer the correct relationship (green connections)
only from the interaction neighbourhood (links) of the two nodes. Interaction network
is considered more evolutionarily robust than the sequence. Still, some changes may
have occurred: In the lineage A, the interaction (A3, A4) has disappeared, and in the
lineage B the link (B1, B4) has been lost.

In the third example, two small protein interaction networks are aligned. Protein
interaction networks are by their nature undirected, and discrete—with links either
being present or absent. Here we align two interaction networks A and B which have
descended from the common ancestral network P , see Figure 3.

There is a strong homology between sequences of A1 and B1, and A2 and B2, which
allows us to state that the proteins are homologous. On the other hand, we can’t find
any similarity between sequences of proteins A3, A4 and B3, B4. Thus the only indices
we have, are protein interactions of the four proteins. In the Figure 3, we see that A4

and B4 both interact with themselves and have interaction with one respective protein
from the homologues pair A2, B2. On the contrary, the link connecting A4 and A1

does not have an interolog in the network B, and there is an unpaired link (B3, B4)
in the network B. The missing interactions have been lost after the speciation event.
We have to find out, if the evidence from shared links is strong enough to align the
proteins A4 with B4 and A3 with B3. In order to do so, we have to (1) estimate score
parameters, and (2) evaluate the optimal alignment.

We represent the networks as two matrices A and B, and store the information on
homology in the similarity matrix R:

A =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 1

 , B =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 1

 , R =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

We create these matrices by evaluating

13

> A <- matrix(c(0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1), ncol = 4);
> B <- matrix(c(0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1), ncol = 4);
> R <- matrix(c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ncol = 4);

In the next step we pick an initial guess p0 of the mapping. One possible (random)
choice is

> p0 <- c(1,3,4,5,2);
> psize <- 5;

By calling the function AlignedPairs we see, that the guessed proteins pairs are
(A1, B1), (A2, B3), (A3, B4):

> AlignedPairs(A, B, p0);

[,1] [,2]
[1,] 1 1
[2,] 2 3
[3,] 3 4

The size psize is chosen in such a way, that it accommodates the three mapped
pairs and the other two positions for unmapped proteins (mapped to dummy nodes).
The correct choice of psize is crucial for the speed of the algorithm only, we can
always choose psize = dim(A) + dim(B), which is always correct, yet it may make
the algorithm slow.

To improve the mapping we have to calculate the scoring parameters for the link
and node score. The links in the protein interaction network are without direction and
may be either present (1) or absent (0). Thus we choose the look-up table to be:

> lookupLink <- c(-0.5, 0.5, 1.5);

The absent links fall into the first bin (−0.5, 0.5), the present links into the second bin
(0.5, 1.5). For the node score we define the look-up table similarly, as the nodes are
either homologous (1) or not (0),

> lookupNode <- c(-0.5, 0.5, 1.5);

With the specified look-up tables and the initial guess of the alignment we can calcu-
late the node score and the link score parameters:

linkParams <- ComputeLinkParameters(A, B, p0, lookupLink);
nodeParams <- ComputeNodeParameters(dim(A)[1], dim(B)[1], R, p0, lookupNode);

The calculated values are:

14

> linkParams;

$lsSelf
[,1] [,2]

[1,] 0.396 -1.139
[2,] -1.658 0.758

$ls
[,1] [,2]

[1,] 0.311 -1.489
[2,] -1.576 0.987

> nodeParams;

$s0
[1] 0.0297 -2.3682

$s1
[1] -2.45 3.35

We utilise these parameters in calculation of the optimal alignment of the networks
A and B:

> al <- AlignNetworks(A, B, R, p0, linkParams$ls, linkParams$lsSelf, nodeParams$s1, nodeParams$s0, lookupLink, lookupNode, bStart = 0.001, bEnd = 1000, maxNumSteps = 100, clamp = TRUE);

To show that we have obtained the optimal alignment we have to show that it is
self–consistent. By self–consistent we mean that the same alignment results when the
link and node score parameters are inferred from the alignment itself and the mapping
does not change with the new parameters. We recalculate the parameters

> linkParams <- ComputeLinkParameters(A, B, al, lookupLink);
> nodeParams <- ComputeNodeParameters(dim(A)[1], dim(B)[1], R, al, lookupNode);

After the parameters are updated, we test if the alignment al is the same as the
alignment calculated with the new parameters:

> al == AlignNetworks(A, B, R, al, linkParams$ls, linkParams$lsSelf, nodeParams$s1, nodeParams$s0, lookupLink, lookupNode, bStart = 0.001, bEnd = 1000, maxNumSteps = 100, clamp = TRUE);

[1] TRUE TRUE TRUE TRUE TRUE

Since the alignment does not change with the update of scoring parameters it is self–
consistent and optimal. We can represent it either as the permutation of nodes of the
network B as they match nodes of the network A, al, or as the list of the aligned
proteins:

15

> al;

[1] 1 2 3 5 4

> AlignedPairs(A, B, al);

[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3

The comparison of interaction networks has resulted in alignment of one pair of
proteins in addition to the two pairs with sequence homology. It would not be pos-
sible to align the pair (A3, B3) without the knowledge of the interaction data. The
last pair of proteins (A4, B4), which we know descend from the ancestral protein P4,
can’t be aligned neither by comparison of the interaction networks. The reason is the
strong penalty for two mismatching interactions. These penalties sum up to −1.75
(see linkParams). The rewards for one matching (conserved) interaction (A2, A4) and
the conserved self–interaction (A4, A4) sum up to 0.560 + 0.329 = 0.889, only. If the
proteins A4 and B4 were aligned, the corresponding alignment score would have been
smaller.

To estimate the strength of the alignment we evaluate its log–likelihood score.

> ComputeScores(A, B, R, al, linkParams$ls, linkParams$lsSelf, nodeParams$s1, nodeParams$s0, lookupLink, lookupNode, symmetric = TRUE, clamp = TRUE);

$sl
[1] 1.63

$sn
[1] 3.17

The total score of the alignment has two contributions, the first coming from the
sequence homology (node similarity) and the second from the similarity of interaction
networks. The first contribution has value sn = 3.17, the latter one sl = 1.63. The
total score equals sn + sl = 4.8.

6 Implementation
An alignment A is represented by the permutation P. Since some nodes may not have
an alignment partner (so A is not one-to-one) a simple trick is used to achieve this:
the permutation P permutes dim nodes, with dim ≥ dimA, dim ≥ dimB. Then node
i is aligned with j = P(i) if j ≤ dimB, and has no alignment partner if j > dimB.

16

Figure 4: The binning process for link and node scores.

Intuitively, this corresponds to including ’dummy nodes’ into the two networks; nodes
without alignment partner are formally matched with a dummy node.

The size of the permutation dim must be chosen to be sufficiently large. If the value
of dim is too small, node pairs will be aligned even though they contribute a negative
score, if there are no more dummy nodes available. Hence, if the number of aligned
nodes in network a equals the minimum number of aligned nodes dimA + dimB− dim
consider increasing the value of dim.

Score contributions are represented by lookup-tables which assign a score value to
a set of bin numbers. Each score table is represented either by a vector (for node
similarity scores) or a matrix (for link weight scores). Bin numbers for any input value
are obtained by performing a lookup on a lookup vector. This process assigns a bin
number to each valid input value and is called binning.

A lookup vector with n elements defines n− 1 bins. The first and last entry of the
lookup vector define the lower and upper bounds of the range of valid values which can
be binned. Clamping may be enabled as an option by setting clamp=TRUE. If clamping
is enabled, values outside the lookup range are assigned to the outermost bins, thus,
no real values will be considered invalid by the binning procedure. Each entry of the
lookup vector other than the first and last defines a boundary between two bins. Each
of these values is the upper boundary of one bin and the lower boundary of the next
bin. An input value is considered to be inside a bin if it is equal or greater than the
lower boundary of that bin and less than the lower boundary of the next bin. However,
input values are always assigned to the last bin if they are equal to the last value in
the lookup vector.

If clamping is not enabled, values outside the lookup range, that is, less than the
first value of the lookup vector or greater than the last value of the lookup vector, are
assumed to be invalid. Such values will cause an error to be reported if encountered
during binning.

After binning has been completed, scores are obtained from a score table using the

17

bin number as an index. Thus, the score tables must have at least as many elements
as there are bins (or combinations of bins, if the score table is a matrix).

There are four kinds of score tables which are used by functions in the pack-
age. These are linkScore, selfLinkScore, nodeScore0 and nodeScore1. The
link score tables are two-dimensional matrices. The node score tables are vectors.
linkScore defines the score for link strengths between pairs of different nodes from a
network. selfLinkScore defines the score for link strengths of links of a node to itself.
nodeScore1 defines the score for similarity between nodes from both networks which
are aligned to each other. nodeScore0 defines the score for similarity between nodes
from both networks which are aligned to some other node, but not to each other.

Link strength and node similarity scores may be calculated using the
ComputeLinkParameters and ComputeNodeParameters functions from the package.

7 Package Contents

7.1 Functions

This section provides an overview of the functions provided by the package and gives
examples for their basic usage.

7.1.1 GenerateExample

The GenerateExample function creates example matrices for two networks A, B and
the node similarity matrix R. The size of the example networks, the correlation between
link strengths across the two networks, number of zero entries, as well as whether links
between nodes are symmetric, can be specified as arguments. If a vector is specified
as the ’correlated’ argument, only the specified rows and columns of A and B will have
correlated values. Leaving this argument blank will result in pairwise correlations for
all entries in A, B (or, if the matrices are of different rank, all elements of the smaller
matrix will be correlated with the corresponding parts of the larger matrix).

It is also possible to set the number of diagonal entries of R which should be set
to 1 by specifying numOrths.

The following example creates symmetric matrices A, B of size 10 with filling 1
and covariance .5. A node similarity matrix R will be created, with the first 4 diagonal
entries set to 1.

example <- GenerateExample(dimA=10, dimB=10, filling=1,
covariance=0.5, symmetric=TRUE, numOrths=4)

a <- example$a
b <- example$b
R <- example$r

18

7.1.2 InitialAlignment

To create a random initial alignment of size psize, the InitialAlignment function
can be used with the mode argument set to "random".

p <- InitialAlignment(psize=10, mode="random")

If mode is set to "reciprocal", a reciprocal best match algorithm is applied to the input
matrix R to find an initial alignment. This mode requires that the psize argument is
sufficiently large to allow for the addition of dummy nodes to which unaligned nodes
can formally be aligned.

p <- InitialAlignment(psize=10, R, mode="reciprocal")

7.1.3 InvertPermutation

This is a convenience function for inverting a permutation which is specified by a vector.

pInv <- InvertPermutation(p)

7.1.4 Permute

This function permutes rows and columns of a matrix using the specified permutation
vector. The inverse of the permutation will be applied if the invertp argument is set
to TRUE.

The following example permutes the rows and columns of the matrix b, which
has been generated with GenerateExample using a random initial alignment p. The
columns of r are permuted using the inverse pInv of the alignment p.

bPerm <- Permute(b, p, invertp=TRUE)
rPerm <- R[,pInv]

7.1.5 GetBinNumber

This function returns the bin number corresponding to the input value. The bin num-
ber is obtained by performing a lookup in the specified lookup vector.

The lookup vector defines the lower and upper boundaries for each bin. The first
entry in the lookup vector is the lower boundary of the first bin, while the last value
in the lookup vector is the upper boundary of the last bin. For all other entries, entry
i of the lookup vector defines the upper boundary of the (i− 1)-th bin and the lower
boundary of the i-th bin. The number of bins is therefore n− 1, where n is the length

19

of the lookup vector. A lookup vector must have at least two elements.

If clamping is enabled (clamp=TRUE), arguments which fall below the lower bound-
ary of the first bin are treated as if they are actually in the first bin. Likewise, values
which are above the upper boundary of the last bin are treated as if they are actually
in the last bin. If clamping is disabled (clamp=FALSE), values outside the lookup range
cause an error.

n <- GetBinNumber(x, lookup)

7.1.6 VectorToBin

This function transforms a vector of arbitrary values into a vector of bin numbers cor-
responding to the data in the input vector. Bin numbers are found using the specified
lookup table.

bx <- VectorToBin(x, lookup)

7.1.7 MatrixToBin

This function transforms a matrix of arbitrary values into a matrix of bin numbers
corresponding to the data in the input matrix. Bin numbers are found using the spec-
ified lookup table.

bm <- MatrixToBin(m, lookup)

7.1.8 ComputeLinkParameters

This function computes optimal link score parameters for use with ComputeM and
AlignNetworks. It takes two matrices as well as an initial alignment p and the lookup
table for link binning, lookupLink, as parameters. See section 4.3 for details.

lookupLink <- c(-1, 0, 1)
linkParams <- ComputeLinkParameters(a, b, p, lookupLink)
linkScore <- linkParams$ls
selfLinkScore <- linkParams$lsSelf

7.1.9 ComputeNodeParameters

This function computes optimal node score parameters for use with ComputeM and
AlignNetworks. It takes the size of the networks, a matrix of node similarities r, an
initial alignment p, and the lookup table for node binning, lookupNode, as parameters.

20

See section 4.3 for details.

lookupNode <- c(-1, 0, 1)
nodeParams <- ComputeNodeParameters(dim(a)[1], dim(b)[1], r, p,

lookupNode)
s0 <- nodeParams$s0
s1 <- nodeParams$s1

7.1.10 EncodeDirectedGraph

This function encodes an adjacency matrix for a directed graph into a symmetric ma-
trix. Currently only binary directed graphs are implemented. The adjacency matrix
of a binary directed graph has elements 0, 1. The same graph can be represented by a
symmetric adjacency matrix with elements −1, 0, 1, with the sign of the entry indicat-
ing the direction of the link. This is done by setting entries m′

ij = m′
ji = 1 if mij = 1

and p[i] > p[j] and m′
ij = m′

ji = −1 if mij = 1 and p[j] > p[i].

sg <- EncodeDirectedGraph(dg, 1:dim(dg)[1])

7.1.11 ComputeM

This function computes the score Matrix M = M l + M l
self + Mn from the network

adjacency matrices a and b, the node similarity matrix r, an alignment p and the node
and link scores with their associated binning information. The alignment p is either
generated by the previous iterative step, or, initially, by using InitialAlignment.
The matrix M is then given to the linear assignment solver to compute the new align-
ment, see [1]

M l
ij =

∑dimA
k=1,k ̸=j,p[k] ̸=i s

l(ajk, bip[k])

If i > dimB, j > dimA, or P [k] > dimB the contribution to M l from this sum is zero.

(M l
self)ij = slself (ajj, bii)

Again if i > dimB or j > dimA no contribution results.

Mn
ij = sn1 (Rji) +

∑
k≤dimA,p(k)>dimB,k ̸=j s

n
2 (Rki) +

∑
k≤dimB,p−1(k)>dimA,k ̸=i s

n
2 (Rjk)

if i ≤ dimB, j ≤ dimA (zero otherwise). So in the second term, the sum over k is over
all nodes in A, which are without an alignment partner and not equal to j. In the
third term the sum is over all nodes in B without alignment partner and not equal to i.

21

M <- ComputeM(a, b, r, p, sl, slSelf, s0, s1, lookupLink,
lookupNode)

For directed networks and the resulting asymmetric matrices, a symmetric representa-
tion is obtained by encoding the adjacency matrix as described in the documentation
for EncodeDirectedGraph.

7.1.12 AlignNetworks

This function finds an alignment between the two input networks by repeatedly calling
ComputeM and LinearAssignment, up to maxNumSteps times. Simulated annealing is
performed if a range is specified in the bStart and bEnd arguments. This simple
procedure is described in detail in [1]. Different procedures can easily be implemented
by the user.

In each step, the matrix M is calculated from the scoring parameters and the current
permutation vector P. The result is then normalized to the range [−1, 1] and, if
simulated annealing is enabled, a random matrix depending on the current simulated
annealing parameters is added. The linear assignment routine is used to calculate the
value of P which is used to compute M in the next step.

If the flag directed is set, directed binary networks are encoded by suitable sym-
metric matrices using EncodeDirectedGraph. The corresponding 3 × 3 matrices of
the link score are computed from the 2× 2 matrices given as input.

Simulated annealing is enabled if bStart differs from bEnd. In this case, a value
bstep = (bEnd − bStart)/(maxNumSteps − 1) is calculated. In step n, the random
matrix which is added to M is scaled by the factor 1/[bStart+ (n− 1)bstep].

pr <- AlignNetworks(a, b, r, p, sl, slSelf, s0, s1,
lookupLink, lookupNode, bStart, bEnd, maxNumSteps)

The returned permutation p should be read in the following way: the node i in the
network A is aligned to that node in the network B which label is at the i-th position
of the permutation vector p. If the label at this position is larger than the size of the
network B, the node i is not aligned.

7.1.13 AlignedPairs

This function creates a matrix containing pairs of aligned nodes from networks A and B
using the permutation vector P , where P is in the format returned by AlignNetworks.

The return value is a matrix with two columns. The number of rows is equal to
the number of aligned node pairs. Each row in the matrix denotes a pair of aligned
nodes. In each row, the first element (index 1) is the label of a node in network A,

22

and the second element (index 2) is the label of a node in network B.

alignedPairs <- AlignedPairs(a, b, p)

7.1.14 LinearAssignment

This function solves the linear assignment problem [2] defined by the input matrix.
The result is a permutation of the columns of the input matrix, where presult =
argminP (MP).

The following example calculates the solution for a matrix M. The input is scaled
before it is passed to the linear-assignment solver.

px <- LinearAssignment(round(-1000 * (M / max(abs(M)))))

7.1.15 ComputeScores

This function computes scores for an alignment using the specified scoring tables, two
networks a and b and their alignment p. The result is a list containing the link score
and the node score.

scores <- ComputeScores(a, b, r, p, linkScore, selfLinkScore, s0, s1, lookupLink,
lookupNode, TRUE)

7.1.16 AnalyzeAlignment

This function analyzes an alignment and returns various characteristics.

result <- AnalyzeAlignment(a, b, R, p, lookupNode, epsilon)

The function returns the number of aligned nodes pairs na, the number of aligned node
pairs where neither partner has appreciable sequence similarity with any node in the
other network, nb, and the number of aligned node pairs with no significant similarity
among each other, but where one node (or both) have significant similarity with some
other node, nc. The required sequence similarity is set by epsilon. The results are
accessed by results$na, results$nb, and results$nc, respectively.

7.1.17 Trace

This is a convenience function to calculate the trace of a matrix.

t <- Trace(m)

23

7.1.18 CreateScoreMatrix

This function creates a very simple score matrix containing the product of lookup table
values for each row and column as its elements. This can be used for testing purposes.

linkScore <- CreateScoreMatrix(lookupX, lookupY)

24

References
[1] Berg, J & Lässig, M. (2006) Proc. Natl. Acad. Sci. USA 103, 10967–10972.

[2] Jonker, R & Volgenant, A. (1987) Computing 38, 325–340.

[3] Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi, "Optimization by Simulated An-
nealing", Science, 220, 4598, 671-680, 1983.

25

