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1 Introduction
Although techniques of chromatin immunoprecipitation coupled with high through-
put sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip) have came
into being for a long time, it still remains difficult to generate a quality ChIPx
(i.e., ChIP-seq or ChIP-chip) data set due to the tremendous amount of effort
required to develop effective antibodies and efficient protocols. Especially with
recent cuts in research fundings, most labs are unable to easily obtain ChIPx
data in more than a handful of biological contexts. Thus, standard ChIPx anal-
yses primarily focus on analyzing data from one experiment, and the discoveries
are restricted to a specific biological context. We propose to enrich this existing
data analysis paradigm by developing a novel approach, GSCA, which super-
imposes ChIPx data on large amounts of publicly available human and mouse
gene expression data containing a diverse collection of cell types, tissues, and
disease conditions to discover new biological contexts with potential geneset ac-
tivity patterns. GSCA could also serve as an informative guide for biologists to
prescreen interested biological contexts when designing their experiments.

2 Overview
The purpose of GSCA is to predict the biological contexts, defined as the cell or
disease type and associated treatment or condition, in which a certain geneset
activity pattern exhibits. GSCA accomplishes this by first requiring the users to
specify a number of genesets with activated (positive) and repressed (negative)
genes defined from experimental data from one or more cell types. Users are
also required to specify a particular geneset activity pattern they want to study.
Given the genesets, GSCA will then search for biological contexts that are sig-
nificantly enriched with the specific geneset activity pattern by examining the
activity value of each given geneset across all of the biological contexts in the
gene expression compendium. Finally, a complete report including result tables
and plots will be generated.

3 GSCA analysis
Two key things are required to perform a GSCA analysis: (1) genesets with
activated and repressed genes (2) geneset activity pattern of interest.
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(1) Genesets with activated and repressed genes - users can give any genesets
they wish to study, but normally these genesets come from experimental data.
Activated gene means that increases in expression of the gene also increases
the overall activity of the whole geneset, while increases in expression of the
repressed genes will decrease the overall activity of the whole geneset.

(2) Geneset activity pattern of interest - users need to specify the geneset
activity pattern of interest. For each geneset, users should define either high
or low activity to be searched by GSCA, a cutoff type and a cutoff value. For
example, if the pattern is set to be high in all given genesets, then GSCA will
search for samples whose geneset activity values are all above the respective
cutoffs calculated in each geneset.

After providing the required input, GSCA identifies biological contexts en-
riched with the geneset activity pattern of interest by counting the number
of samples that fall within and outside of the defined geneset activity region
for each biological context in the gene expression compendium. Fisher’s exact
test is then used to calculate the probability of association between the gene-
set activity pattern with each biological context to determine which contexts
are significantly enriched with given geneset activity pattern. See the reference
below for more details on the GSCA algorithm.

Besides the standard R functions provided in GSCA package, users are rec-
ommended to use the interactive GSCA user interface built using R shiny. The
GSCA UI includes nearly all GSCA standard R functions while providing a
easier way and more powerful options to do the analyses and generate outputs.
Please check the help page of GSCAui() for more details.

4 GSCA function
GSCA analysis is performed using the GSCA function, which requires the fol-
lowing input arguments:

(1) genedata, A data.frame with three columns specifying the input genesets.
Each row specifies an activated or repressed gene in a geneset. First column:
character value of geneset name specified by the user, could be any name easy
to remember e.g. GS1,GS2,...; Second column: numeric value of Entrez GeneID
of the gene; Third column: numeric value of 1,-1 indicating whether gene is
activated or repressed. 1 for activated gene and -1 for repressed gene. Here,
activated gene means that increases in expression of the gene also increases the
overall activity of the whole geneset, while increases in expression of the re-
pressed genes will decrease the overall activity of the whole geneset.

(2) pattern, A data.frame with four columns indicating the activity patterns
corresponding to the given genedata. Each row specifies activity pattern for one
geneset. First column: character value of the same geneset name used in gene-
data, each geneset name in genedata should appear exactly once in this column.
Second column: character value of whether high or low activity of the whole
geneset is interested. "High" stands for high activity and "Low" stands for low
activity. Third column: character value of which cutoff type is going to be used.
3 cutoff types can be specified: "Norm", "Quantile", or "Exprs". If cutoff type
is "Norm", then the fourth column should be specified as p-value between 0 and
1, where the geneset expression cutoff will correspond to the specified p-value
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(one-sided) based on a fitted normal distribution; If cutoff type is "Quantile",
then the fourth column should be specified as a desired quantile between 0 and
1, where the geneset expression cutoff will correspond to the specified quantile.
Finally, if cutoff type is "Exprs", the geneset expression cutoff will be equal to
the value given in the fourth column. Fourth column: numeric value of cutoff
value based on different cutoff types specified in the third column.

(3) chipdata, Compendium data in which the analysis is performed. Two data
sets are possible: ’moe4302’ or ’hgu133a’. Based on the input, one of two cur-
rently available compendiums of publicly available gene expression profiles, from
GPL96 for human or from GPL1261 for mouse, will be loaded. The gene ex-
pression compendium data is downloaded from NCBI GEO (Barret et al. 2007).

(4) Pval.co, Significance cutoff for reported active biological contexts.

(5) directory, Either null or a character value giving a directory path. If direc-
tory is not null, then additional follow-up GSCA analyses will be performed and
stored in the folder specified by directory. If directory is null then no additional
follow-up GSCA analyses will be performed.

5 GSCA Example
Here, we illustrate an example of how to use the GSCA function to produce
GSCA active biological context predictions. Suppose we are interested in study-
ing Oct4 regulation in mouse embryonic stem cells (ESCs) and already have
ChIP-seq data for Oct4 in ESCs and gene expression data before and after RNAi
knockdown of Oct4 in ESCs. First, we process ChIP-seq data using CisGenome
(or other viable methods) to obtain a list of predicted Oct4-bound target genes
in ESCs. Then, we analyze the gene expression data using RMA and limma (or
other viable preprocessing and analysis methods) to obtain a list of differentially
expressed genes after RNAi knockdown. Next, we combine the TF-bound genes
and differentially expressed genes to obtain a set of Oct4 target genes in ESCs.
To be specific, positive target genes are genes that are TF-bound and increases
in expression when the TF expression increases, and negative target genes are
genes that are TF-bound and decrease in expression when the TF expression
decreases. This has already been done previously and has been stored as a list
in the GSCA package. The ChIP-seq data is obtained from GSE11431 and the
Oct4-knockdown data is obtained from GSE4189.

We are now ready to load the input data.

> library(GSCA)
> data(Oct4ESC_TG)
> head(Oct4ESC_TG[[1]]) ##Show some positive target genes of Oct4

[1] "100678" "106298" "14609" "12468" "16765" "21849"

> head(Oct4ESC_TG[[2]]) ##Show some negative target genes of Oct4

[1] "246703" "15441" "70579" "20333" "83669" "245688"

Before running the GSCA function, we should first construct the genedata
and specify the geneset acitivty pattern which are both required. First we build
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the genedata. We specify the Entrez GeneID of the TF-of-interest (Entrez
GeneID of Oct4: 18999) and the vector of EntrezIDs for the positive (activated)
and negative (repressed) Oct4 target genes:

> activenum <- length(Oct4ESC_TG[[1]])
> repressnum <- length(Oct4ESC_TG[[2]])
> Octgenedata <- data.frame(
+ gsname=c("TF",rep("TG",activenum+repressnum)),
+ gene=c(18999,Oct4ESC_TG[[1]],Oct4ESC_TG[[2]]),
+ weight=c(rep(1,1+activenum),rep(-1,repressnum)),
+ stringsAsFactors=FALSE)

Second we build the geneset activity pattern. In this analysis, we are inter-
ested in biological contexts in which the expression of the TF and the activity of
its target genes are both high, and define the high activity region as the TF and
TG cutoff correspond to a one-sided palue based on fitted normal distributions.

> Octpattern <- data.frame(
+ gsname=c("TF","TG"),
+ acttype="High",
+ cotype="Norm",
+ cutoff=0.1,
+ stringsAsFactors=FALSE)

We are now ready to run the GSCA function. We specify chipdata as
"moe4302" and Pvalue cutoff as default: 0.05.

> displayoct <- Octoutput <- GSCA(Octgenedata,Octpattern,"moe4302",Pval.co=0.05,directory=NULL)
> displayoct[[1]]$SampleType <- substr(displayoct[[1]]$SampleType,1,25)
> head(displayoct[[1]]) ## Partial results of the ranking table

Rank Active Total FoldChange Adj.Pvalue SampleType
1 1 20 20 19.904 2.89e-24 inner_cell_mass_cell:gene
2 2 18 20 17.919 2.46e-19 single_cell_from_blimpko_
3 3 16 17 18.589 1.11e-17 single_cell_from_lineager
4 4 13 13 19.432 7.09e-15 embryonic_stem_cells:norm
5 5 12 12 19.323 1.54e-13 embryoid_bodies:r1,_diffe
6 6 12 12 19.323 1.54e-13 embryonic_stem_cells:r1,_

ExperimentID
1 GSE4307;GSE4309
2 GSE11128
3 GSE11128
4 GSE9954;GSE10476;GSE10573;GSE10553;GSE10610;GSE10776;GSE10806
5 GSE9563
6 GSE9563

The first item in the output contains the ranking table of biological contexts
significantly enriched with the regulatory pattern that both TF and its target
genes have high activities. Since the Pval.co is set to 0.05, only biological
contexts with adjusted p-values less than 0.05 are reported. It is important to
note that the TF expression and TG activity cutoffs as set by the third and
fourth columns of pattern are completely flexible; users are free to determine
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how ’high’ expression of activity needs to be based on how stringent they would
like to be with the resulting predictions (e.g. higher TF and TG cutoff will
result in more stringent predictions). Real data tests show that different TFs
can behave very differently so there is no clear optimal cutoff for all TFs.

The output also contains the TF expression and TG activity scores for each
sample in the compendium, the number of total target genes and target genes
that did not have expression measurements on the compendium, and the value
of the TF expression and TG activity cutoff.

If the user would like to visualize the GSCA results, we also provide a func-
tion to quickly plot the output.

> GSCAplot(Octoutput,N=5,plotfile=NULL,Title="GSCA plot of Oct4 in ESC")

The plot depicts the TF expression and TG activity scores for each sample
in the compendium and highlights in color the samples from the top-ranked
enriched biological contexts. The dashed lines indicate the TF expression and
TG activity cutoffs to visualize the defined regulatory region of interest. Since
most names for the biological contexts are rather long, only the first portion
(maximum of 25 characters) of the name is shown in the legend. Simply refer
to the output table for the full sample type name.

The first argument to GSCAplot is the direct output from the GSCA func-
tion. The second argument, N, specifies the number of top-ranked enriched
biological contexts to highlight (with a maximum of 5). The third argument,
plotfile, specifies where the plot is saved. If plotfile is left as NULL, then the
plot will not be saved but directly shown in R. The fourth argument is Title,
which is the title of the plot. GSCAplot function is provided solely for conve-
nience. It is designed to quickly plot the output of GSCA, and leaves no options
to customize the resulting plot. If users would like to change the way the plot
looks, users can simply launch GSCA UI using the function GSCAui.

6 GSCA further exploration
After the initial GSCA analysis, users may want to explore the predicted con-
texts in more detail. GSCA package contains two functions tabSearch and
GSCAeda which are designed for this purpose. tabSearch is used to search in
the human or mouse compendium for samples related to a set of keywords of
interest. Then the contexts recovered by tabSearch are inputted into GSCAeda
along with the initial GSCA inputs: genedata, pattern, etc. to analyze the set
of inputted contexts for differences in geneset activities. Specifically, GSCAeda
will calcualte the mean and standard deviation of the geneset activity values.
To better visualize the data, a boxplot showing activities of each geneset will
also be generated . Next, GSCAeda will perform t-tests comparing the mean
geneset activity values in each geneset for all pair-wise combinations among the
inputted contexts, report the results in a table and plot them in two heatmaps
showing the t-statistics and p-values. In addition, the usual GSCA tests of en-
richment of the geneset activity pattern of interest will be reported. If outputdir
argument is not null, all plots will be outputted to the file path specified by the
user in pdf format and all data used to construct the plots will be outputted to
the same file path in csv format. The raw geneset activity values of each sample
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for each inputted context will also be reported in a separate csv file, so users
can perform additional statistical analyses.

For example, we can load in STAT1 target genes defined from ChIP-seq and
literature.

> data(STAT1_TG) ### Note, only activated (+) STAT1 target genes were found

Then we construct genedata and pattern required by GSCA.

> Statgenenum <- length(STAT1_TG)
> Statgenedata <- data.frame(gsname=c("TF",rep("TG",Statgenenum)),gene=c(6772,STAT1_TG),weight=1,stringsAsFactors=FALSE)
> Statpattern <- data.frame(gsname=c("TF","TG"),acttype="High",cotype="Norm",cutoff=0.1,stringsAsFactors=FALSE)

Now we can perform an initial GSCA analysis.

> Statoutput <- GSCA(Statgenedata,Statpattern,"hgu133a",Pval.co=0.05,directory=NULL)
> head(Statoutput[[1]])

Rank Active Total FoldChange Adj.Pvalue SampleType
1 1 25 60 11.009 9.06e-18 pbmc:hepatitis_c,_day_1
2 2 24 59 10.746 1.08e-16 pbmc:hepatitis_c,_day_2
3 3 26 101 6.847 1.47e-12 blood:sle
4 4 18 52 9.128 1.15e-10 pbmc:hepatitis_c,_day_28
5 5 17 60 7.492 2.17e-08 pbmc:hepatitis_c,_day_7
6 6 10 18 14.170 1.05e-07 pbmc:influenzaa

ExperimentID
1 GSE7123
2 GSE7123
3 GSE11907;GSE11908;GSE11909
4 GSE7123
5 GSE7123
6 GSE6269

As we can see, many of the significant predictions come from hepatitis-C
infected PBMCs in experiment GSE7123. To further see if there are addi-
tional biological insights we can make specific to STAT1 functional activity in
hepatitis-C infected PBMCs, we can compare the TF expression and TG activ-
ity values for all contexts in GSE7123 using GSCAeda. We use the experiment
ID to search in this case because it is likely that the experiment will contain
more relavent contexts (possibly not significant ones) to the hepatitis-C infected
PBMCs (e.g. PBMCs:healthy).

We first search for all contexts in GSE7123.

> GSE7123out <- tabSearch("GSE7123","hgu133a")
> GSE7123out

ExperimentID SampleType SampleCount
1 GSE7123 pbmc:hepatitis_c,_day_0 59
2 GSE7123 pbmc:hepatitis_c,_day_1 60
3 GSE7123 pbmc:hepatitis_c,_day_2 59
4 GSE7123 pbmc:hepatitis_c,_day_7 60
5 GSE7123 pbmc:hepatitis_c,_day_14 54
6 GSE7123 pbmc:hepatitis_c,_day_28 52
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As we can see, PBMCs:healthy context is also included in this experiment,
which was not reported as significant in the initial GSCA analysis results.

Then we run GSCAeda to perform follow-up analysis on the contexts in
GSE7123.

> GSE7123followup <- GSCAeda(Statgenedata,Statpattern,"hgu133a",GSE7123out,Pval.co=0.05,Ordering="Average",Title=NULL,outputdir=NULL)

'data.frame': 344 obs. of 5 variables:
$ SampleID : chr "GSM171172" "GSM171173" "GSM171174" "GSM171175" ...
$ ExperimentID: chr "GSE7123" "GSE7123" "GSE7123" "GSE7123" ...
$ SampleType : chr "pbmc:hepatitis_c,_day_0" "pbmc:hepatitis_c,_day_1" "pbmc:hepatitis_c,_day_2" "pbmc:hepatitis_c,_day_7" ...
$ TF : num 1.05 2.642 5.366 -0.629 -1.304 ...
$ TG : num 4.65 4.28 7.06 6.01 4.49 ...

NULL

> GSE7123followup$Tstats

$TF
pbmc:hepatitis_c,_day_1 pbmc:hepatitis_c,_day_2

pbmc:hepatitis_c,_day_1 0.00000000 -0.02985787
pbmc:hepatitis_c,_day_2 0.02985787 0.00000000
pbmc:hepatitis_c,_day_28 -1.35220977 -1.39911043
pbmc:hepatitis_c,_day_7 -2.00947632 -2.06836215
pbmc:hepatitis_c,_day_14 -2.18712604 -2.24533411
pbmc:hepatitis_c,_day_0 -4.59227347 -4.70579193

pbmc:hepatitis_c,_day_28 pbmc:hepatitis_c,_day_7
pbmc:hepatitis_c,_day_1 1.3522098 2.0094763
pbmc:hepatitis_c,_day_2 1.3991104 2.0683622
pbmc:hepatitis_c,_day_28 0.0000000 0.6200464
pbmc:hepatitis_c,_day_7 -0.6200464 0.0000000
pbmc:hepatitis_c,_day_14 -0.8553939 -0.2753609
pbmc:hepatitis_c,_day_0 -3.2315680 -2.7663650

pbmc:hepatitis_c,_day_14 pbmc:hepatitis_c,_day_0
pbmc:hepatitis_c,_day_1 2.1871260 4.592273
pbmc:hepatitis_c,_day_2 2.2453341 4.705792
pbmc:hepatitis_c,_day_28 0.8553939 3.231568
pbmc:hepatitis_c,_day_7 0.2753609 2.766365
pbmc:hepatitis_c,_day_14 0.0000000 2.285384
pbmc:hepatitis_c,_day_0 -2.2853835 0.000000

$TG
pbmc:hepatitis_c,_day_1 pbmc:hepatitis_c,_day_2

pbmc:hepatitis_c,_day_1 0.000000 2.410017
pbmc:hepatitis_c,_day_2 -2.410017 0.000000
pbmc:hepatitis_c,_day_28 -10.038888 -7.846065
pbmc:hepatitis_c,_day_7 -8.860577 -6.783606
pbmc:hepatitis_c,_day_14 -9.217474 -6.953762
pbmc:hepatitis_c,_day_0 -22.187324 -19.924067

pbmc:hepatitis_c,_day_28 pbmc:hepatitis_c,_day_7
pbmc:hepatitis_c,_day_1 10.0388884 8.8605770
pbmc:hepatitis_c,_day_2 7.8460649 6.7836059
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pbmc:hepatitis_c,_day_28 0.0000000 -0.5268211
pbmc:hepatitis_c,_day_7 0.5268211 0.0000000
pbmc:hepatitis_c,_day_14 1.0712620 0.4623230
pbmc:hepatitis_c,_day_0 -10.1024385 -9.8610977

pbmc:hepatitis_c,_day_14 pbmc:hepatitis_c,_day_0
pbmc:hepatitis_c,_day_1 9.217474 22.187324
pbmc:hepatitis_c,_day_2 6.953762 19.924067
pbmc:hepatitis_c,_day_28 -1.071262 10.102438
pbmc:hepatitis_c,_day_7 -0.462323 9.861098
pbmc:hepatitis_c,_day_14 0.000000 11.742543
pbmc:hepatitis_c,_day_0 -11.742543 0.000000

> GSE7123followup$Pval

$TF
pbmc:hepatitis_c,_day_1 pbmc:hepatitis_c,_day_2

pbmc:hepatitis_c,_day_1 1.000000e+00 9.762313e-01
pbmc:hepatitis_c,_day_2 9.762313e-01 1.000000e+00
pbmc:hepatitis_c,_day_28 1.790850e-01 1.646205e-01
pbmc:hepatitis_c,_day_7 4.689329e-02 4.091923e-02
pbmc:hepatitis_c,_day_14 3.083342e-02 2.674354e-02
pbmc:hepatitis_c,_day_0 1.454548e-05 9.398318e-06

pbmc:hepatitis_c,_day_28 pbmc:hepatitis_c,_day_7
pbmc:hepatitis_c,_day_1 0.179084967 0.046893287
pbmc:hepatitis_c,_day_2 0.164620470 0.040919226
pbmc:hepatitis_c,_day_28 1.000000000 0.536562431
pbmc:hepatitis_c,_day_7 0.536562431 1.000000000
pbmc:hepatitis_c,_day_14 0.394308363 0.783555770
pbmc:hepatitis_c,_day_0 0.001773984 0.006741822

pbmc:hepatitis_c,_day_14 pbmc:hepatitis_c,_day_0
pbmc:hepatitis_c,_day_1 0.03083342 1.454548e-05
pbmc:hepatitis_c,_day_2 0.02674354 9.398318e-06
pbmc:hepatitis_c,_day_28 0.39430836 1.773984e-03
pbmc:hepatitis_c,_day_7 0.78355577 6.741822e-03
pbmc:hepatitis_c,_day_14 1.00000000 2.470850e-02
pbmc:hepatitis_c,_day_0 0.02470850 1.000000e+00

$TG
pbmc:hepatitis_c,_day_1 pbmc:hepatitis_c,_day_2

pbmc:hepatitis_c,_day_1 1.000000e+00 1.751115e-02
pbmc:hepatitis_c,_day_2 1.751115e-02 1.000000e+00
pbmc:hepatitis_c,_day_28 3.511239e-17 3.429334e-12
pbmc:hepatitis_c,_day_7 1.134613e-14 5.584289e-10
pbmc:hepatitis_c,_day_14 2.127205e-15 2.618657e-10
pbmc:hepatitis_c,_day_0 3.169190e-41 2.123144e-37

pbmc:hepatitis_c,_day_28 pbmc:hepatitis_c,_day_7
pbmc:hepatitis_c,_day_1 3.511239e-17 1.134613e-14
pbmc:hepatitis_c,_day_2 3.429334e-12 5.584289e-10
pbmc:hepatitis_c,_day_28 1.000000e+00 5.993812e-01
pbmc:hepatitis_c,_day_7 5.993812e-01 1.000000e+00
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pbmc:hepatitis_c,_day_14 2.865440e-01 6.447593e-01
pbmc:hepatitis_c,_day_0 1.649254e-16 3.164993e-16

pbmc:hepatitis_c,_day_14 pbmc:hepatitis_c,_day_0
pbmc:hepatitis_c,_day_1 2.127205e-15 3.169190e-41
pbmc:hepatitis_c,_day_2 2.618657e-10 2.123144e-37
pbmc:hepatitis_c,_day_28 2.865440e-01 1.649254e-16
pbmc:hepatitis_c,_day_7 6.447593e-01 3.164993e-16
pbmc:hepatitis_c,_day_14 1.000000e+00 2.643214e-20
pbmc:hepatitis_c,_day_0 2.643214e-20 1.000000e+00

From the output of t-statistics of both TF expression and TG activity we can
see that there are three groups forming: healthy PBMCs, infected PBMCs from
day 7,14,28 and infected PBMCs from day 1,2. So we can conclude that there
is a clear increase in STAT1 functional activity among more recently infected
PBMCs. See Wu(2012) for more details on this STAT1 analysis.

Although not displayed here, two heatmaps for the t-statistics and pvalues
will also be plotted along with the data used to construct the plots. Users should
always save the results, which can be done by specifying a output directory. We
did not do so in this example in order to demonstrate the output of GSCAeda.

As mentioned earlier, if in the initial GSCA analysis, the argument, directory,
is not null, then follow-up GSCA analyses will be performed and stored in the
directory. This means that a similar analysis done here for GSE7123 contexts
for STAT1 will be performed for each experiment ID in the GSCA results table
for the TF of interest (i.e. for each of the experiments that contained contexts
predicted to be enriched with significant TF functional activity). tabSearch
and GSCAeda will be used recursively to search for and analyze all contexts
in each experiment. All data will be stored in directory, which should be a
filepath to a folder. Note that this process may generate a lot of data files and
plots and could take some time.
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