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1 Introduction
We have developed an empirical Bayes methodology for gene expression data to account
for replicate arrays, multiple conditions, and a range of modeling assumptions. The
methodology is implemented in the R package EBarrays. Functions calculate posterior
probabilities of patterns of differential expression across multiple conditions. Model
assumptions can be checked. This vignette provides a brief overview of the methodol-
ogy and its implementation. For details on the methodology, see Newton et al. 2001,
Kendziorski et al., 2003, and Newton and Kendziorski, 2003. We note that some of the
function calls in version 1.7 of EBarrays have changed.
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2 General Model Structure: Two Conditions
Our models attempt to characterize the probability distribution of expression measure-
ments xj = (xj1, xj2, . . . , xjI) taken on a gene j. As we clarify below, the parametric
specifications that we adopt allow either that these xji are recorded on the original mea-
surement scale or that they have been log-transformed. Additional assumptions can be
considered within this framework. A baseline hypothesis might be that the I samples are
exchangeable (i.e., that potentially distinguishing factors, such as cell-growth conditions,
have no bearing on the distribution of measured expression levels). We would thus view
measurements xji as independent random deviations from a gene-specific mean value µj

and, more specifically, as arising from an observation distribution fobs(·|µj).
When comparing expression samples between two groups (e.g., cell types), the sample

set {1, 2, . . . , I} is partitioned into two subsets, say s1 and s2; sc contains the indices
for samples in group c. The distribution of measured expression may not be affected by
this grouping, in which case our baseline hypothesis above holds and we say that there
is equivalent expression, EEj, for gene j. Alternatively, there is differential expression
(DEj) in which case our formulation requires that there now be two different means, µj1

and µj2, corresponding to measurements in s1 and s2, respectively. We assume that the
gene effects arise independently and identically from a system-specific distribution π(µ).
This allows for information sharing amongst genes. Were we instead to treat the µj’s as
fixed effects, there would be no information sharing and potentially a loss in efficiency.

Let p denote the fraction of genes that are differentially expressed (DE); then 1− p
denotes the fraction of genes equivalently expressed (EE). An EE gene j presents data
xj = (xj1, . . . , xjI) according to a distribution

f0(xj) =

∫ ( I∏
i=1

fobs(xji|µ)

)
π(µ) dµ. (1)

Alternatively, if gene j is DE, the data xj = (xj1,xj2) are governed by the distribution

f1(xj) = f0(xj1) f0(xj2) (2)

owing to the fact that different mean values govern the different subsets xj1 and xj2 of
samples. The marginal distribution of the data becomes

pf1(xj) + (1− p)f0(xj). (3)

With estimates of p, f0, and f1, the posterior probability of differential expression is
calculated by Bayes’ rule as

p f1(xj)

p f1(xj) + (1− p) f0(xj)
. (4)

To review, the distribution of data involves an observation component, a component
describing variation of mean expression µj, and a discrete mixing parameter p governing
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the proportion of genes differentially expressed between conditions. The first two pieces
combine to form a key predictive distribution f0(·) (see (1)), which enters both the
marginal distribution of data (3) and the posterior probability of differential expression
(4).

3 Multiple Conditions
Many studies take measurements from more than two conditions, and this leads us to
consider more patterns of mean expression than simply DE and EE. For example, with
three conditions, there are five possible patterns among the means, including equiva-
lent expression across the three conditions (1 pattern), altered expression in just one
condition (3 patterns), and distinct expression in each condition (1 pattern). We view
a pattern of expression for a gene j as a grouping or clustering of conditions so that
the mean level µj is the same for all conditions grouped together. With microarrays
from four cell conditions, there are 15 different patterns, in principle, but with extra
information we might reduce the number of patterns to be considered. We discuss an
application in Section 6 with four conditions, but the context tells us to look only at a
particular subset of four patterns.

We always entertain the null pattern of equivalent expression among all conditions.
Consider m additional patterns so that m+1 distinct patterns of expression are possible
for a data vector xj = (xj1, . . . , xjI) on some gene j. Generalizing (3), xj is governed by
a mixture of the form

m∑
k=0

pkfk(xj), (5)

where {pk} are mixing proportions and component densities {fk} give the predictive
distribution of measurements for each pattern of expression. Consequently, the posterior
probability of expression pattern k is

P (k|xj) ∝ pkfk(xj). (6)

The pattern-specific predictive density fk(xj) may be reduced to a product of f0(·),
contributions from the different groups of conditions, just as in (2); this suggests that
the multiple-condition problem is really no more difficult computationally than the two-
condition problem except that there are more unknown mixing proportions pk. Fur-
thermore, it is this reduction that easily allows additional parametric assumptions to
be considered within the EBarrays framework. In particular, three forms for f0 are
currently specified (see section 4), but other assumptions can be considered simply by
providing alternative forms for f0.

The posterior probabilities (6) summarize our inference about expression patterns
at each gene. They can be used to identify genes with altered expression in at least
one condition, to order genes within conditions, to classify genes into distinct expression
patterns and to estimate FDR.
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4 The Three Models
We consider three particular specifications of the general mixture model described above.
Each is determined by the choice of observation component and mean component, and
each depends on a few additional parameters θ to be estimated from the data. As we will
demonstrate, the model assumptions can be checked using diagnostic tools implemented
in EBarrays, and additional models can be easily implemented.

4.1 The Gamma Gamma Model

In the Gamma-Gamma (GG) model, the observation component is a Gamma distribu-
tion having shape parameter α > 0 and a mean value µj; thus, with scale parameter
λj = α/µj,

fobs(x|µj) =
λα
j x

α−1 exp{−λjx}
Γ(α)

for measurements x > 0. Note that the coefficient of variation (CV) in this distribution
is 1/

√
α, taken to be constant across genes j. Matched to this observation component is

a marginal distribution π(µj), which we take to be an inverse Gamma. More specifically,
fixing α, the quantity λj = α/µj has a Gamma distribution with shape parameter α0

and scale parameter ν. Thus, three parameters are involved, θ = (α, α0, ν), and, upon
integration, the key density f0(·) has the form

f0(x1, x2, . . . , xI) = K

(∏I
i=1 xi

)α−1

(
ν +

∑I
i=1 xi

)Iα+α0
, (7)

where

K =
να0 Γ(Iα+ α0)

ΓI(α) Γ(α0)
.

4.2 The Lognormal Normal Model

In the lognormal normal (LNN) model, the gene-specific mean µj is a mean for the
log-transformed measurements, which are presumed to have a normal distribution with
common variance σ2. Like the GG model, LNN also demonstrates a constant CV:√

exp(σ2)− 1 on the raw scale. A conjugate prior for the µj is normal with some
underlying mean µ0 and variance τ 20 . Integrating as in (1), the density f0(·) for an
n-dimensional input becomes Gaussian with mean vector µ

0
= (µ0, µ0, . . . , µ0)

t and
exchangeable covariance matrix

Σn =
(
σ2
)
In +

(
τ0

2
)
Mn,

where In is an n× n identity matrix and Mn is an n× n matrix of ones.
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4.3 The Lognormal Normal with Modified Variance Model

In the lognormal normal with modified variance (LNNMV) model, the log-transformed
measurements are presumed to have a normal distribution with gene-specific mean µj

and gene-specific variance σ2
j . With the same prior for the µj as in the LNN model,

the density f0(·) for an n-dimensional input from gene j becomes Gaussian with mean
vector µ

0
= (µ0, µ0, . . . , µ0)

t and exchangeable covariance matrix

Σn =
(
σ2
j

)
In +

(
τ0

2
)
Mn,

Thus, only two model parameters are involved once the σ2
j ’s are estimated.

In the special case of two conditions, we illustrate how to estimate the σ2
j ’s. We

assume that the prior distribution of σ2
j is the scaled inverse chi-square distribution with

ν0 degrees of freedom and scale parameter σ0 and that µj1 and µj2, the gene-specific
means in condition 1 and 2, are known. Then the posterior distribution of σ2

j is also
the scaled inverse chi-square distribution with n1 +n2 + ν0 degrees of freedom and scale
parameter √

ν0σ2
0 +

∑n1

i=1(xji − µj1)2 +
∑n2

i=1(yji − µj2)2

n1 + n2 + ν0
,

where xji is the log-transformed measurement in condition 1, j indexes gene, i indexes
sample; yji is the log-transformed measurement in condition 2; n1, n2 are the numbers
of samples in condition 1, 2 respectively. By viewing the pooled sample variances

σ̃2
j =

∑n1

i=1(xji − x̄j)
2 +

∑n2

i=1(yji − ȳj)
2

n1 + n2 − 2

as a random sample from the prior distribution of σ2
j , we can get (ν̂0, σ̂

2
0), the estimate

of (ν0, σ2
0) using the method of moments [5]. Then our estimate of σ2

j is

σ̂2
j =

ν̂0σ̂
2
0 +

∑n1

i=1(xji − x̄j)
2 +

∑n2

i=1(yji − ȳj)
2

n1 + n2 + ν̂0 − 2
,

the posterior mean of σ2
j with ν0, σ2

0, µj1 and µj2 substituted by ν̂0, σ̂2
0, x̄j and ȳj, where

x̄j =
1
n1

∑n1

i=1 xji and ȳj =
1
n2

∑n2

i=1 yji.
The GG, LNN and LNNMV models characterize fluctuations in array data using a

small number of parameters. The GG and LNN models both involve the assumption of
a constant CV. The appropriateness of this assumption can be checked. The LNNMV
model relaxes this assumption, allowing for a gene specific variance estimate. Our stud-
ies show little loss in efficiency with the LNNMV model, and we therefore generally
recommend its use over GG or LNN.

5 EBarrays
The EBarrays package can be loaded by
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> library(EBarrays)

The main user visible functions available in EBarrays are:

ebPatterns generates expression patterns
emfit fits the EB model using an EM algorithm
postprob generates posterior probabilities for expression patterns
crit.fun find posterior probability threshold to control FDR
checkCCV diagnostic plot to check for constant coefficient of variation
checkModel generates diagnostic plots to check Gamma or Log-Normal assumption

on observation component
plotMarginal generates predictive marginal distribution from fitted model and

compares with estimated marginal (kernel) density of the data;
available for the GG and LNN models

The form of the parametric model is specified as an argument to emfit, which can be
an object of formal class “ebarraysFamily” . These objects are built into EBarrays for the
GG, LNN and LNNMV models described above. It is possible to create new instances,
using the description given in help("ebarraysFamily-class").

The data can be supplied either as a matrix, or as an “ExpressionSet” object. It is
expected that the data be normalized intensity values, with rows representing genes and
columns representing chips. Furthermore, the data must be on the raw scale (not on a
logarithmic scale). All rows that contain at least one negative value are omitted from
the analysis.

The columns of the data matrix are assumed to be grouped into a few experimental
conditions. The columns (arrays) within a group are assumed to be replicates obtained
under the same experimental conditions, and thus to have the same mean expression
level across arrays for each gene. This information is usually contained in the
“phenoData” from an “ExpressionSet” object.

As an example, consider a hypothetical dataset with I = 10 arrays taken from two
conditions — five arrays in each condition ordered so that the first five columns contain
data from the first condition. In this case, the phenodata can be represented as

1 1 1 1 1 2 2 2 2 2

and there are two, possibly distinct, levels of expression for each gene and two potential
patterns or hypotheses concerning its expression levels: µj1 = µj2 and µj1 ̸= µj2. These
patterns can be denoted by

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2
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representing, in this simple case, equivalent and differential expression for a gene respec-
tively. The choice of admissible patterns is critical in defining the model we try to fit.
EBarrays has a function ebPatterns that can read pattern definitions from an external file
or a character vector that supplies this information in the above notation. For example,

> pattern <- ebPatterns(c("1, 1, 1, 1, 1, 1, 1, 1, 1, 1",
+ "1, 1, 1, 1, 1, 2, 2, 2, 2, 2"))
> pattern

Collection of 2 patterns

Pattern 1 has 1 group
Group 1: 1 2 3 4 5 6 7 8 9 10

Pattern 2 has 2 groups
Group 1: 1 2 3 4 5
Group 2: 6 7 8 9 10

As discussed below, such patterns can be more complicated in general. For experiments
with more than two groups, there can be many more patterns. Zeros can be used in
this notation to identify arrays that are not used in model fitting or analysis, as we
demonstrate below.

6 Case Study
In collaboration with Dr. M.N. Gould’s laboratory in Madison, we have been investi-
gating gene expression patterns of mammary epithelial cells in a rat model of breast
cancer. EBarrays contains part of a dataset from this study (5000 genes in 4 biological
conditions; 10 arrays total) to illustrate the mixture model calculations. For details on
the full data set and analysis, see Kendziorski et al. (2003). The data can be read in by

> data(gould)

The experimental information on this data are as follows: in column order, there is
one sample in condition 1, two samples in condition 2, five samples in condition 3, and
two samples in condition 4:

1 2 2 3 3 3 3 3 4 4

Before we proceed with the analysis, we need to tell EBarrays what patterns of expression
will be considered in the analysis. Recall that 15 patterns are possible. Let us first ignore
conditions 3 and 4 and compare conditions 1 and 2. There are two possible expression
patterns (µCond1 = µCond2 and µCond1 ̸= µCond2). This information can be entered
as character strings, or they could also be read from a patternfile which contains the
following lines:
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1 1 1 0 0 0 0 0 0 0
1 2 2 0 0 0 0 0 0 0

A zero column indicates that the data in that condition are not considered in the analysis.
The patterns are entered as

> pattern <- ebPatterns(c("1,1,1,0,0,0,0,0,0,0","1,2,2,0,0,0,0,0,0,0"))
> pattern

Collection of 2 patterns

Pattern 1 has 1 group
Group 1: 1 2 3

Pattern 2 has 2 groups
Group 1: 1
Group 2: 2 3

An alternative approach would be to define a new data matrix containing intensities
from conditions 1 and 2 only and define the associated patterns.

1 1 1
1 2 2

This may be useful in some cases, but in general we recommend importing the full data
matrix and defining the pattern matrix as a 2× 10 matrix with the last seven columns
set to zero. Doing so facilitates comparisons of results among different analyses since
certain attributes of the data, such as the number of genes that are positive across each
condition, do not change.

The function emfit can be used to fit the GG, LNN or LNNMV model. Posterior
probabilities can then be obtained using postprob. The approach is illustrated below.
Output is shown for 10 iterations.

> gg.em.out <- emfit(gould, family = "GG", hypotheses = pattern,
+ num.iter = 10)
> gg.em.out

EB model fit
Family: GG ( Gamma-Gamma )

Model parameter estimates:

alpha alpha0 nu
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Cluster 1 13.26269 1.107481 43.72966

Estimated mixing proportions:

Pattern.1 Pattern.2
Cluster 1 0.9970199 0.002980101

> gg.post.out <- postprob(gg.em.out, gould)$pattern
> gg.threshold <- crit.fun(gg.post.out[,1], 0.05)
> gg.threshold

[1] 0.9432019

> sum(gg.post.out[,2] > gg.threshold)

[1] 4

> lnn.em.out <- emfit(gould, family = "LNN", hypotheses = pattern,
+ num.iter = 10)
> lnn.em.out

EB model fit
Family: LNN ( Lognormal-Normal )

Model parameter estimates:

mu_0 sigma.2 tao_0.2
Cluster 1 6.733204 0.08110462 1.136083

Estimated mixing proportions:

Pattern.1 Pattern.2
Cluster 1 0.9933189 0.006681117

> lnn.post.out <- postprob(lnn.em.out, gould)$pattern
> lnn.threshold <- crit.fun(lnn.post.out[,1], 0.05)
> lnn.threshold

[1] 0.7707577

> sum(lnn.post.out[,2] > lnn.threshold)

[1] 12
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> lnnmv.em.out <- emfit(gould, family = "LNNMV", hypotheses = pattern,
+ groupid = c(1,2,2,0,0,0,0,0,0,0), num.iter = 10)
> lnnmv.em.out

EB model fit
Family: LNNMV ( Lognormal-Normal with modified variances )

Model parameter estimates:

mu_0 tao_0.2
1 6.735102 1.131062

Estimated mixing proportions:

Pattern.1 Pattern.2
p.temp 0.9929931 0.007006875

> lnnmv.post.out <- postprob(lnnmv.em.out, gould,
+ groupid = c(1,2,2,0,0,0,0,0,0,0))$pattern
> lnnmv.threshold <- crit.fun(lnnmv.post.out[,1], 0.05)
> lnnmv.threshold

[1] 0.7919131

> sum(lnnmv.post.out[,2] > lnnmv.threshold)

[1] 14

> sum(gg.post.out[,2] > gg.threshold & lnn.post.out[,2] > lnn.threshold)

[1] 3

> sum(gg.post.out[,2] > gg.threshold & lnnmv.post.out[,2] > lnnmv.threshold)

[1] 2

> sum(lnn.post.out[,2] > lnn.threshold & lnnmv.post.out[,2] > lnnmv.threshold)

[1] 7

> sum(gg.post.out[,2] > gg.threshold & lnn.post.out[,2] > lnn.threshold
+ & lnnmv.post.out[,2] > lnnmv.threshold)

[1] 2
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The posterior probabilities can be used as described in Newton et al. (2004) to create
a list of genes with a target FDR. Using 0.05 as the target FDR, 3, 12 and 14 genes are
identified as most likely DE via the GG model, the LNN model and the LNNMV model,
respectively. Note that all 3 DE genes identified by the GG model are also identified by
LNN; 2 genes are identified as DE by both GG and LNNMV; 7 genes are identified as DE
by both LNN and LNNMV; and all three methods agrees on 2 genes being DE. Further
diagnostics are required to investigate model fit and to consider the genes identified as
DE by only one or 2 models.

When using the GG or LNN model, the function checkCCV can be used to see if
there is any relationship between the mean expression level and the CV. Another way
to assess the goodness of the parametric model is to look at Gamma or Normal QQ
plots for subsets of the data sharing common empirical mean intensities. For this, we
can choose a small number of locations for the mean value, and look at the QQ plots
for the subset of measured intensities in a small window around each of those locations.
Since the LNNMV model assumes a log-normal observation component, this diagnostic
is suggested when using LNNMV model as well. A third diagnostic consists of plotting
the marginal distributions of each model and comparing with the empirical distribution
to further assess model fit. This diagnostic is designed especially for the GG and LNN
models since their marginal distributions are not gene specific. Finally, checkVarsQQ
and checkVarsMar are two diagnostics used to check the assumption of a scaled inverse
chi-square prior on σ2

j , made in the LNNMV model. checkVarsQQ generates a QQ plot of
the quantiles of gene specific sample variances against the quantiles of the scaled inverse
chi-square distribution with parameters estimated from data. checkVarsMar plots the
density histogram of gene specific sample variances and the density of the scaled inverse
chi-square distribution with parameters estimated from the data.

Figure 1 shows that the assumption of a constant coefficient of variation is reasonable
for the small data set considered here. If necessary, the data could be transformed based
on this cv plot prior to analysis. Figure 2 shows a second diagnostic plot for nine subsets
of nb = 50 genes spanning the range of mean expression. Shown are qq plots against the
best-fitting Gamma distribution. The fit is reasonable here. Note that we only expect
these qq plots to hold for equivalently expressed genes, so some violation is expected in
general. Figures 3 and 4 show the same diagnostics for the LNN model and the LNNMV
model, respectively. A visual comparison between figure 5 and figure 6 suggests that
the LNN model provides a better fit. Finally, figure 7 and figure 8 provide checks for
the assumption of a scaled inverse chi-square prior on gene specific variances. The LNN
model seems most appropriate here. Figure 8 demonstrates that the assumptions of
LNNMV are not satisfied, perhaps due to the small sample size (n = 3) used to estimate
each gene specific variance.
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A nice feature of EBarrays is that comparisons among more than two groups can be
carried out simply by changing the pattern matrix. For the four conditions, there are
15 possible expression patterns; however, for this case study, four were of most interest.
The null pattern (pattern 1) consists of equivalent expression across the four conditions.
The three other patterns allow for differential expression. Differential expression in con-
dition 1 only is specified in pattern 2; DE in condition 4 only is specified in pattern 4.

The pattern matrix for the four group analysis is now given by

1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2
1 2 2 1 1 1 1 1 2 2
1 1 1 1 1 1 1 1 2 2

> pattern4 <- ebPatterns(c("1, 1, 1, 1, 1, 1, 1, 1, 1, 1",
+ "1, 2, 2, 2, 2, 2, 2, 2, 2, 2",
+ "1,2,2,1,1,1,1,1,2,2",
+ "1,1,1,1,1,1,1,1,2,2"))
> pattern4

Collection of 4 patterns

Pattern 1 has 1 group
Group 1: 1 2 3 4 5 6 7 8 9 10

Pattern 2 has 2 groups
Group 1: 1
Group 2: 2 3 4 5 6 7 8 9 10

Pattern 3 has 2 groups
Group 1: 1 4 5 6 7 8
Group 2: 2 3 9 10

Pattern 4 has 2 groups
Group 1: 1 2 3 4 5 6 7 8
Group 2: 9 10

emfit and postprob are called as before.

> gg4.em.out <- emfit(gould, family = "GG", pattern4,
+ num.iter = 10)
> gg4.em.out
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EB model fit
Family: GG ( Gamma-Gamma )

Model parameter estimates:

alpha alpha0 nu
Cluster 1 17.89911 1.077009 30.36874

Estimated mixing proportions:

Pattern.1 Pattern.2 Pattern.3
Cluster 1 0.9780804 0.01864805 0.002403049

Pattern.4
Cluster 1 0.0008684683

> gg4.post.out <- postprob(gg4.em.out, gould)$pattern
> gg4.threshold2 <- crit.fun(1-gg4.post.out[,2], 0.05)
> sum(gg4.post.out[,2] > gg4.threshold2)

[1] 40

> lnn4.em.out <- emfit(gould, family="LNN", pattern4,
+ num.iter = 10)
> lnn4.em.out

EB model fit
Family: LNN ( Lognormal-Normal )

Model parameter estimates:

mu_0 sigma.2 tao_0.2
Cluster 1 6.72002 0.06051488 1.162321

Estimated mixing proportions:

Pattern.1 Pattern.2 Pattern.3
Cluster 1 0.9747794 0.02044394 0.003031844

Pattern.4
Cluster 1 0.001744809

> lnn4.post.out <- postprob(lnn4.em.out, gould)$pattern
> lnn4.threshold2 <- crit.fun(1-lnn4.post.out[,2], 0.05)
> sum(lnn4.post.out[,2] > lnn4.threshold2)
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[1] 45

> lnnmv4.em.out <- emfit(gould, family="LNNMV", pattern4,
+ groupid = c(1,2,2,3,3,3,3,3,4,4), num.iter = 10)
> lnnmv4.em.out

EB model fit
Family: LNNMV ( Lognormal-Normal with modified variances )

Model parameter estimates:

mu_0 tao_0.2
1 6.725249 1.146925

Estimated mixing proportions:

Pattern.1 Pattern.2 Pattern.3
p.temp 0.9619806 0.03731805 0.0001265073

Pattern.4
p.temp 0.0005748571

> lnnmv4.post.out <- postprob(lnnmv4.em.out, gould,
+ groupid = c(1,2,2,3,3,3,3,3,4,4))$pattern
> lnnmv4.threshold2 <- crit.fun(1-lnnmv4.post.out[,2], 0.05)
> sum(lnnmv4.post.out[,2] > lnnmv4.threshold2)

[1] 76

> sum(gg4.post.out[,2] > gg4.threshold2 & lnn4.post.out[,2] > lnn4.threshold2)

[1] 34

> sum(gg4.post.out[,2] > gg4.threshold2 & lnnmv4.post.out[,2] > lnnmv4.threshold2)

[1] 25

> sum(lnn4.post.out[,2] > lnn4.threshold2 & lnnmv4.post.out[,2] > lnnmv4.threshold2)

[1] 29

> sum(gg4.post.out[,2] > gg4.threshold2 & lnn4.post.out[,2] > lnn4.threshold2
+ & lnnmv4.post.out[,2] > lnnmv4.threshold2)

[1] 22
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The component pattern from postprob is now a matrix with number of rows equal to
the number of genes and number of columns equal to 4 (one for each pattern considered).
A brief look at the output matrices shows that 40 genes are identified as being in pattern
2 using 0.05 as the target FDR under the GG model, 45 under the LNN model and 76
under the LNNMV model; 34 of the 40 genes identified by GG are also identified by
LNN. 25 genes are commonly identified by GG and LNNMV. 29 genes are commonly
identified by LNN and LNNMV. 22 genes are identified by all the three models. Figures
9 and 10 show marginal plots similar to Figures 5 and 6. Figure 11 shows a plot similar
to figure 8. Here the violation of assumptions made in the LNNMV model is not as
severe.

7 Appendix: Comparison with the older versions of
EBarrays

Major changes in this version include:

1. A new model LNNMV has been added, as described here.

2. Ordered patterns can be considered. Instead of only considering µj1 ̸= µj2, µj1 >
µj2 and µj1 < µj2 can also be considered in the current version. For details, please
refer to the help page for ebPatterns and Yuan and Kendziorski (2006).

3. Both clustering and DE identification can be done simultaneously by specifying
the number of clusters in emfit. For details, please refer to the help page for emfit
and Yuan and Kendziorski (2006).
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> checkCCV(gould[,1:3])
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Figure 1: Coefficient of variation (CV) as a function of the mean.
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> print(checkModel(gould, gg.em.out, model = "gamma", nb = 50))

Quantiles of fitted Gamma distribution
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Figure 2: Gamma qq plot.
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> print(checkModel(gould, lnn.em.out, model = "lognormal", nb = 50))

Quantiles of Normal N(0,0.081)
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Figure 3: Normal qq plot.
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> print(checkModel(gould, lnnmv.em.out, model = "lnnmv", nb = 50,
+ groupid = c(1,2,2,0,0,0,0,0,0,0)))
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Figure 4: Normal qq plot.
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> print(plotMarginal(gg.em.out, gould))
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Figure 5: Empirical and theoretical marginal densities of log expressions for the Gamma-
Gamma model.
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> print(plotMarginal(lnn.em.out, gould))
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Figure 6: Empirical and theoretical marginal densities of log expressions for the
Lognormal-Normal model
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> print(checkVarsQQ(gould, groupid = c(1,2,2,0,0,0,0,0,0,0)))
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Figure 7: Scaled inverse chi-square qq plot.
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> print(checkVarsMar(gould, groupid = c(1,2,2,0,0,0,0,0,0,0),
+ nint=2000, xlim=c(-0.1, 0.5)))
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Figure 8: Density histogram of gene specific sample variances and the scaled inverse
chi-square density plot (red line).
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> print(plotMarginal(gg4.em.out, data = gould))
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Figure 9: Marginal densities for Gamma-Gamma model
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> print(plotMarginal(lnn4.em.out, data = gould))
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Figure 10: Marginal densities for Lognormal-Normal model
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> print(checkVarsMar(gould, groupid = c(1,2,2,3,3,3,3,3,4,4),
+ nint=2000, xlim=c(-0.1, 0.5)))
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Figure 11: Density histogram of gene specific sample variances and the scaled inverse
chi-square density plot (red line).
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