This document gives an overview of the DNABarcodeCompatibility R package with a brief description of the set of tools that it contains. The package includes six main functions that are briefly described below with examples. These functions allow one to load a list of DNA barcodes (such as the Illumina TruSeq small RNA kits), to filter these barcodes according to distance and nucleotide content criteria, to generate sets of compatible barcode combinations out of the filtered barcode list, and finally to generate an optimized selection of barcode combinations for multiplex sequencing experiments. In particular, the package provides an optimizer function to favour the selection of compatible barcode combinations with least heterogeneity in the frequencies of DNA barcodes, and allows one to keep barcodes that are robust against substitution and insertion/deletion errors, thereby facilitating the demultiplexing step.
The DNABarcodeCompatibility package also contains:
experiment_design() allowing one to perform all steps
in one go.IlluminaIndexesRaw and IlluminaIndexes for running
and testing examples.The package deals with the three existing sequencing-by-synthesis chemistries from Illumina:
library("DNABarcodeCompatibility")# This function is created for the purpose of the documentation 
export_dataset_to_file = 
    function(dataset = DNABarcodeCompatibility::IlluminaIndexesRaw) {
        if ("data.frame" %in% is(dataset)) {
            write.table(dataset,
                        textfile <- tempfile(),
                        row.names = FALSE, col.names = FALSE, quote=FALSE)
            return(textfile)
        } else print(paste("The input dataset isn't a data.frame:",
                            "NOT exported into file"))
    }The function experiment_design() uses a Shannon-entropy maximization approach
to identify a set of compatible barcode combinations in which the frequencies
of occurrences of the various DNA barcodes are as uniform as possible.
The optimization can be performed in the contexts of single and dual barcoding.
It performs either an exhaustive or a random search of compatible DNA-barcode
combinations, depending on the size of the DNA-barcode set used, and on the
number of samples to be multiplexed.
txtfile <- export_dataset_to_file (
    dataset = DNABarcodeCompatibility::IlluminaIndexesRaw
)
experiment_design(file1=txtfile,
                    sample_number=12,
                    mplex_level=3,
                    platform=4)
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##    sample Lane    Id sequence
## 1       1    1 RPI21   GTTTCG
## 2       2    1 RPI30   CACCGG
## 3       3    1 RPI36   CCAACA
## 4       4    2 RPI11   GGCTAC
## 5       5    2 RPI35   CATTTT
## 6       6    2 RPI37   CGGAAT
## 7       7    3 RPI18   GTCCGC
## 8       8    3 RPI25   ACTGAT
## 9       9    3 RPI31   CACGAT
## 10     10    4 RPI27   ATTCCT
## 11     11    4 RPI28   CAAAAG
## 12     12    4 RPI45   TCATTCtxtfile <- export_dataset_to_file (
    dataset = DNABarcodeCompatibility::IlluminaIndexesRaw
)
experiment_design(file1=txtfile,
                    sample_number=12,
                    mplex_level=3,
                    platform=2)
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##    sample Lane    Id sequence
## 1       1    1 RPI01   ATCACG
## 2       2    1 RPI22   CGTACG
## 3       3    1 RPI29   CAACTA
## 4       4    2 RPI36   CCAACA
## 5       5    2 RPI37   CGGAAT
## 6       6    2 RPI44   TATAAT
## 7       7    3 RPI38   CTAGCT
## 8       8    3 RPI39   CTATAC
## 9       9    3 RPI46   TCCCGA
## 10     10    4 RPI12   CTTGTA
## 11     11    4 RPI26   ATGAGC
## 12     12    4 RPI32   CACTCAtxtfile <- export_dataset_to_file (
    dataset = DNABarcodeCompatibility::IlluminaIndexesRaw
)
experiment_design(file1=txtfile,
                    sample_number=12,
                    mplex_level=3,
                    platform=1)
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##    sample Lane    Id sequence
## 1       1    1 RPI01   ATCACG
## 2       2    1 RPI29   CAACTA
## 3       3    1 RPI39   CTATAC
## 4       4    2 RPI26   ATGAGC
## 5       5    2 RPI35   CATTTT
## 6       6    2 RPI42   TAATCG
## 7       7    3 RPI15   ATGTCA
## 8       8    3 RPI44   TATAAT
## 9       9    3 RPI47   TCGAAG
## 10     10    4 RPI30   CACCGG
## 11     11    4 RPI37   CGGAAT
## 12     12    4 RPI45   TCATTCtxtfile <- export_dataset_to_file (
    dataset = DNABarcodeCompatibility::IlluminaIndexesRaw
)
experiment_design(file1=txtfile,
                sample_number=12,
                mplex_level=3,
                platform=4,
                metric = "hamming",
                d = 3)
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##    sample Lane    Id sequence
## 1       1    1 RPI20   GTGGCC
## 2       2    1 RPI28   CAAAAG
## 3       3    1 RPI40   CTCAGA
## 4       4    2 RPI17   GTAGAG
## 5       5    2 RPI26   ATGAGC
## 6       6    2 RPI32   CACTCA
## 7       7    3 RPI04   TGACCA
## 8       8    3 RPI24   GGTAGC
## 9       9    3 RPI35   CATTTT
## 10     10    4 RPI03   TTAGGC
## 11     11    4 RPI22   CGTACG
## 12     12    4 RPI25   ACTGAT# Select the first half of barcodes from the dataset
txtfile1 <- export_dataset_to_file (
    DNABarcodeCompatibility::IlluminaIndexesRaw[1:24,]
)
# Select the second half of barcodes from the dataset
txtfile2 <- export_dataset_to_file (
    DNABarcodeCompatibility::IlluminaIndexesRaw[25:48,]
)
# Get compatibles combinations of least redundant barcodes
experiment_design(file1=txtfile1,
                sample_number=12,
                mplex_level=3,
                platform=4,
                file2=txtfile2)
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##       Id Lane
## 1  RPI05    1
## 2  RPI22    1
## 3  RPI24    1
## 4  RPI06    2
## 5  RPI12    2
## 6  RPI20    2
## 7  RPI02    3
## 8  RPI07    3
## 9  RPI17    3
## 10 RPI01    4
## 11 RPI11    4
## 12 RPI23    4
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##       Id Lane
## 1  RPI27    1
## 2  RPI39    1
## 3  RPI45    1
## 4  RPI29    2
## 5  RPI38    2
## 6  RPI48    2
## 7  RPI32    3
## 8  RPI37    3
## 9  RPI46    3
## 10 RPI34    4
## 11 RPI40    4
## 12 RPI42    4
##       Id Lane sequence
## 1  RPI05    1   ACAGTG
## 2  RPI22    1   CGTACG
## 3  RPI24    1   GGTAGC
## 4  RPI06    2   GCCAAT
## 5  RPI12    2   CTTGTA
## 6  RPI20    2   GTGGCC
## 7  RPI02    3   CGATGT
## 8  RPI07    3   CAGATC
## 9  RPI17    3   GTAGAG
## 10 RPI01    4   ATCACG
## 11 RPI11    4   GGCTAC
## 12 RPI23    4   GAGTGG
##       Id Lane sequence
## 1  RPI27    1   ATTCCT
## 2  RPI39    1   CTATAC
## 3  RPI45    1   TCATTC
## 4  RPI29    2   CAACTA
## 5  RPI38    2   CTAGCT
## 6  RPI48    2   TCGGCA
## 7  RPI32    3   CACTCA
## 8  RPI37    3   CGGAAT
## 9  RPI46    3   TCCCGA
## 10 RPI34    4   CATGGC
## 11 RPI40    4   CTCAGA
## 12 RPI42    4   TAATCG
##    sample Lane   Id1 sequence1   Id2 sequence2
## 1       1    1 RPI05    ACAGTG RPI27    ATTCCT
## 2       2    1 RPI22    CGTACG RPI39    CTATAC
## 3       3    1 RPI24    GGTAGC RPI45    TCATTC
## 4       4    2 RPI06    GCCAAT RPI29    CAACTA
## 5       5    2 RPI12    CTTGTA RPI38    CTAGCT
## 6       6    2 RPI20    GTGGCC RPI48    TCGGCA
## 7       7    3 RPI02    CGATGT RPI32    CACTCA
## 8       8    3 RPI07    CAGATC RPI37    CGGAAT
## 9       9    3 RPI17    GTAGAG RPI46    TCCCGA
## 10     10    4 RPI01    ATCACG RPI34    CATGGC
## 11     11    4 RPI11    GGCTAC RPI40    CTCAGA
## 12     12    4 RPI23    GAGTGG RPI42    TAATCG# Select the first half of barcodes from the dataset
txtfile1 <- export_dataset_to_file (
    DNABarcodeCompatibility::IlluminaIndexesRaw[1:24,]
)
# Select the second half of barcodes from the dataset
txtfile2 <- export_dataset_to_file (
    DNABarcodeCompatibility::IlluminaIndexesRaw[25:48,]
)
# Get compatibles combinations of least redundant barcodes
experiment_design(file1=txtfile1, sample_number=12, mplex_level=3, platform=4,
                    file2=txtfile2, metric="hamming", d=3)
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##       Id Lane
## 1  RPI05    1
## 2  RPI19    1
## 3  RPI24    1
## 4  RPI01    2
## 5  RPI03    2
## 6  RPI07    2
## 7  RPI16    3
## 8  RPI17    3
## 9  RPI18    3
## 10 RPI06    4
## 11 RPI12    4
## 12 RPI15    4
## [1] "Theoretical max entropy: 2.48491"
## [1] "Entropy of the optimized set: 2.48491"
##       Id Lane
## 1  RPI26    1
## 2  RPI44    1
## 3  RPI45    1
## 4  RPI27    2
## 5  RPI31    2
## 6  RPI43    2
## 7  RPI30    3
## 8  RPI39    3
## 9  RPI48    3
## 10 RPI35    4
## 11 RPI40    4
## 12 RPI42    4
##       Id Lane sequence
## 1  RPI05    1   ACAGTG
## 2  RPI19    1   GTGAAA
## 3  RPI24    1   GGTAGC
## 4  RPI01    2   ATCACG
## 5  RPI03    2   TTAGGC
## 6  RPI07    2   CAGATC
## 7  RPI16    3   CCGTCC
## 8  RPI17    3   GTAGAG
## 9  RPI18    3   GTCCGC
## 10 RPI06    4   GCCAAT
## 11 RPI12    4   CTTGTA
## 12 RPI15    4   ATGTCA
##       Id Lane sequence
## 1  RPI26    1   ATGAGC
## 2  RPI44    1   TATAAT
## 3  RPI45    1   TCATTC
## 4  RPI27    2   ATTCCT
## 5  RPI31    2   CACGAT
## 6  RPI43    2   TACAGC
## 7  RPI30    3   CACCGG
## 8  RPI39    3   CTATAC
## 9  RPI48    3   TCGGCA
## 10 RPI35    4   CATTTT
## 11 RPI40    4   CTCAGA
## 12 RPI42    4   TAATCG
##    sample Lane   Id1 sequence1   Id2 sequence2
## 1       1    1 RPI05    ACAGTG RPI26    ATGAGC
## 2       2    1 RPI19    GTGAAA RPI44    TATAAT
## 3       3    1 RPI24    GGTAGC RPI45    TCATTC
## 4       4    2 RPI01    ATCACG RPI27    ATTCCT
## 5       5    2 RPI03    TTAGGC RPI31    CACGAT
## 6       6    2 RPI07    CAGATC RPI43    TACAGC
## 7       7    3 RPI16    CCGTCC RPI30    CACCGG
## 8       8    3 RPI17    GTAGAG RPI39    CTATAC
## 9       9    3 RPI18    GTCCGC RPI48    TCGGCA
## 10     10    4 RPI06    GCCAAT RPI35    CATTTT
## 11     11    4 RPI12    CTTGTA RPI40    CTCAGA
## 12     12    4 RPI15    ATGTCA RPI42    TAATCGThis section guides you through the detailed API of the package with the aim to
help you build your own workflow. The package is designed to be flexible and
should be easily adaptable to most experimental contexts, using the
experiment_design() function as a template, or building your own workflow
from scratch.
The file_loading_and_checking() function loads the file containing the DNA
barcodes set and analyzes its content. In particular, it checks that each
barcode in the set is unique and uniquely identified (removing any repetition
that occurs). It also checks the homogeneity of size of the barcodes,
calculates their GC content and detects the presence of homopolymers of
length >= 3.
file_loading_and_checking(
    file = export_dataset_to_file(
        dataset = DNABarcodeCompatibility::IlluminaIndexesRaw
    )
)
##       Id sequence GC_content homopolymer
## 1  RPI01   ATCACG      50.00       FALSE
## 2  RPI02   CGATGT      50.00       FALSE
## 3  RPI03   TTAGGC      50.00       FALSE
## 4  RPI04   TGACCA      50.00       FALSE
## 5  RPI05   ACAGTG      50.00       FALSE
## 6  RPI06   GCCAAT      50.00       FALSE
## 7  RPI07   CAGATC      50.00       FALSE
## 8  RPI08   ACTTGA      33.33       FALSE
## 9  RPI09   GATCAG      50.00       FALSE
## 10 RPI10   TAGCTT      33.33       FALSE
## 11 RPI11   GGCTAC      66.67       FALSE
## 12 RPI12   CTTGTA      33.33       FALSE
## 13 RPI13   AGTCAA      33.33       FALSE
## 14 RPI14   AGTTCC      50.00       FALSE
## 15 RPI15   ATGTCA      33.33       FALSE
## 16 RPI16   CCGTCC      83.33       FALSE
## 17 RPI17   GTAGAG      50.00       FALSE
## 18 RPI18   GTCCGC      83.33       FALSE
## 19 RPI19   GTGAAA      33.33        TRUE
## 20 RPI20   GTGGCC      83.33       FALSE
## 21 RPI21   GTTTCG      50.00        TRUE
## 22 RPI22   CGTACG      66.67       FALSE
## 23 RPI23   GAGTGG      66.67       FALSE
## 24 RPI24   GGTAGC      66.67       FALSE
## 25 RPI25   ACTGAT      33.33       FALSE
## 26 RPI26   ATGAGC      50.00       FALSE
## 27 RPI27   ATTCCT      33.33       FALSE
## 28 RPI28   CAAAAG      33.33        TRUE
## 29 RPI29   CAACTA      33.33       FALSE
## 30 RPI30   CACCGG      83.33       FALSE
## 31 RPI31   CACGAT      50.00       FALSE
## 32 RPI32   CACTCA      50.00       FALSE
## 33 RPI33   CAGGCG      83.33       FALSE
## 34 RPI34   CATGGC      66.67       FALSE
## 35 RPI35   CATTTT      16.67        TRUE
## 36 RPI36   CCAACA      50.00       FALSE
## 37 RPI37   CGGAAT      50.00       FALSE
## 38 RPI38   CTAGCT      50.00       FALSE
## 39 RPI39   CTATAC      33.33       FALSE
## 40 RPI40   CTCAGA      50.00       FALSE
## 41 RPI41   GACGAC      66.67       FALSE
## 42 RPI42   TAATCG      33.33       FALSE
## 43 RPI43   TACAGC      50.00       FALSE
## 44 RPI44   TATAAT       0.00       FALSE
## 45 RPI45   TCATTC      33.33       FALSE
## 46 RPI46   TCCCGA      66.67        TRUE
## 47 RPI47   TCGAAG      50.00       FALSE
## 48 RPI48   TCGGCA      66.67       FALSEThe total number of combinations depends on the number of available barcodes
and of the multiplex level. For 48 barcodes and a multiplex level of 3, the
total number of combinations (compatible or not) can be calculated using
choose(48,3), which gives 17296 combinations. In many
cases the total number of combinations can become much larger (even gigantic),
and one cannot perform an exhaustive search
(see get_random_combinations() below).
# Total number of combinations
choose(48,2)
## [1] 1128
# Load barcodes
barcodes <- DNABarcodeCompatibility::IlluminaIndexes
# Time for an exhaustive search
system.time(m <- get_all_combinations(index_df = barcodes,
                                    mplex_level = 2,
                                    platform = 4))
##    user  system elapsed 
##   0.321   0.001   0.322
# Each line represents a compatible combination of barcodes
head(m)
##      [,1]    [,2]   
## [1,] "RPI04" "RPI35"
## [2,] "RPI05" "RPI19"
## [3,] "RPI06" "RPI12"
## [4,] "RPI07" "RPI17"
## [5,] "RPI10" "RPI39"
## [6,] "RPI18" "RPI25"# Total number of combinations
choose(48,3)
## [1] 17296
# Load barcodes
barcodes <- DNABarcodeCompatibility::IlluminaIndexes
# Time for an exhaustive search
system.time(m <- get_all_combinations(index_df = barcodes,
                                    mplex_level = 3,
                                    platform = 4))
##    user  system elapsed 
##    6.78    0.03    6.82
# Each line represents a compatible combination of barcodes
head(m)
##      [,1]    [,2]    [,3]   
## [1,] "RPI01" "RPI02" "RPI48"
## [2,] "RPI01" "RPI03" "RPI07"
## [3,] "RPI01" "RPI03" "RPI08"
## [4,] "RPI01" "RPI03" "RPI09"
## [5,] "RPI01" "RPI03" "RPI10"
## [6,] "RPI01" "RPI03" "RPI16"When the total number of combinations is too high, it is recommended to pick combinations at random and then select those that are compatible.
# Total number of combinations
choose(48,3)
## [1] 17296
# Load barcodes
barcodes <- DNABarcodeCompatibility::IlluminaIndexes
# Time for a random search
system.time(m <- get_random_combinations(index_df = barcodes,
                                        mplex_level = 2,
                                        platform = 4))
##    user  system elapsed 
##   0.314   0.014   0.328
# Each line represents a compatible combination of barcodes
head(m)
##      [,1]    [,2]   
## [1,] "RPI04" "RPI35"
## [2,] "RPI05" "RPI19"
## [3,] "RPI07" "RPI17"
## [4,] "RPI18" "RPI33"
## [5,] "RPI18" "RPI25"
## [6,] "RPI20" "RPI30"# Total number of combinations
choose(48,4)
## [1] 194580
# Load barcodes
barcodes <- DNABarcodeCompatibility::IlluminaIndexes
# Time for a random search
system.time(m <- get_random_combinations(index_df = barcodes,
                                        mplex_level = 4,
                                        platform = 4))
##    user  system elapsed 
##   1.205   0.000   1.206
# Each line represents a compatible combination of barcodes
head(m)
##      [,1]    [,2]    [,3]    [,4]   
## [1,] "RPI01" "RPI06" "RPI08" "RPI38"
## [2,] "RPI01" "RPI18" "RPI26" "RPI34"
## [3,] "RPI01" "RPI23" "RPI26" "RPI40"
## [4,] "RPI01" "RPI05" "RPI24" "RPI45"
## [5,] "RPI01" "RPI03" "RPI33" "RPI46"
## [6,] "RPI01" "RPI13" "RPI19" "RPI45"# Total number of combinations
choose(48,6)
## [1] 12271512
# Load barcodes
barcodes <- DNABarcodeCompatibility::IlluminaIndexes
# Time for a random search
system.time(m <- get_random_combinations(index_df = barcodes,
                                        mplex_level = 6,
                                        platform = 4))
##    user  system elapsed 
##   2.029   0.000   2.029
# Each line represents a compatible combination of barcodes
head(m)
##      [,1]    [,2]    [,3]    [,4]    [,5]    [,6]   
## [1,] "RPI01" "RPI10" "RPI13" "RPI15" "RPI20" "RPI28"
## [2,] "RPI01" "RPI09" "RPI29" "RPI30" "RPI46" "RPI48"
## [3,] "RPI01" "RPI12" "RPI21" "RPI31" "RPI43" "RPI45"
## [4,] "RPI01" "RPI15" "RPI16" "RPI24" "RPI35" "RPI37"
## [5,] "RPI01" "RPI14" "RPI21" "RPI29" "RPI36" "RPI46"
## [6,] "RPI01" "RPI08" "RPI14" "RPI40" "RPI43" "RPI47"# Load barcodes
barcodes <- DNABarcodeCompatibility::IlluminaIndexes
# Perform a random search of compatible combinations
m <- get_random_combinations(index_df = barcodes,
                            mplex_level = 3,
                            platform = 4)
# Keep barcodes that are robust against one substitution error
filtered_m <- distance_filter(index_df = barcodes,
                            combinations_m = m,
                            metric = "hamming",
                            d = 3)
# Each line represents a compatible combination of barcodes
head(filtered_m)
##      V1      V2      V3     
## [1,] "RPI01" "RPI08" "RPI17"
## [2,] "RPI01" "RPI26" "RPI48"
## [3,] "RPI01" "RPI12" "RPI46"
## [4,] "RPI01" "RPI03" "RPI07"
## [5,] "RPI01" "RPI20" "RPI35"
## [6,] "RPI01" "RPI22" "RPI45"# Keep set of compatible barcodes that are robust against one substitution
# error
filtered_m <- distance_filter(
    index_df = DNABarcodeCompatibility::IlluminaIndexes,
    combinations_m = get_random_combinations(index_df = barcodes,
                                            mplex_level = 3,
                                            platform = 4),
    metric = "hamming", d = 3)
# Use a Shannon-entropy maximization approach to reduce barcode redundancy
df <- optimize_combinations(combination_m = filtered_m,
                            nb_lane = 12,
                            index_number = 48)
## [1] "Theoretical max entropy: 3.58352"
## [1] "Entropy of the optimized set: 3.58352"
# Each line represents a compatible combination of barcodes and each row a lane
# of the flow cell
df
##       V1      V2      V3     
##  [1,] "RPI04" "RPI35" "RPI42"
##  [2,] "RPI10" "RPI18" "RPI32"
##  [3,] "RPI03" "RPI28" "RPI48"
##  [4,] "RPI14" "RPI23" "RPI36"
##  [5,] "RPI29" "RPI38" "RPI44"
##  [6,] "RPI09" "RPI11" "RPI30"
##  [7,] "RPI01" "RPI24" "RPI31"
##  [8,] "RPI22" "RPI25" "RPI45"
##  [9,] "RPI05" "RPI13" "RPI21"
## [10,] "RPI06" "RPI08" "RPI15"
## [11,] "RPI33" "RPI39" "RPI46"
## [12,] "RPI17" "RPI27" "RPI43"# Keep set of compatible barcodes that are robust against multiple substitution
# and insertion/deletion errors
filtered_m <- distance_filter(
    index_df = DNABarcodeCompatibility::IlluminaIndexes,
    combinations_m = get_random_combinations(index_df = barcodes,
                                            mplex_level = 3,
                                            platform = 4),
    metric = "seqlev", d = 4)
# Use a Shannon-entropy maximization approach to reduce barcode redundancy
df <- optimize_combinations(combination_m = filtered_m,
                            nb_lane = 12,
                            index_number = 48)
## [1] "Theoretical max entropy: 3.58352"
## [1] "Entropy of the optimized set: 2.8613"
# Each line represents a compatible combination of barcodes and each row a
# lane of the flow cell
df
##                  V1      V2      V3     
##                  "RPI16" "RPI21" "RPI29"
## part_combination "RPI03" "RPI19" "RPI30"
##                  "RPI18" "RPI35" "RPI36"
##                  "RPI11" "RPI12" "RPI28"
##                  "RPI04" "RPI28" "RPI35"
##                  "RPI14" "RPI17" "RPI29"
##                  "RPI14" "RPI17" "RPI30"
##                  "RPI18" "RPI33" "RPI44"
##                  "RPI03" "RPI19" "RPI30"
##                  "RPI04" "RPI23" "RPI28"
##                  "RPI01" "RPI24" "RPI35"
##                  "RPI18" "RPI28" "RPI35"