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1 Introduction

Mathematical models are used to understand protein signalling networks so as to provide an integrative view
of pharmacological and toxicological processes at molecular level. CellNOptR [!] is an existing package (see
http://bioconductor.org/packages/release/bioc/html/CellNOptR.html) that provides functionalities
to combine prior knowledge network (about protein signalling networks) and perturbation data to infer
functional characteristics (of the signalling network). While CellNOptR has demonstrated its ability to infer
new functional characteristics, it is based on a boolean formalism where protein species are characterised
as being fully active or inactive. In contrast, the Constraint Fuzy Logic formalism [!] implemented in this
package (called CNORfuzzy) generalises the boolean logic to model quantitative data.

The constrained Fuzzy Logic modelling (also denoted cFL) is fully described in [!]. It was first im-
plemented in a Matlab toolbox CellNOpt (available at http://www.ebi.ac.uk/saezrodriguez/software.
html#CellNetOptimizer). More information about the methods and application of the Matlab pipeline can
be found in references [, 1].

In this document, we show how to use the CNORfuzzy on biological model/data sets. Since CNORfuzzy
and this tutorial use functions from CellNOptR, it is strongly recommended to read the CelINOptR tutorial
before carrying on this tutorial.

*cokelaer@ebi.ac.uk
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2 Installation

CNORfuzzy depends on CellNOptR and its dependencies (bioconductor packages) and nloptr, which can be
installed in R. Tt may take a few minutes to install all dependencies if you start from scratch (i.e, none of
the R packages are installed on your system). Then, you can install CNORfuzzy similarly:

if (!requireNamespace ("BiocManager", quietly=TRUE))
install.packages ("BiocManager")
BiocManager: :install ("CNORfuzzy")

These two packages depends on other R packages (e.g., RBGL, nloptr), which installation should be
smooth. Note, however, that there is also an optional dependency on the Rgraphviz package, whose compi-
lation may be tricky under some systems such as Windows (e.g., if the graphviz library is not installed or
compiler not compatible). Next release of Rgraphviz shoudl fix this issue. Meanwhile, if Rgraphviz cannot
be installed on your sytem, you should still be able to install CellNOptR and CNORfuzzy packages and
to access most of the functionalities of these packages. Note also that under Linux system, some of these
packages necessitate the R-devel package to be installed (e.g., under Fedora type sudo yum install R-devel).

Finally, once CNORfuzzy is installed you can load it by typing:

library (CNORfuzzy)

3  Quick Start

In this section, we will show you how to run the pipeline to optimise a set of model and data and how to get
the optimised model using the constrained fuzzy logic.

As in CellNOptR, there is a function that does most of the job for you, which is called CNORwrapFuzzy.
We will detail this function step by step in the next section but for now, let us see how to obtain an optimised
model in a few steps. First, we need a model and a data set. We will use the same toy model as in CellNOptR:

library (CNORfuzzy)
data(CNOlistToy, package="CellNOptR")
data(ToyModel, package="CellNOptR")

The object ToyModel is a data frame that contains the Prior Knowledge Network (PKN) about the
model. For instance, it contains a list of all reactions (see Table 1). A graphical representation of the model
is shown in Figure 1. See CellNOptR tutorial for more details ['].

1 2 3 4

EGF=Ras TRAF6=p38 p38=Hsp27 !Akt=Mek
EGF=PI3K TRAF6=Jnk PI3K=Akt Mek=p90RSK
TNFa=PI3K TRAF6=NFkB Ras=Raf Mek=Erk
TNFa=TRAF6 Jnk=cJun Raf=Mek Erk=Hsp27

=W N

Table 1: The ToyModel object contains a prior knowledge network with 16 reactions stored in the field
ToyModel$reacID. There are other fields such as namesSpecies or interMat that are used during the analysis.

The object CNOlistToy is a CNOlist object that contains measurements of elements of a prior knowledge
network under different combinations of perturbations of other nodes in the network. A CNOlist comprises
the names of the signals, cues, stimuli and inhibitors and is used to represent the PKN model with colored
nodes as in Figure 1.
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Figure 1: The original PKN model (left panel). The colors indicate the signals (green), readouts (blue) and
inhibitors (red) as described by the data. The dashed white nodes shows species that can be compressed.
The right panel is the compressed and expanded model as used by the analysis (See reference [!] for details).

Note that in CelNOptR version above 1.3.28, a new class called CNOlist is available.

We strongly

recommend to use it since future version of CellNOptR and CNORfuzzy will use this class instead of the list
returned by makeCNOlist. You can easily convert existing CNOlist (like the R data set called CNOlistToy

built with makeCNOlist).

data(CNOlistToy, package="CellNOptR")
CNOlistToy = CNOlist(CNOlistToy)
print (CNOlistToy)

class: CNOlist

cues: EGF TNFa Raf PI3K

inhibitors: Raf PI3K

stimuli: EGF TNFa

timepoints: 0 10

signals: Akt Hsp27 NFkB Erk p90RSK Jnk cJun

variances: Akt Hsp27 NFkB Erk p90RSK Jnk cJun

To see the values of any data contained in this instance, just use the
appropriate getter method (e.g., getCues(cnolist), getSignals(cnolist),

You can also visualise the CNOlist using the plot method (see Figure 2) that will produce a plot with a
subplot for each signal (column) and each condition (row), and an image plot for each condition that contains
the information about which cues are present (last column). See CellNOptR tutorial for more details [!].



# with the old CNOlist (output of makeCNOlist), type
data(CNOlistToy, package="CellNOptR")

plotCNOlist (CNOlistToy)

# with the new version, just type:

CNOlistToy = CNOlist(CNOlistToy)

plot(CNO1istToy)

Next, we set up a list of parameters that are related to (i) the genetic algorithm used in the optimisation
step, (ii) the transfer functions associated to fuzzy logic formalism, (iii) a set of optimisation parameters
related to the fuzzy logic. The list of parameters is also used to store the Data and Model objects. There
is a function that will help you managing all the parameters, which is called defaultParametersFuzzy and is
used as follows:

paramsList = defaultParametersFuzzy(CNOlistToy, ToyModel)
paramsList$popSize = 50

paramsList$maxGens = 50

paramsList$optimisation$maxtime = 30

In the next section, we will show how to set up the parameters more specifically. Here, we reduced the
default values of some parameter to speed up the code and also because the algorithm converges quickly for
this particular example.

Once we have the data, model and parameters, we can optimise the model against the data. This is done
thanks to the function CNORwrapFuzzy. In principle, as we will see later the fuzzy approach requires to run
several optimisations. Therefore, you need to loop over several optimisations before getting the final results.
This is done with the following code:

N=1

allRes = list()

paramsList$verbose=TRUE

for (i in 1:M){
Res = CNORwrapFuzzy(CNOlistToy, ToyModel, paramsList=paramsList)
allRes[[i]] = Res

As you can see, we set N=1 because in the case of the ToyModel a single optimisation suffices. We
provide this sample code that is generic enough to be used with more complex data sets (see next section
for a more complex example).

After each optimisation, the results are saved in a temporary object Res that is appended to a list allRes
that stored all the results. Each variable Res stores the reduced and refined models [!] that are used by the
compileMultiRes function to build up a summary:

summary = compileMultiRes (allRes, show=FALSE)

Note that we set show=FALSE because the resulting plot is meaningless for this example. The next
section shows an example with the option show=TRUFE and describes the resulting plot.

Finally, we produce a plot of our analysis that is similar to the one produce by the plotCNOList function
(left panel in Figure 2), except that the simulated data is overlaid in dashed lines and the background color
indicates the difference between the simulated and experimental data (right panel in Figure 2). The plot is
generated with the following command:



plotMeanFuzzyFit (0.1, summary$allFinalMSEs, allRes,
plotParams=1ist (cmap_scale=0.5, cex=.9, margin=0.3))

[1] "The following species are measured: Akt, Hsp27, NFkB, Erk, p90RSK, Jnk, cJun"
[1] "The following species are stimulated: EGF, TNFa"
[1] "The following species are inhibited: Raf, PI3K"

The next section will explain how to chose the first argument, which is arbitrary set to 0.1 in this example.
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Figure 2: The actual data are plotted with plotCNOlist from the CellNOptR package (left panel). The results
of simulating the data with our best model compared with the actual data are plotted with plotMeanFuzzyFit
(right panel) where the simulated data is overlaid in dashed blue lines and the background indicates the
absolute difference between model and data. The red boxes indicates a missing link as explained in [!]. The
colors convention is as follows: greener=closer to 0 difference, redder=closer to 100% difference. Here the
light pink boxes indicates a difference about 50%.

The results shown in Figure 2 shows a very good agreement between the final model selected by the fuzzy
logic approach and the experimental data except for the case of NFkB specie. It has been found that this is
related to a missing link between NFkB and PI3K species in the PKN model [’]. Yet, the overall results is
better that the one obtained with the boolean approach [/, 7].

4 Detailled example

4.1 The PKN model and data

The CellNOptR package contains a data set that is more realistic, which is part of the network analysed
in [] and comprises 40 species and 58 interactions in the PKN. This network was also used for the signaling
challenge in DREAM4 (see http://www.the-dream-project.org/). The associated data was collected in
hepatocellular carcinoma cell line HepG2 [?]. The prior knowledge network is presented in Figure 3. In
this section, we will proceed to the same analysis as above taking more time to understand how to set the
parameters and chose the proper threshold.


http://www.the-dream-project.org/

library (CNORfuzzy)
data(DreamModel, package="CellNOptR")
data(CNO1istDREAM, package="CellNOptR")
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Figure 3: The left panel shows the original PKN model (DREAM data). Right panel shows the compressed
and expanded model. See caption of Figure 1 for the color code.

4.2 Parameters

As mentioned earlier the ToyModel is a very simple example: the Genetic Algorithm converge quickly even
with small population and only one instance of optimisation suffices to get the optimal model. The DREAM
case is mode complex. We will need a more thorough analysis. First, let us look at the parameters in more
details. The following sample codes shows what are the parameters that a user can change. Let us start
with the Genetic Algorithm parameters.

# Default parameters
paramsList = defaultParametersFuzzy (CNOlistDREAM, DreamModel)
# Some Genetic Algorithm parameters

paramsList$popSize = 50
paramsList$maxTime = 5%60
paramsList$maxGens = 200
paramsList$stallGenMax = 50
paramsList$verbose = FALSE

First, we use set a list of default parameters (line 2). We could keep the default values but to show
how to change them, let us manually set the population size (line 4), the maximum time for a Genetic
Algorithm optimisation (line 5), the maximum number of generation (line 6) and the maximum number
of stall generation (line 7). Note that care must be taken on the lower and upper cases names (a non
homogeneous caps convention is used!).

Next, let us look at the fuzzy logic parameters. There are three types: TypelFuns, Type2Funs and
ReductionThreshold. In the code below, we set the TypelFuns parameters. It contains the parameter of



the Hill transfer functions. It is a matrix of n transfer functions times the 3 parameters g, n and k. The
parameter g is the gain of the transfer function (set to 1). k is the sensitivity parameter which determines the
midpoint of the function. n is the Hill coefficient, which determines the sharpness of the sigmoidal transition
between the high and low output node values (see Figure 6-a for a graphical representation).

# Default Fuzzy Logic Typel parameters (Hill transfer functions)
nrow = 7

paramsList$typelFuns = matrix(data = NaN,nrow=nrow,ncol=3)
paramsList$typelFuns[,1] = 1

paramsList$typelFuns/[,2] c(3, 3, 3, 3, 3, 3, 1.01)
paramsList$typelFuns/[, 3] c(0.2, 0.3, 0.4, 0.55, 0.72,1.03, 68.5098)

Note that the last value of n is set to 1.01 because a Hill coefficient n of 1 is numerically unstable. Note also
that 68.5095 is the maximum k value to be used.

The parameters Type2Funs set transfer functions that connects stimuli to downstream species. They are
used so that these species can be connected with different transfer functions if desired. There is no need
to change these transfer function parameters except for the number of rows by changing nrow to a differnt
value. Note that nrow must be consistent (identical) for the TypelFuns and Type2Funs parameters.

# Default Fuzzy Logic Type2 parameters

nrow = 7

paramsList$type2Funs = matrix(data = NaN,nrow=nrow,ncol=3)
paramsList$type2Funs[,1] = seq(from=0.2, to=0.8, length=nrow)
#paramsList$type2Funs[,1] = ¢(0.2,0.3,0.4,0.5,0.6,0.7,0.8)
paramsList$type2Funs[,2] = 1

paramsList$type2Funs[,3] = 1

ReductionThresh is a list of threshold to be used during the reduction step. This vector is used for
instance in Figure 4 to set the x-axis.

paramsList$redThres = c(0, 0.0001, 0.0005, 0.001, 0.003, 0.005, 0.01)

Finally, you can also set the optimisation parameters used in the refinement step, which affects the
duration of the simulation significantly. As compared to the default parameter, we reduce the maxtime:

paramsList$optimisation$algorithm = "NLOPT_LN_SBPLX"
paramsList$optimisation$xtol_abs = 0.001
paramsList$optimisation$maxeval = 10000
paramsList$optimisation$maxtime = 60%5

See the appendix A for a detailled list of the parameters used in this package.

4.3 Analysis

Once the parameters are set, similarly to Section 2, we perform the analysis using the CNORwrapFuzzy
function. However, this time we set N to a value greater than 1 to use several runs, as recommended in the
general case of complex models.

N = 10
allRes = 1list()
for (i in 1:M){



Res = CNORwrapFuzzy(CNOlistDREAM, DreamModel, paramsList=paramsList,
verbose=TRUE)
allRes[[i]] = Res
}
summary = compileMultiRes(allRes, show=TRUE)
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Figure 4: This plot is produced with compileMultiRes function. The threshold should be chosen before the
mean MSE increases that is around 0.01 in this example. This threshold is used in the final analysis as an
argument to the function plotMeanFuzzyF'it.

Note that the analysis with complex model and as many as 7 transfer functions could be quite long to
compute. An upper time estimation is n X (GAmae1 + Omazr X (L+1)) where g A, 4.7 is the maximum time
spend in the genetic algorithm optimisation (paramsList$mazTime), Opmqrr is the maximum time for the
optimisation in the refinement step (paramsList$optimisation$mazxtime) and L is the number of reduction
threshold (paramsList$red Thres).

The previous sample code calls the function compileMultiRes that combines together the different optimi-
sations inside the variable summary. In addition there is a plot generated (see Figure 4) that helps on chosing
the parameter for the next function (plotMeanFuzzyFit). Indeed, we want to obtain a model that achieves a
minimum MSE while keeping the number of parameters small. A compromise has to be found according to
the value of the Reduction threshold. This is done by looking at Figure 4 and chosing a threshold before the
mean MSE starts to increase significantly. In our example, the reduction threshold should be around 10~2.
Let us plot the results for two different threshold. First, let us use the optimal threshold:

plotMeanFuzzyFit (0.01, summary$allFinalMSEs, allRes)

and second, a threshold that would lead to a model with smaller parameters but with a larger mean
MSE:

plotMeanFuzzyFit (0.5, summary$allFinalMSEs, allRes)

Results are shown in Figure 5. Finally, we can outputs some files using the following command:



writeFuzzyNetwork(0.01, summary$allFinalMSEs, allRes, "output_dream")

This function creates the network resulting from the training a cFL model to data in multiple runs. The
weights of the edges are computed as the mean across models using post refinement threshold to choose
reduced refined model resulting from each run. As with writeNetwork (in CellNOptR), this function maps
back the edges weights from the optimised (expanded and compressed) model to the original model. Note
that the mapping back only works if the path has length 2 at most (i.e., you have nodel-compl-comp2-
node2, where comp refer to nodes that have been compressed). This function saves several files with the tag
output_dream:

1. output_dream _PKN.dot a dot file representing the optimised model. Once processed with the exe-
cutable dot), the results is shown in Figure 7.

2. output_dream nodesPKN.NA store the nature of the nodes (compressed, signals, ...) and can be used
with cytoscape.

3. output_dream_TimesPKN.EA stores the reactions and associated weights to be used in cytoscape

4. output_dream_PKN.sif
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Figure 5: Simulated and experimental fit using a threshold of 0.01 (left panel) and 0.5 (right panel). See
text to decide on how to choose the threshold.
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Figure 7: When calling write FuzzyNetwork, the original model is saved in a new file (.sif file in the left panel)
as well as the optimised model on the data resulting from the analysis that is saved in a .dot file (right panel)
where grey edges means no link. Note that the right panel wrongly labelled some edges in grey (e.g., no link
out of IL1a; this is related to a current issue in the mapback step of the optimised model on the original one,
which should be fixed in a future version). Other files useful to import in CytoScape are also saved. See text

for details.
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A Default parameters

Parameter
name

Type

Default values

Description

Objective Function Parameters

sizeFac positive real

0

Each input to a logic gate is penal-
ized by this amount (i.e., a two-
input AND gate is penalized by
this factor twice). Must be zero
for reliable training.

NAFac positive real

Penalty assigned to nodes that are
not calculable in the simulation.
Nodes might not be calculable be-
cause they oscillate due to a feed
back loop. (value of 1 is the largest
possible error between the simula-
tion and data).

Genetic Algorithm Parameters

PopSize positive integer

50

Number of individuals tested at
each generation.

Pmutation positive real

0.5

probability that one bit/number
in each individual is randomly
changed (at each generation).

MaxTime positive integer

180

stop criteria based on a maximum
amount of time (seconds).

maxGens positive integer

500

stop criteria based on a maximum
number of generations.

StallGenMax positive integer

100

stop criteria based on a constant
objective function for that number
of generations.

SelPress positive real > 1

1.2

If fitness is assigned according to
the rank, this number is used in the
calculation of fitness to increase
the speed of loss of diversity and
thus, convergence.

elitism positive integer

Number of individuals retained for
the successive generation.

RelTol positive real

0.1

All solutions found by the GA
within this fraction of the best so-
lution are returned.

verbose boolean

FALSE

12




Parameter Type Description Default values
name
Fuzzy Parameters
TypelFuns a w X 3 matrix | g=(1,1,1,1,1,1,1), The first column contains the gain
where w is the | n=(3,3,3,3,3,3,1.01), (g), the second the Hill coefficient
number of transfer | k=(0.2,0.3,0.4,0.55,0.72, (n) and the third the sensitivity
functions 1.03,68.5098) parameter (k).

Type2Funs a w X 3 matrix ¢=(0.2,0.3,0.4, transfer functions that GA chooses
0.5,0.6,0.7,0.8), from for relating the stimuli in-
n=(1,1,1,1,1,1), puts to outputs. Same format as
k=(1,1,1,1,1,1,1) TypelFuns.

RedThresh vector of positive | ¢(0, 0.0001, 0.0005, 0.001, | Reductions thresholds used during

real number 0.003,0.005, 0.01) reduction step. If the reduction
threshold is too high (greater than
0.01), empty models may be re-
turned, resulting in a failure of the
reduction and refinement stages

DoRefinement boolean TRUE

Optimisation Refinement Parameters

algorithm string NLOPT_LN_SBPLX optimisation algorithm (nloptr

package)

xtol_abs positive real 0.001 stop criteria based on the absolute

error tolerance

maxeval positive integer 1000 stop criteria based on the maimum

number of evaluations

maxtime positive integer 5%60 stop criteria based on a maximum

amount of time (seconds)
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