
BufferedMatrix: Introduction

Ben Bolstad
bmb@bmbolstad.com

http://bmbolstad.com

October 24, 2025

Contents
1 Introduction 1

2 What is a BufferedMatrix? 2

3 Accessing and Manipulating data stored within a BufferedMatrix 10

4 Functions for summarizing a BufferedMatrix 13

5 Applying your own function to the rows or columns of a BufferedMa-
trix 15

6 Elementwise transformation of BufferedMatrix objects 16

7 Converting between BufferedMatrix and Matrix objects 17

8 BufferedMatrix objects are pass-by reference 17

9 Future Enhancements 19

1 Introduction
This document is intended to introduce the BufferedMatrix package and how it may be
used. It is very important to know that this package provides infrastructure rather than
an analysis methods as most other BioConductor packages do. It is n

¯
ot intended to

be used directly by end-users. Instead it is aimed at developers of other packages. The
main purpose of this package is to provide the BufferedMatrix object. This document will
explain how to use the BufferedMatrix object at the R level. There is also a C language
interface to dealing with BufferedMatrix objects, but that will not be discussed here.

1

http://bmbolstad.com

2 What is a BufferedMatrix?
A BufferedMatrix object stores numerical data in a tabular format, with most of the
data primarily stored outside main memory on the file system. Figure 1 shows that a
BufferedMatrix consists of data values arranged in rows and columns. The BufferedMa-
trix object implemented in this package is optimized for situations where the number of
rows in much larger than the number of columns. The word Buffered is used because
frequently used parts of the BufferedMatrix may be kept in main memory for increased
speed. It is intended that users of the BufferedMatrix will be unaware of what is and is
not in memory. Note that although the word Matrix is part of the name of the object
it does not imply that you may treat a BufferedMatrix object exactly like a Matrix in
all situations. For instance BufferedMatrix objects are passed by reference rather than
by value, are not designed for using with Matrix algebra and can not automatically be
passed to all pre-existing functions that expect ordinary matrices (particularly functions
that use C code). More details about these issues will be discussed a little later in this
document.

But first it is time to explore how to use the package. As with other packages we use
library to load the package.

> library(BufferedMatrix)

To create a BufferedMatrix we use the createBufferedMatrix function. This function
takes up to six arguments, but only the first one must be provided. To start with use:

> X <- createBufferedMatrix(10000)

to create a BufferedMatrix with 10000 rows and 0 columns. Notice how only the number
of rows must be supplied when creating a BufferedMatrix . This is because BufferedMa-
trix objects fix the number of Rows they store, but allow you to dynamically add columns
when needed. It is not possible however to remove columns from a BufferedMatrix. Just
like all R objects typing the name of the object will show you some basic information
(or the contents) of the object. In this case

> X

BufferedMatrix object
Matrix size: 10000 0
Buffer size: 1 1
Directory: /tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes
Prefix: BM
Mode: Col mode
Read Only: FALSE
Memory usage : 161 bytes.
Disk usage : 0 bytes.

2

A data value stored in
the matrix

A BufferedMatrix
object

Figure 1: A BufferedMatrix stores data values in tabular format. In the figures the
dashed lines means that the data is stored outside main memory on the filesystem

3

Notice that basic summary information about the matrix is displayed in this case. We
will discuss what this information means a little later. We could use the AddColumn
function to add columns to our matrix like this

> AddColumn(X)

BufferedMatrix object
Matrix size: 10000 1
Buffer size: 1 1
Directory: /tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes
Prefix: BM
Mode: Col mode
Read Only: FALSE
Memory usage : 78.4 Kilobytes.
Disk usage : 78.1 Kilobytes.

> AddColumn(X)

BufferedMatrix object
Matrix size: 10000 2
Buffer size: 1 1
Directory: /tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes
Prefix: BM
Mode: Col mode
Read Only: FALSE
Memory usage : 78.5 Kilobytes.
Disk usage : 156.2 Kilobytes.

> X

BufferedMatrix object
Matrix size: 10000 2
Buffer size: 1 1
Directory: /tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes
Prefix: BM
Mode: Col mode
Read Only: FALSE
Memory usage : 78.5 Kilobytes.
Disk usage : 156.2 Kilobytes.

Of course it might have been more convinent just to instantiate our BufferedMa-
trix object from the beginning as having 10000 rows and 2 columns. This would be
acomplished using

4

> X <- createBufferedMatrix(10000,2)

Of course BufferedMatrix objects use buffers to temporarily store some of its contents
in main memory, rather than on the filesystem. There are two types of buffering provided
by BufferedMatrix objects. This are ColMode and RowMode. The default mode when
you create a BufferedMatrix is to be in ColMode. Figure 2 demonstrates the situation
in ColMode. Specifically, the entire contents of a given number of columns are stored
completely in RAM, with the rest of the data remaining on the file system. There is no
requirement that these columns be contiguous. When most of your operations are to be
done in a column-wise manner it is more efficient to be in ColMode.

Column Buffered
data

Figure 2: Column Buffers hold selected columns in RAM. This speeds up access to data.
Column Buffers are always active

The other main buffering mode is RowMode. Figure 3 illustrates the situation when
in RowMode. Note that when in row mode a block of contiguous rows across all columns
of the BufferedMatrix is kept in main memory. RowMode is designed for situations where
you need to access a fixed set of closely spaced rows of the matrix. Note that RowMode

5

is considered a secondary buffering mode and that the column buffers are also present
when in this mode.

Column Buffered
data

Row Buffered
data

Figure 3: Row Buffers hold a selected contiguous block of rows in RAM. Row Buffers
exist only when the BufferedMatrix is in RowMode.

As previously mentioned before, all BufferedMatrix objects start in ColMode. To
switch to RowMode you can use the RowMode function like this:

> RowMode(X)

<pointer: 0x5b5e9e8b2bd0>

To switch back to ColMode use

> ColMode(X)

<pointer: 0x5b5e9e8b2bd0>

6

When you create the BufferedMatrix you can control the size of these Buffers in
terms of number of columns or number of rows. In particular, suppose we wanted a
10000 by 5 matrix with 1 column buffered and 500 rows buffered when in row mode,
this could be done by

> X <- createBufferedMatrix(10000,5,bufferrows=500,buffercols=1)

You can also use set.buffer.dim function to set or change these after the matrix has
been create. For instance to change it to 2 columns buffered and 100 rows use:

> set.buffer.dim(X,100,2)

<pointer: 0x5b5ea079cd80>

There are two additional arguments to createBufferedMatrix. The first is prefix
which is a string that will be used to start each temporary file name used for the filesys-
tem storage of the BufferedMatrix , by default this is "BM". The second is directory
which specifies where these temporary files are to be stored. By default this directory is
the current working directory.

There are several functions to get this, and additional, information about an already
created BufferedMatrix .

> memory.usage(X)

[1] 160619

> disk.usage(X)

[1] 4e+05

> nrow(X)

[1] 10000

> ncol(X)

[1] 5

> dim(X)

[1] 10000 5

> buffer.dim(X)

[1] 100 2

7

> prefix(X)

[1] "BM"

> directory(X)

[1] "/tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes"

> is.RowMode(X)

[1] FALSE

> is.ColMode(X)

[1] TRUE

There is one other important mode that you may switch a BufferedMatrix in and
out of. This is ReadOnly mode. What this means is that you can access data values
stored in the matrix but you can not change them. This provides speed-up in some
situations because the current buffer does not need to be flushed out to the filesystem
when an attempt is made to access a value currently not stored in the buffer. The
function ReadOnlyMode is used to toggle between the two states.

> ReadOnlyMode(X)

<pointer: 0x5b5ea079cd80>

> is.ReadOnlyMode(X)

[1] TRUE

> ReadOnlyMode(X)

<pointer: 0x5b5ea079cd80>

> is.ReadOnlyMode(X)

[1] FALSE

8

An R matrix object
keep in main memory

Figure 4: Subsetting operators pull data out of the BufferedMatrix object and into R
matrix objects or vice versa.

9

3 Accessing and Manipulating data stored within a
BufferedMatrix

Data is accessed from BufferedMatrix objects using similar indexing procedures to those
you would use with a standard matrix object. In particular you can use the [aind
[<- operators to see or replace data in an Buffered Matrix. Figure 4 demonstrates how
indexing and assigment operations are set up to occur with BufferedMatrix objects.
Specifically, when you index part of the BufferedMatrix an ordinary R matrix is created
and the the data requested copied from the BufferedMatrix. This matrix is then no
longer linked to the data in the BufferedMatrix.

For example

> X <- createBufferedMatrix(20,2)
> X[1:20,] <- 1:40
> B <- X[1:5,]
> B

[,1] [,2]
[1,] 1 21
[2,] 2 22
[3,] 3 23
[4,] 4 24
[5,] 5 25

> B[1:2,] <- B[1:2,]^2
> B

[,1] [,2]
[1,] 1 441
[2,] 4 484
[3,] 3 23
[4,] 4 24
[5,] 5 25

> X[1:5,]

[,1] [,2]
[1,] 1 21
[2,] 2 22
[3,] 3 23
[4,] 4 24
[5,] 5 25

10

Similarly, assignments using the indexing operators copy the data from the R matrix
or vector into the specified location of the BufferedMatrix .

> X[1:5,] <- B
> X[1:5,]

[,1] [,2]
[1,] 1 441
[2,] 4 484
[3,] 3 23
[4,] 4 24
[5,] 5 25

As with ordinary R matrix objects we may have column or row name indices. For
example:

> rownames(X)

NULL

> colnames(X)

NULL

> rownames(X) <- letters[1:20]
> colnames(X) <- month.abb[1:2]

and these can be used interchangably with numerical indexing values.

> X[c("a","b"),"Jan"]

Jan
a 1
b 4

> X["t",2] <- 0

BufferedMatrix objects also support logical indexing. eg

> X[rep(c(TRUE,FALSE),10),1]

Jan
a 1
c 3
e 5
g 7

11

i 9
k 11
m 13
o 15
q 17
s 19

Sometimes it might be useful to create another BufferedMatrix out of an existing
one. For this purpose the subBufferedMatrix command may be used. This function
operates in a similar manner to indexing operators, but instead of copying the data into
an R matrix another BufferedMatrix is produced. Figure 5 illustates this procedure.

A Buffered Matrix
made by using
subBufferedMatrix

Figure 5: Using subBufferedMatrix creates a new BufferedMatrix containing a subset of
the data stored in the BufferedMatrix

> Y <- subBufferedMatrix(X,1:5,1:2)
> Y

12

BufferedMatrix object
Matrix size: 5 2
Buffer size: 1 1
Directory: /tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes
Prefix: BM
Mode: Col mode
Read Only: FALSE
Memory usage : 387 bytes.
Disk usage : 80 bytes.

4 Functions for summarizing a BufferedMatrix
Sometimes it is useful to generate summary statistic values from a BufferedMatrix object.
While it would be possible to do this by writing your own code using loops and indexing
a number of more optimized functions have been provided for this purpose. These
functions concentrate on getting the maximum, minimum, means, variances and so
forth. The try to minimize buffer misses as much as possible.

> X <- createBufferedMatrix(10,3)
> X[1:10,] <- (1:30)^2
> Max(X)

[1] 900

> Min(X)

[1] 1

> mean(X)

[1] 315.1667

> Sum(X)

[1] 9455

> Var(X)

[1] 79106.83

> Sd(X)

[1] 281.2594

13

It may also be useful to get these values for each column or each row.

> rowMeans(X)

[1] 187.6667 210.6667 235.6667 262.6667 291.6667 322.6667 355.6667 390.6667
[9] 427.6667 466.6667

> colMeans(X)

[1] 38.5 248.5 658.5

> rowSums(X)

[1] 563 632 707 788 875 968 1067 1172 1283 1400

> colSums(X)

[1] 385 2485 6585

> rowVars(X)

[1] 51733.33 60933.33 70933.33 81733.33 93333.33 105733.33 118933.33
[8] 132933.33 147733.33 163333.33

> colVars(X)

[1] 1167.833 8867.833 23901.167

> rowSd(X)

[1] 227.4496 246.8468 266.3331 285.8904 305.5050 325.1666 344.8671 364.6002
[9] 384.3609 404.1452

> colSd(X)

[1] 34.17358 94.16917 154.60002

> rowMax(X)

[1] 441 484 529 576 625 676 729 784 841 900

> colMax(X)

[1] 100 400 900

> rowMin(X)

[1] 1 4 9 16 25 36 49 64 81 100

> colMin(X)

[1] 1 121 441

14

5 Applying your own function to the rows or columns
of a BufferedMatrix

While many useful functions are provided for carrying out row-wise or column-wise
operations, you may want to use your own function to do a different summarization.
This may be done using the rowApply and colApply functions. For example suppose you
wanted to write a function which computed the sum of the cube roots of the elements
of a column. This would be done like this:

> sum.cube.root <- function(x){
+ sum(x^(1/3))
+ }
> colApply(X,sum.cube.root)

[1] 30.04092 61.92514 86.51216

these functions may also take additional arguments

> sum.arbitrary.power <- function(x,power=2){
+ sum(x^power)
+ }
> rowApply(X,sum.arbitrary.power,power=3)

[1] 87537683 116365952 152863427 198636608 255546875 325739648 411675707
[8] 516164672 642400643 794000000

Note that if your BufferedMatrix is large and you are not in RowMode, with a
sufficiently sized row buffer, then calls to rowApply will be very slow.

It is also possible to use a function which returns more than one item. In this case,
rather than returning a vector another BufferedMatrix will be returned.

> Y <- colApply(X,sort,decreasing=TRUE)
> is(Y,"BufferedMatrix")

[1] TRUE

Note that colApply and rowApply assume that your function returns a fixed length
vector.

15

6 Elementwise transformation of BufferedMatrix ob-
jects

In some situations it might be useful to transform each element of your BufferedMatrix .
For instance log or exponential transformations, square roots or arbitrary powers. Un-
like when you ordinarily apply these functions to an R matrix, when you apply these
function to BufferedMatrix objects, the object is not copied before being transformed.
In otherwords these functions do not leave the BuffferedMatrix untouched.

> exp(X)

<pointer: 0x5b5e9e50b440>

> log(X)

<pointer: 0x5b5e9e50b440>

> sqrt(X)

<pointer: 0x5b5e9e50b440>

> pow(X,2.0)

If you have a customized function that you want to apply in an element-wise fashion
you can use the ewApply function. Note that the function you supply must return only a
single value when it is given an argument of length 1 and must return a vector of length
n if given a vector of length n. It is best that you design your input function to operate
in a vectorized manner.

> my.function <- function(x){
+ x^2 +3*abs(x) - 9
+ }
> ewApply(X, my.function)

BufferedMatrix object
Matrix size: 10 3
Buffer size: 1 1
Directory: /tmp/Rtmp468WGe/Rbuild282be916cfd1cc/BufferedMatrix/vignettes
Prefix: BM
Mode: Col mode
Read Only: FALSE
Memory usage : 514 bytes.
Disk usage : 240 bytes.

16

7 Converting between BufferedMatrix and Matrix ob-
jects

It is possible to convert a BufferedMatrix into a matrix and vice versa. But in most
cases you will not want to do this because your BufferedMatrix may be too large to keep
completely in the RAM available to R.

To convert a BufferedMatrix to a Matrix use:

> Z <- as(X,"matrix")
> class(Z)

[1] "matrix" "array"

To make a Matrix become a BufferedMatrix use:

> A <- as(Z,"BufferedMatrix")
> class(A)

[1] "BufferedMatrix"
attr(,"package")
[1] "BufferedMatrix"

8 BufferedMatrix objects are pass-by reference
As previously mentioned when you pass an BufferedMatrix to a function you are passing
it by reference. This means that if the function operates on the BufferedMatrix using a
function that can change values stored within the BufferedMatrix then it is changed in
the calling environment. This differs from the behaviour of a normal R matrix.

> X <- createBufferedMatrix(50,10)
> X[1:50,] <- 1:500
> Y <- as(X,"matrix")
> my.function <- function(a.matrix){
+ a.matrix[,1:10] <- a.matrix[,sample(1:10,10)]
+ }
> X[1:5,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 51 101 151 201 251 301 351 401 451
[2,] 2 52 102 152 202 252 302 352 402 452
[3,] 3 53 103 153 203 253 303 353 403 453
[4,] 4 54 104 154 204 254 304 354 404 454
[5,] 5 55 105 155 205 255 305 355 405 455

17

> my.function(X)
> X[1:5,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 51 1 451 401 101 201 301 151 351 251
[2,] 52 2 452 402 102 202 302 152 352 252
[3,] 53 3 453 403 103 203 303 153 353 253
[4,] 54 4 454 404 104 204 304 154 354 254
[5,] 55 5 455 405 105 205 305 155 355 255

> Y[1:5,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 51 101 151 201 251 301 351 401 451
[2,] 2 52 102 152 202 252 302 352 402 452
[3,] 3 53 103 153 203 253 303 353 403 453
[4,] 4 54 104 154 204 254 304 354 404 454
[5,] 5 55 105 155 205 255 305 355 405 455

> my.function(Y)
> Y[1:5,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 51 101 151 201 251 301 351 401 451
[2,] 2 52 102 152 202 252 302 352 402 452
[3,] 3 53 103 153 203 253 303 353 403 453
[4,] 4 54 104 154 204 254 304 354 404 454
[5,] 5 55 105 155 205 255 305 355 405 455

There is one exception to the pass-by reference rule, column and row names are passed
by value, meaning that modifications to dimension names within a calling function have
no effect on the dimension names in the calling environment. However, this may be
changed in future releases so you should not rely on this behaviour.

In situations where you want to simulate call by value you can use the duplicate
function. This will make a copy of the BufferedMatrix .

> X <- createBufferedMatrix(50,10)
> X[1:50,] <- 1:500
> my.function <- function(my.bufmat){
+ internal.bufmat <- duplicate(my.bufmat)
+ internal.bufmat[,1:10] <- internal.bufmat[,sample(1:10,10)]
+ }
> X[1:5,]

18

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 51 101 151 201 251 301 351 401 451
[2,] 2 52 102 152 202 252 302 352 402 452
[3,] 3 53 103 153 203 253 303 353 403 453
[4,] 4 54 104 154 204 254 304 354 404 454
[5,] 5 55 105 155 205 255 305 355 405 455

> my.function(X)
> X[1:5,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 51 101 151 201 251 301 351 401 451
[2,] 2 52 102 152 202 252 302 352 402 452
[3,] 3 53 103 153 203 253 303 353 403 453
[4,] 4 54 104 154 204 254 304 354 404 454
[5,] 5 55 105 155 205 255 305 355 405 455

Table 1 summarizes which functions modify and those don’t modify BufferedMatrix
objects.

9 Future Enhancements
Currently BufferedMatrix objects can not properly serialized. That means you can not
save and reload a BufferedMatrix between R sessions. This is an issue to be addressed
in a future release of the BufferedMatrix package.

19

Functions that do not Functions that do
modify data stored in modify data stored in
BufferedMatrix objects BufferedMatrix objects
[[<-
Max exp
Min log
mean sqrt
Sum pow
Var ewApply
Sd RowMode
rowMeans ColMode
colMeans ReadOnlyMode
rowSums AddColumn
colSums
rowVars
colVars
rowSd
colSd
rowMax
colMax
rowMin
colMin
colApply
rowApply
duplicate
as
ncol
nrow
is.ColMode
is.RowMode
set.buffer.dim
prefix
directory
filenames
subBufferedMatrix
is.ReadOnlyMode
memory.usage
disk.usage

Table 1: A breakdown of functions that do and do not modify data stored in or how it
is stored in BufferedMatrix objects.

20

	Introduction
	What is a BufferedMatrix?
	Accessing and Manipulating data stored within a BufferedMatrix
	Functions for summarizing a BufferedMatrix
	Applying your own function to the rows or columns of a BufferedMatrix
	Elementwise transformation of BufferedMatrix objects
	Converting between BufferedMatrix and Matrix objects
	BufferedMatrix objects are pass-by reference
	Future Enhancements

