Package ‘wpm’

October 24, 2025

Type Package
Title Well Plate Maker
Version 1.19.0

Description The Well-Plate Maker (WPM) is a shiny application deployed as an R
package. Functions for a command-line/script use are also available. The WPM
allows users to generate well plate maps to carry out their experiments
while improving the handling of batch effects. In particular, it helps
controlling the ™ " plate effect” thanks to its ability to randomize samples
over multiple well plates. The algorithm for placing the samples is inspired
by the backtracking algorithm: the samples are placed at random while
respecting specific spatial constraints.

License Artistic-2.0

biocViews GUI, Proteomics, MassSpectrometry, BatchEffect,
ExperimentalDesign

Depends R (>=4.1.0)

Imports utils, methods, cli, Biobase, SummarizedExperiment, config,
golem, shiny, DT, ggplot2, dplyr, rlang, stringr,
shinydashboard, shinyWidgets, shinycustomloader, RColorBrewer,
logging

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

Suggests MSnbase, testthat, BiocStyle, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

URL https://github.com/HelBor/wpm,
https://bioconductor.org/packages/release/bioc/html/wpm.html

BugReports https://github.com/HelBor/wpm/issues
git_url https://git.bioconductor.org/packages/wpm
git_branch devel

https://github.com/HelBor/wpm
https://bioconductor.org/packages/release/bioc/html/wpm.html
https://github.com/HelBor/wpm/issues

backtracking

git_last_commit f8ef076
git_last_commit_date 2025-04-15

Repository Bioconductor 3.23
Date/Publication 2025-10-24

Author Helene Borges [aut, cre],

Thomas Burger [aut]

Maintainer Helene Borges <borges.helene.sophie@gmail.com>

Contents
backtracking L e e 2
balancedGrpDistrib e 3
checkConstraints e e e e e e e e 4
checkWpmlnputs 5
convertCSV L e 5
convertESet 6
convertSE L e e 7
convertVector2Df L. e 8
data_test L e e 8
defineBufferCoords L 9
drawMap e e e 10
findNEWSneighbors 11
findNSneighbors 11
findWEneighbors 12
generateMap e e e e e e e 12
joinDataframes 13
randomWalk e 14
resampleo L e 15
solveCell e 15
WPIM & o v o e 16
wrappetWPM . . . L e 16

Index 18

backtracking Backtracking Function
Description

Function used to launch the backtracking algorithm on a dataframe with the corresponding plate
parameters, number of iterations and special wells

balancedGrpDistrib 3

Usage
backtracking(
max_iter = 20,
user_data,
wells,
rows,
columns,
nb_plates,
constraint,
prog = NULL
)
Arguments
max_iter numeric, the maximal number of iterations to do, default value is 20
user_data dataframe, user samples to place randomly on the plate
wells dataframe, special wells not to be placed randomly on the plate
rows numeric, number of lines on the plate(s)
columns numeric, number of columns on the plate(s)
nb_plates numeric, number of plates
constraint character, spatial mode
prog progress bar used for shiny app only
Value

a dataframe containing user samples and special wells with their coordinates for the corresponding
plates.

balancedGrpDistrib Makes a balanced distribution of the elements between several plates.

Description

This function makes it possible to distribute the samples equitably on several plates, taking into
account the numbers in the groups (if there are any). This means that, for example, if 2 plates are
to be filled, then 50 generally, all the plates are assigned the same number of elements. When the
numbers do not allow it (in particular when the total number of elements to be allocated is not a
multiple of the number of plates), there will be a slight difference in the number of samples on the
plates.

Usage

balancedGrpDistrib(d, nb_p, df_max_size)

4 checkConstraints

Arguments

d the user dataframe

nb_p the number of plates to fill

df _max_size the maximum number of samples that can be placed on the current plate
Value

a list of dataframes each corresponding to a plate to fill.

checkConstraints Check for spatial constraints

Description

Finds the neighbors of the current element (row, col) in the matrix m, depending on the chosen
constraint pattern. Currently, there are only 3 valid patterns (NS, WE and NEWS)

Usage

checkConstraints(m, row, col, mode)

Arguments
m matrix
row current selected row in the matrix m
col current selected column in the matrix m
mode spatial constraint

Value

A vector containing the neighbors of element (row,col) of the matrix m.

checkWpmlnputs 5

checkWpmInputs Check the inputs for the wrapper function

Description

Checks if all the inputs given to the function WrapperWPM are correct and intercompatible.

Usage

checkWpmInputs(
user_df,
plate_dims,
nb_plates,
spatial_constraint,
max_iteration

)

Arguments
user_df expected dataframe, returns adapted message error
plate_dims expected list of plate dimensions (rows and columns)
nb_plates expected number of plates

spatial_constraint
expected character for spatial constraint

max_iteration expected number of iterations

Value

returns an error message if a problem is found with some parameter.

convertCsV Convert a CSV File into a valid dataframe for WPM

Description

This function converts a CSV into a dataframe to make it usable by the shiny application of wpm
as well as by the wrapper function (version of wpm in command line). Be sure that the first column
of the CSV file corresponds to samples names.

Usage

convertCSV(dt_path, row_names = FALSE, gp_field = NULL, ...)

6 convertESet

Arguments
dt_path file path.
row_names logical value, indicates if the file has rownames or not.
gp_field the column name indicating the grouping factor for the samples in the csv. If
there is no grouping factor, then gp_field must be set to NULL or "none".
parameters to give to read.csv2 function
Value

a list containing a dataframe containing the data of the imported CSV and a dataframe containing
3 fields (Sample, Group and ID) which will be used by WPM. Or NULL if there is an error when
giving wrong parameters.

Examples

test <- data.frame("Sample" = c("s1","s2","s3","s4"),
"Group” = c("A","A","B", "C"))

tf <- tempfile()

write.csv2(test, tf, row.names = FALSE)

convertCSV(tf, gp_field = "Group", header = TRUE, sep = ";")

if there are row names in the CSV file
write.csv2(test, tf)

convertCSV(tf, row_names = TRUE, gp_field="Group"”, header = TRUE, sep = ";")

if there is no grouping factor in the CSV file

convertCSV(tf, row_names = TRUE, gp_field ="none", header = TRUE, sep = ";")

gives the same output as the previous example

convertCSV(tf, row_names = TRUE, header = TRUE, sep = ";")

convertESet Convert the phenotype data of an ExpressionSet or MsnSet into a
dataframe for WPM
Description

This function converts an ExpressionSet/MsnSet object into a dataframe to make it usable by the
shiny application of wpm as well as by the wrapper function (version of wpm in command line)

Usage
convertESet(eSet_obj, gp_field = NULL)

Arguments
eSet_obj an ExpressionSet/MsnSet object contaning the phenotype data
gp_field character, corresponding to the phenotype data used to categorize samples into

distinct groups if any

convertSE 7

Value

a dataframe containing 3 fields: Sample, Group and ID.

Examples

sample_names <- c("s1","s2","s3","s4", "s5")
M <- matrix(NA, nrow = 4, ncol = 5)
colnames(M) <- sample_names
rownames (M) <- paste@("id"”, LETTERS[1:4])
pd <- data.frame(Environment = rep_len(LETTERS[1:3], 5),
Category = rep_len(1:2, 5), row.names = sample_names)
rownames (pd) <- colnames(M)
X <- MSnbase::MSnSet(exprs = M,pData = pd)
convertESet(x, "Environment"”)

convertSE Convert the phenotype data of a SummarizedExperiment into a
dataframe for WPM

Description

Convert the phenotype data of a SummarizedExperiment into a dataframe for WPM

Usage
convertSE(se_object, gp_field = NULL)

Arguments
se_object a SummarizedExperiment object containing the phenotype data
gp_field character, corresponding to the phenotype data used to categorize samples into
distinct groups if any
Value

a dataframe containing 3 fields: Sample, Group and ID.

Examples

nrows <- 200
ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
colData <- data.frame(Treatment=rep(c("ChIP", "Input"”), 3),
row.names=LETTERS[1:6])
se <- SummarizedExperiment: :SummarizedExperiment(assays=list(counts=counts), colData=colData)
convertSE(se, "Treatment"”)

8 data_test

convertVector2Df Convert a vector of plate coordinates into a dataframe

Description

Function converting the format of "Letter-Digit" coordinates into a dataframe containing these co-
ordinates in Row, Column.

Usage

convertVector2Df (chr_wells, max_Row, max_Col, status = NA)

Arguments
chr_wells character string containing the wells
max_Row integer, maximal number of lines in the plate
max_Col integer, maximal number of columns in the plate
status character, the status of the wells

Value

result, dataframe containing wells coordinates

Examples

convert the vector of well coordinates into a dataframe
convertVector2Df ("A1,C2,A3,B12,C42",3,42,"specify_status")

supports uppercase / lowercase letters
convertVector2Df("a1,C2,A3,b12,C42",3,42,"specify_status")

data_test Fictitious clinical data for demonstration.

Description

A demo dataset containing the age and other attributes of 193 fictitious patients. It aims to help the
user to test the shiny application of the wpm package.

Usage

data(data_test)

defineBufferCoords 9

Format

A data frame with 193 rows and 7 variables

samples the samples to be analyzed representing fictitious patients.
age age of the patients under 5 age groups, in years (20-30;30-40;40-50;50-60;60-70)
gender gender of the patients, F (for Female) and M (for Male)

treatment the treatment each patient received, Ctrl (Control), treatment A, treatment B and treat-
ment C

diabetes presence of diabetes, O (no) and 1 (yes)
gender-treatment A combination between the gender and treatment fields

age-diabetes A combination between the age and the diabetes fields

Author(s)

Helene Borges <borges.helene.sophie@gmail.com>

defineBufferCoords Determines buffer wells coordinates on a plate

Description

function to place the buffer solutions on the plate according to the selected mode: it generates a
dataframe containing the row and column coordinates for each buffer solution.

Usage

defineBufferCoords(p_lines, p_cols, mod = "none"”, start_buffer)
Arguments

p_lines number of rows on the plate

p_cols number of columns on the plate

mod character, can be "none", "by_column", "by_row" or "checkerboard"

start_buffer character, "even" means that the buffers will be positioned on the even rows of
the plate. Otherwise, they will be positioned on the odd rows.

Value

a dataframe containing the buffer wells with their coordinates.

10 drawMap

drawMap Generate a ggplot object of a plate plan

Description
Function to plot the input dataframe containing the Sample names, the Row, Column coordinates,
the group and the status

Usage

drawMap(df, sample_gps, gp_levels, plate_lines, plate_cols, project_title)

Arguments
df dataframe containing user data and special wells if any.
sample_gps number of distinct groups in the file before adding the special wells to df
gp_levels is Group column levels before adding the special wells to df
plate_lines integer, number of plate’s lines
plate_cols integer, number of plate’s columns

project_title character, the user’s project title

Value

g, a ggplot object corresponding to the generated plate map.

Examples

example of data containing 5 biological samples, 2 forbidden wells,
2 buffers and 3 not random wells
user_data <- data.frame("”Sample"” = c(as.character(seq_len(5)), rep_len(NA, 7)),
"Group” = c(c("A","B","C","A","B"),
rep_len("forbidden”, 2),
rep_len("buffer”, 2),
rep_len("fixed", 3)),
"ID" = c(seq_len(5),rep_len(NA,7)),
"Well"” = c("A2","B3","C3","B4","A3", "A1", "A4" "B2",6"C2","B1","C1","C4"),
"Status” = c(rep_len("toRandom”, 5),
rep_len("forbidden”, 2),
rep_len("buffer”, 2),
rep_len("fixed"”, 3)),
"Row"” = ¢(1,2,3,2,1,1,1,2,3,2,3,3),
"Column” = c(2,3,3,4,3,1,4,2,2,1,1,4))
p <- "My Project”
gp_1lvl <- levels(as.factor(c("A","B","C")))
drawMap(df = user_data, sample_gps = 3, gp_levels = gp_lvl, plate_lines = 3,
plate_cols = 4, project_title = p)

findNEWSneighbors 11

also works when giving a plate with more wells than the number of samples to place.
drawMap(df = user_data, sample_gps = 3, gp_levels = gp_lvl, plate_lines = 8,
plate_cols = 12, project_title = p)

findNEWSneighbors Find the 4 cardinal neighbors of an element of a matrix

Description
Function for spatial contraints: the North, East, West and South neighbors of the current element
(i,j) of the matrix m.

Usage
findNEWSneighbors(m, i, j)

Arguments

m matrix

i integer, line index in the matrix

j integer, column index in the matrix
Value

A vector containing the North, East, West and South neighbors of the element (i,j) of the matrix
being processed.

findNSneighbors Find the top and bottom neighbors of an element of a matrix

Description
Function for spatial constraint that only looks for North (top) and South (bottom) neighbors of the
current element (i,j) of the matrix m.

Usage
findNSneighbors(m, i, j)

Arguments
m matrix
i integer, line index in the matrix

j integer, column index in the matrix

12 generateMap

Value

A vector containing the North and South neighbors of the element (i,j) of the matrix being processed.

findWEneighbors Find the left and right neighbors of an element of a matrix

Description

Function for spatial constraint that only looks for West (left) and East (right) neighbors of the current
element (i,j) of the matrix m.

Usage
findWEneighbors(m, i, j)

Arguments

m matrix

i integer, line index in the matrix

J integer, column index in the matrix
Value

A vector containing the West and East neighbors of the element (i,j) of the matrix being processed

generateMap Generate a plate map according to the input parameters

Description

This function generates a plate map using a backtracking algorithm and returns a dataframe if
success. If it fails to find a solution, returns NULL. If there are not enough wells to place all the
samples, returns 0.

Usage

generateMap(
user_df,
nb_rows,
nb_cols,
df _forbidden,
mod,
max_it,
updateProgress = NULL

joinDataframes

Arguments

user_df

nb_rows
nb_cols
df _forbidden

mod

max_it

updateProgress

Details

13

dataframe containing 9 features: Sample, ID, Group, Sample.name, Well, Sta-
tus, Row, Column, Plate. See details.

numeric, number of lines on the plate
numeric, number of columns on the plate

dataframe with the same structure than user_df, but for the forbidden, buffer
solutions and Not randomized wells.

character, neighborhood spatial constraint

numeric, maximum number of attempts to generate a plate plan before returning
a failure.

shiny object, reports progress to the user.

The dataframe is generated using dedicated functions of the wpm package: ‘convertCSV()‘, ‘con-
vertESet()‘ or ‘convertSE()‘. But the user can also generate it by hand.

A number of attempts is allowed. Consequently, if the maximal number if attempts is reeched and
no solution was found with the backtracking (i.e. the randomWalk does not return a dataframe),
this function prints a warning message and returns NULL. If a solution is found, then it returns the

dataframe.

Value

Returns a dataframe containing all the data of the plate map(s)

joinDataframes

Binds multiple dataframes together

Description

Function that merges dataframes that contain wells of different types. To do this, it verifies that all
the conditions provided are compatible with each other in order to be able to launch WPM on this

data.

Usage

joinDataframes(
forbidden_w =

NULL,

buffer_w = NULL,
fixed_w = NULL,

nb_samples,
totalNbWells,
nb_p

14 randomWalk

Arguments
forbidden_w dataframe, the forbidden wells
buffer_w datarame, the buffer wells
fixed_w dataframe, the quality control wells
nb_samples numeric, the number of samples to place using the backtracking algorithm.

totalNbWells numeric, the total number of wells that can be filled.

nb_p numeric, number of plates to fill

Value

a dataframe containing all the special wells

randomWalk Random walk of the matrix to fill

Description

Returns the user dataframe updated after choosing randomly a well on the plate (matrix) and ran-
domly choosing a sample ID that satisfies all the constraints.

Usage

randomWalk(m, toVisit, d, constraint)

Arguments
m is a matrix corresponding to the plate to be filled.
toVisit contains the wells in form "A1", and contains only the wells authorized to be
filled in
d is the dataframe containing the data supplied by the user.
constraint character string corresponding to the spatial constraint selected by the user
Value

a dataframe corresponding to the user-supplied data. This dataframe is an updated version, where
the columns ‘Row* and ‘Column* are filled with the coordinates of the chosen well. If no solution
is found for the current selected well, then this function returns 1.

resample 15

resample Randomly take a number of elements in a vector

Description

This function allows to pick up the last element in a vector when the parameter size is equal to 1.
Passes parameters to ‘sample.int‘ like size.

Usage
resample(x, ...)
Arguments
X is a vector
parameters given to the function sample.int
Value

a vector of length equal to size parameter.

solveCell Affects a sample to the chosen cell in the plate

Description
This function chooses a sample randomly from among those who respect the neighborhood con-
straints and who have not yet been assigned to a well.

Usage

solveCell(m, d, i, j, already_drawn, constraint)

Arguments
Matrix representing the plate plan.
d Dataframe containing the samples to place.
i Line index of the chosen well.
j Column index of the chosen well.

already_drawn Vector of samples already affected to wells.
constraint Character. Corresponds to the neighborhood constraint mode.

Value

If there is no possibility to find a valid sample, the function returns an error value (1). If a sample
is chosen, then this function returns two objects: * __m__ The matrix updated with the new added
sample. * __already_drawn__ The vector of already placed samples updated.

16

wrapper WPM

wpm Run the Shiny Application of Well Plate Maker

Description

Run the Shiny Application of Well Plate Maker

Usage

wpm(...)

Arguments

A series of options to be used inside the app.

Value

a shiny application object with golem options

Examples

if(interactive()) {wpm()}

wrapperWPM Generate plate plans in a single step

Description

Wrapper function that generates plate plans like the wpm shiny application. This feature allows the
user to use the wpm package from the command line rather than going through a web application.

Usage

wrapperWPM(
user_df,
plate_dims,
nb_plates,
forbidden_wells = NULL,
buffer_wells = NULL,
fixed_wells = NULL,
spatial_constraint = "none”,
max_iteration = 20

wrapper WPM

Arguments

user_df

plate_dims

nb_plates

forbidden_wells

buffer_wells

fixed_wells

17

dataframe containing user data obtained with the ‘convertCSV()* or ‘convertE-
Set()‘ functions.

list, containing 2 values: the first is the number of plate’s lines and second is the
number of plate’s columns.

numeric, corresponds to the number of plates to fill

character, the wells that will not be used at all for the experiment. This argument
needs to be a character string giving the wells coordinates of the form "Letter-
Number" (eg. "Al" for the well positionned in the first row/ first column of the
plate).

character, the wells that will be used during experiment but without biological
sample in it. Same input structure as for forbidden_wells parameter.

character, the wells that will be used for Quality Control samples or standards
during the Experiment. Same input structure as for forbidden_wells parameter.

spatial_constraint

max_iteration

Value

character, is the spatial constraint used to place the samples on the plate. It
can also be called neighborhood constraint. Currently, the possible values are
"none", "NS" (for North-South), "WE" (for West-East) and "NEWS" (North-
South-East-West).

numeric, maximal number of attemps for wpm to find a valid solution.

a dataframe if wpm finds a solution.

Examples

create a MSnSet toy example

sample_names <- c("”s1","s2","s3","s4", "s5")

M <- matrix(NA, nrow = 4, ncol = 5)

colnames(M) <- sample_names

rownames(M) <- paste@(”id", LETTERS[1:4])

pd <- data.frame(Environment = rep_len(LETTERS[1:3], 5),

Category = rep_len(1:2, 5), row.names = sample_names)

rownames (pd) <- colnames(M)

X <- MSnbase: :MSnSet(exprs = M,pData = pd)

convert it to a valid dataframe for wpm

df <- convertESet(x, "Environment")

run wpm on the toy example

wrapperWPM(user_df = df, plate_dims = list(8,12), nb_plates = 1,
forbidden_wells = "A1,A2,A3", fixed_wells = "B1,B2",
spatial_constraint = "NS")

Index

x datasets
data_test, 8

backtracking, 2
balancedGrpDistrib, 3

checkConstraints, 4
checkWpmInputs, 5
convertCSV, 5
convertESet, 6
convertSE, 7
convertVector2Df, 8

data_test, 8
defineBufferCoords, 9
drawMap, 10

findNEWSneighbors, 11
findNSneighbors, 11
findWEneighbors, 12

generateMap, 12
joinDataframes, 13

randomWalk, 14
resample, 15

solveCell, 15

wpm, 16
wrapperWPM, 16

18

	backtracking
	balancedGrpDistrib
	checkConstraints
	checkWpmInputs
	convertCSV
	convertESet
	convertSE
	convertVector2Df
	data_test
	defineBufferCoords
	drawMap
	findNEWSneighbors
	findNSneighbors
	findWEneighbors
	generateMap
	joinDataframes
	randomWalk
	resample
	solveCell
	wpm
	wrapperWPM
	Index

