Package ‘tweeDEseq’

October 24, 2025

Type Package

Title RNA-seq data analysis using the Poisson-Tweedie family of
distributions

Description Differential expression analysis of RNA-seq using the
Poisson-Tweedie (PT) family of distributions. PT distributions are described
by a mean, a dispersion and a shape parameter and include Poisson and NB
distributions, among others, as particular cases. An important feature of this
family is that, while the Negative Binomial (NB) distribution only allows a
quadratic mean-variance relationship, the PT distributions generalizes this
relationship to any orde.

Version 1.55.0
Date 2023-07-05
Depends R (>=4.3.0)

Imports Rcpp (>=1.0.10), MASS, limma, edgeR, parallel, cqn,
grDevices, graphics, stats, utils

Suggests tweeDEseqCountData, xtable
LinkingTo Rcpp

Encoding UTF-8

License GPL (>=2)

LazyLoad yes

URL https://github.com/isglobal-brge/tweeDEseq/

BugReports https://github.com/isglobal-brge/tweeDEseq/issues

biocViews ImmunoOncology, StatisticalMethod, DifferentialExpression,
Sequencing, RNASeq, DNASeq

git_url https://git.bioconductor.org/packages/tweeDEseq
git_branch devel

git_last commit 786a5dc

git_last_commit_date 2025-04-15

Repository Bioconductor 3.23

https://github.com/isglobal-brge/tweeDEseq/
https://github.com/isglobal-brge/tweeDEseq/issues

2 compareCountDist

Date/Publication 2025-10-24

Author Dolors Pelegri-Siso [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5993-3003>),
Juan R. Gonzalez [aut] (ORCID: <https://orcid.org/0000-0003-3267-2146>),
Mikel Esnaola [aut],
Robert Castelo [aut]

Maintainer Dolors Pelegri-Siso <dolors.pelegri@isglobal.org>

Contents
compareCountDist e 2
dPT . . . e 3
filterCounts e e e e e e e 5
glmPT . . . o e 6
gofTest e 8
Methods for objects of class 'mlePT”o 9
mlePoissonTweedie 10
normalizeCounts e e e e e e e 12
qqehisqg o e e e e 14
SCIZUIE .+ . v v v v e e e e e e e e e e e e e e e e e e 15
testShapePT e 17
tweeDE L 18
tweeDEseqg-internal 20
tweeDEXxact 21

Index 23

compareCountDist Compare count data distributions
Description

Compares the empirical and estimated distributions for different count data models

Usage
compareCountDist(x, plot=TRUE, ...)
Arguments
X numeric vector containing the read counts.
plot If TRUE (the default) then the plot with the ECDF function for the counts and the

three different Poisson-Tweedie distributions is produced, otherwise no graphi-
cal output is given and this only makes sense if one is interested in the returned
value (see value section below).

Further arguments to be passed to the plot function.

https://orcid.org/0000-0002-5993-3003
https://orcid.org/0000-0003-3267-2146

dPT 3

Details

This function serves the purpose of comparing a empirical distribution of counts with three Poisson-
Tweedie distributions arising from estimating mean, dispersion and setting a = 1 for comparing
against a Poisson, a = 0 for comparing against a negative binomial and estimating the shape
parameter a from data too. The legend shows the values of the a parameter and the P-value of
the likelihood ratio test on whether the expression profile follows a negative binomial distribution
(Hp:a=0).

Value

List with the following components:

a shape parameter estimated from the input data x.
p.value P-value for the test that the data follows a negative binomial distribution, i.e.,
H 0:a= 0.
References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

See Also

qgchisq testShapePT

Examples

Generate 500 random counts following a Poisson Inverse Gaussian
distribution with mean = 20 and dispersion = 5
randomCounts <- rPT(n = 500, mu = 20, D = 5, a = 0.5)

xx <- compareCountDist(randomCounts, plot=FALSE)
XX

dPT The Poisson-Tweedie family of distributions

Description

Density function and random generation for the Poisson-Tweedie family of distributions.

Usage

dPT(x, mu, D, a, tol
rPT(n, mu, D, a, max

1e-15)
10*sqrt(muxD), tol = 1e-4)

4 dPT

Arguments
X an object of class 'mlePT’ or a non-negative vector containing the integers in
which the distribution should be evaluated.
mu numeric positive scalar giving the mean of the distribution.
D numeric positive scalar giving the dispersion of the distribution.
a numeric scalar smaller than 1 giving the shape parameter of the distribution.
tol numeric scalar giving the tolerance.
n integer scalar giving number of random values to return.
max numeric scalar containing the maximum number of counts to be used in the
sampling process.
Value

If ’x’ is of class 'mlePT’, "dPT’ will return the Poisson-Tweedie distribution with parameters equal
to the ones estimated by *mlePoissonTweedie’ evaluated on the data that was used to estimate the
parameters. If *x’ is a numeric vector, ’dPT’ will return the density of the specified Poisson-Tweedie
distribution evaluated on ’x’.

tPT’ generates random deviates.

References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie
family. Environmetrics 22, pages 152-164.

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

See Also

compareCountDist testShapePT

Examples

To compute the density function in 1:100 of the Polya-Aeppli
distribution with mean = 20 and dispersion = 5
dPT(x = 1:100, mu = 20, D =5, a = -1)

To generate 100 random counts of the same distribution with same
parameters
rPT(n = 100, mu = 20, D =5, a = -1)

filterCounts 5

filterCounts Count data filtering

Description

Filter count data to remove lowly expressed genes.

Usage
filterCounts(counts,
cpm.cutoff=0.5,
n.samples.cutoff=2,
mean.cpm.cutoff=0,
lib.sizes=NULL)
Arguments
counts numeric data.frame or matrix containing the count data.
cpm.cutoff expression level cutoff defined as the minimum number of counts per million.

By default this is set to 0.5 counts per million.

n.samples.cutoff
minimum number of samples where a gene should meet the counts per million
cutoff (cpm. cutoff) in order to be kept as part of the count data matrix. When
n.samples.cutoff is a number between 0 and 1, then it is interpreted as the
fraction of samples that should meet the counts per million cutoff (cpm. cutoff).

mean.cpm.cutoff
minimum mean of counts per million cutoff that a gene should meet in order to
be kept. When the value of this argument is larger than O then it overrules the
other arguments cpm. cutoff and n.samples.cutoff.

lib.sizes vector of the total number of reads to be considered per sample/library. If
lib.sizes=NULL (default) then these quantities are estimated as the column
sums in the input matrix of counts.

Details

This function removes genes with very low expression level defined in terms of a minimum number
of counts per million occurring in a minimum number of samples. Such a policy was described
by Davis McCarthy in a message at the bioc-sig-sequencing mailing list. By default, this function
keeps genes that are expressed at a level of 0.5 counts per million or greater in at least two samples.
Alternatively, one can use the mean.cpm. cutoff to set a minimum mean expression level through
all the samples.

Value

A matrix of filtered genes.

6 glmPT

Author(s)
J.R. Gonzalez and R. Castelo

References

Davis McCarthy, https://stat.ethz.ch/pipermail/bioc-sig-sequencing/2011-June/002072.
html.

See Also

normalizeCounts

Examples

Generate a random matrix of counts
counts <- matrix(rPT(n=1000, a=0.5, mu=10, D=5), ncol = 40)

dim(counts)

Filter genes with requiring the minimum expression level on every sample
filteredCounts <- filterCounts(counts, n.samples.cutoff=dim(counts)[2])

dim(filteredCounts)

glmPT Fit Poisson-Tweedie generalized linear model.

Description

glmPT” is used to fit generalized linear models for the Poisson-Tweedie family of distributions.

Usage
tweeDEglm(formula, counts, data, mc.cores = 1, a = NULL, offset = NULL, ...)
glmPT(formula, data, offset = NULL, a = NULL, ...)
Arguments
formula an object of class *formula’: a symbolic description of the model to be fitted.
counts Matrix or data.frame of counts for the 'tweeDEglm’.
data an optional data frame, list or environment containing the variables in the model.
If not found in ’data’, the variables are taken from ’environment(formula)’, typ-
ically the environment from which ’glm’ is called.
mc.cores number of cpu cores to be used. This option is only available when the *multi-

core’ package is installed and loaded first. In such a case, if the default value of
’mc.cores=1" is not changed, all available cores will be used.

https://stat.ethz.ch/pipermail/bioc-sig-sequencing/2011-June/002072.html
https://stat.ethz.ch/pipermail/bioc-sig-sequencing/2011-June/002072.html

glmPT

offset

Value

this can be used to specify an _a priori_ known component to be included in the
linear predictor during fitting.

numeric vector (for ’tweeDEglm’) or numeric scalar (for *glmPT’) smaller than
1. If specified the PT shape parameter will be fixed. For ’tweeDEglm’, if the
provided ’a’ is a scalar this value will be used for all rows of ’counts’ (genes).

additional arguments to be passed to the *optim’ ’control’ options.

An object of class glmPT’ containing the following information:

call
contrasts

convergence

counts

df

fitted.values

hessian

message

ncov
par
residuals
se

value

Author(s)

the matched call.

(where relevant) the contrasts used.

A character string giving any additional information returned by the optimizer,
or 'NULL".

A two-element integer vector giving the number of calls to *fn” and ’gr’ respec-

tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ’fn’ to compute a finite-difference approximation to the gradient.

Number of estimated parameters.

The fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

A symmetric matrix giving an estimate of the Hessian at the solution found.

A character string giving any additional information returned by the optimizer,
or ’'NULL".

An integer giving the number of variables in the model.

A vector giving the estimated parameters.

The residuals in the final iteration of the IWLS fit.

A vector giving the standard error of the estimated parameters.

Value of the log-likelihood of the model in the last iteration.

Further arguments to be passed to the ’glm.fit’ function.

Mikel Esnaola <mesnaola@creal.cat>

Examples

counts <- matrix(rPT(n = 1000, a = .5, mu = 10, D = 5), ncol = 40)
g <- factor(rep(c(0,1), 20))
mod1 <- glmPT(counts[1,]~g)

mod1
summary (mod1)
anova(mod1)

mod2 <- tweeDEglm(~ g, counts)

mod2

8 gofTest

gofTest Test the goodness of fit of every row in a matrix of counts

Description

Function to test the goodness of fit of every row in a matrix of counts

Usage

gofTest(counts, a = @, mc.cores = 1)

Arguments
counts matrix of counts
a numeric scalar smaller than 1. The function will test whether the shape param-
eter is equal to the introduced ’a’ (default is 0).
mc.cores number of cpu cores to be used. This option is only available when the *multi-
core’ package is installed and loaded first. In such a case, if the default value of
mc.cores=1 is not changed, all available cores will be used.
Details

By default a = 0, and therefore the function tests for every row of the input matrix of counts whether
the count data follows a Negative-Binomial distribution. In this case, a Likelihood Ratio Test is
performed. When the given value for *a’ is different from 0, a Wald test is performed. This function
calls testShapePT.

Value

a vector of statistics that follows a x? distribution with one degree of freedom under the null hy-
pothesis.

References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie
family. Environmetrics 22, pages 152-164.

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

See Also

testShapePT

Methods for objects of class ‘mlePT’ 9
Examples
Generate a random matrix of counts
counts <- matrix(rPT(n=2000, a=0.5, mu=10, D=5), nrow=20)
Perform the goodness-of-fit tests for every row in the matrix
chi2gof <- gofTest(counts)
Calculate and sort the corresponding P-values for the
null hypothesis that counts follow a negative binomial distribution
sort(pchisq(chi2gof, df=1, lower.tail=FALSE))
Methods for objects of class ’mlePT’
Methods for objects of class ‘'mlePT’
Description
print, extract loglikelihood or compute confidence interval for an object of class 'mlePT’.
Usage
S3 method for class 'mlePT'
print(x, digits =3, ...)
S3 method for class 'mlePT'
logLik(object, ...)
S3 method for class 'mlePT'
confint(object, parm, level = 0.95, J)
Arguments
X object of class "'mlePT’.
object object of class "'mlePT’.
digits integer scalar giving the number of digits to be rounded the solution.
parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.
level the confidence level required (default is 0.95).
additional arguments.
Value

’logLik’ returns the loglikelihood of the selected model.

’confint’ returns a matrix (or vector) with columns giving lower and upper confidence limits for

each parameter.

10 mlePoissonTweedie

See Also

mlePoissonTweedie

Examples

Load and aggregate the 'seizure' database

data(seizure)

aggCounts <- aggregate(x = cbind(seizure$count, seizure$trx), by =
list(seizure$id), FUN = sum)

Estimate the parameters
mleSeizure <- mlePoissonTweedie(x = aggCounts[,2], a.ini = @, D.ini =
10)

Print
mleSeizure

Extract loglikelihood
loglik(mleSeizure)

Compute confidence inerval
confint(mleSeizure)

mlePoissonTweedie Maximum likelihood estimation of the Poisson-Tweedie parameters

Description

Maximum likelihood estimation of the Poisson-Tweedie parameters using L-BFGS-B quasi-Newton

method.
Usage
mlePoissonTweedie(x, a, D.ini, a.ini, maxit = 100, loglik=TRUE,
maxCount=20000, w = NULL, ...)
getParam(object)
Arguments
X numeric vector containing the read counts.
a numeric scalar smaller than 1, if specified the PT shape parameter will be fixed.
D.ini numeric positive scalar giving the initial value for the dispersion.
a.ini numeric scalar smaller than 1 giving the initial value for the shape parameter

(ignored if ’a’ is specified).

maxit numeric scalar providing the maximum number of ’L-BFGS-B’ iterations to be
performed (default is *100).

loglik is log-likelihood computed? The default is TRUE

mlePoissonTweedie 11

object an object of class 'mlePT’.

maxCount if max(x) > maxCount, then moment method is used to estimate model parame-
ters to reduce computation time. The default is 20000.

w vector of weights with length equal to the lenght of "x’.

additional arguments to be passed to the *optim’ *control’ options.

Details

The L-BFGS-B quasi-Newton method is used to calculate iteratively the maximum likelihood esti-
mates of the three Poisson-Tweedie parameters. If *a’ argument is specified, this parameter will be
fixed and the method will only estimate the other two.

Value

An object of class 'mlePT’ containing the following information:

par: numeric vector giving the estimated mean ('mu’), dispersion ('D’) and shape parameter ’a’.
se: numeric vector containing the standard errors of the estimated parameters 'mu’, ’D’ and ’a’.
loglik: numeric scalar providing the value of the loglikelihod for the estimated parameters.

iter: numeric scalar giving the number of performed iterations.

paramZhu: numeric vector giving the values of the estimated parameters in the Zhu parameteriza-

s

tion ’a’, ’b’ and ’c’.

paramHou: numeric vector giving the values of the estimated parameters in the Hougaard parame-
terization “alpha’, ’delta’ and ’theta’.

skewness: numeric scalar providing the estimate of the skewness given the estimated parameters.
X: numeric vector containing the count data introduced as the *x’ argument by the user.

convergence: A character string giving any additional information returned by the optimizer, or
"NULL".

References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

A H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie
family. Environmetrics 22, pages 152-164.

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

See Also

testShapePT print.mlePT

12 normalizeCounts
Examples
Generate 500 random counts following a Poisson Inverse Gaussian
distribution with mean = 20 and dispersion = 5
randomCounts <- rPT(n = 500, mu = 20, D = 5, a = 0.5)
Estimate all three parameters
resl <- mlePoissonTweedie(x = randomCounts, a.ini = @, D.ini
= 10)
resi
getParam(res1)
#Fix 'a = 0.5' and estimate the other two parameters
res2 <- mlePoissonTweedie(x = randomCounts, a = 0.5, D.ini
= 10)
res2
getParam(res2)
normalizeCounts Count data normalization
Description
Normalize count data to remove systematic technical effects.
Usage
normalizeCounts(counts, group=rep.int(1,ncol(counts)), method=c("TMM", "cqgn"),
common.disp = FALSE, prior.df=8, annot=NULL, lib.sizes=NULL, verbose=TRUE)
Arguments
counts numeric data.frame or matrix containing the count data.
group vector giving the experimental group/condition for each sample/library. This
argument is only relevant when method="cqn".
method specific method to use in order to normalize the input matrix of counts. By de-
fault this is set to TMM (Robinson and Oshlack, 2010) using the implementation
available in the edgeR package. The other option is cqn (Hansen, Irizarry and
Wu, 2012).
common.disp logical indicating whether a common or tagwise (default) dispersions should be
estimated and employed when adjusting counts. This argument is only relevant
when method="TMM".
prior.df argument provided to the call of estimateTagwiseDisp which defines the prior

degrees of freedom. It is used in calculating ’prior.n’ which, in turn, defines
the amount of shrinkage of the estimated tagwise dispersions to the common
one. By default prior.df=8 thus assumming no shrinkage toward that common
dispersion. This argument is not used if common.disp=TRUE. This argument is
only relevant when method="TMM".

normalizeCounts 13

annot matrix or data frame with row names matching at least part of the row names
in the counts input matrix, containing feature/tag/gene lengths in bp on its first
column, and a second covariate, such as G+C content, on its second column.
These two pieces of information are provided to arguments lengths and x when
calling cqn. This argument is only relevant when method="TMM".

lib.sizes vector of the total number of reads to be considered per sample/library. If
lib.sizes=NULL (default) then these quantities are estimated as the column
sums in the input matrix of counts.

verbose logical indicating whether progress should be reported.

Details

This function encapsulates calls to RNA-seq normalization procedures available in the edgeR and
cqn packages in order to try to remove systematic technical effects from raw counts.By default, the
TMM method described in Robinson and Oshlack (2010) is employed to calculate normalization
factors which are applied to estimate effective library sizes, then common and tagwise (only when
the argument common.disp=TRUE) dispersions are calculated (Robinson and Smyth, Bioinformat-
ics 2007) and finally counts are adjusted so that library sizes are approximately equal for the given
dispersion values (Robinson and Smyth, Biostatistics 2008).Setting the argument method="cqgn",
conditional quantile normalization (Hansen, Irizarry and Wu, 2012) is applied which aims at adjust-
ing for tag/feature/gene length and other covariate such as G+C content. This information should be
provided through the annot argument. This procedure calculates, for every gene and every sample,
an offset to apply to the log2 reads per million (RPM) and the function normalizeCounts() adds
this offset to the the log2 RPM values calculated from the input count data matrix, unlogs them and
rolls back these normalized RPM values into integer counts. Details on these two normalization
procedures are given in the documentation of the edgeR and cqn Bioconductor packages.

Value

A matrix of normalized counts.

Author(s)
J.R. Gonzalez and R. Castelo

References
K.D. Hansen, R.A. Irizarry and Z. Wu. Removing technical variability in RNA-seq data using
conditional quantile normalization. Biostatistics, 2012.

M.D. Robinson and A. Oshlack. A scaling normalization method for differential expression analysis
of RNA-seq data. Genome Biol, 11:R25, 2010.

Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
abundance. _Bioinformatics_ 23, 2881-2887

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. _Biostatistics_, 9, 321-332

See Also

filterCounts

14

Examples

qqchisq

Generate a random matrix of counts
counts <- matrix(rPT(n=1000, a=0.5, mu=10, D=5), ncol = 40)

colSums(counts)
counts[1:5, 1:5]

Normalize counts
normCounts <- normalizeCounts(counts, rep(c(1,2), 20))

colSums (normCounts)
normCounts[1:5, 1:5]

gqchisq

Chi-square quantile-quantile plot

Description

Make a chi-square quantile-quantile plot.

Usage
ggchisq(stat, df=1, normal=FALSE, rangeExpected=FALSE,
obsQuantiles=c(0.50, 0.75, 0.95), ylim = NULL, ...)
Arguments
stat vector of x? statistics.

df

normal

rangeExpected

obsQuantiles

ylim

Details

degrees of freedom of stat.

logical; set to TRUE if the x? statistics in stat should be transform into normal
z-scores in order to improve the display of lower quantiles. For this purpose,
this function uses the zscoreGamma function from the limma package. Default
is set to FALSE.

logical; set to TRUE if the displayed range of the observed y? statistics is re-
stricted to the range of their expected values. Default is set to FALSE.

observed quantiles to indicate by horizontal dash lines. By default, these are set
to 50%, 75% and 95%.

they y limits of the plot. If "NULL’ (default), these will be obtained from the
data.

further arguments to pass to the plot function.

The main purpose of this function in the tweeDEseq package is to provide means to assess the
goodness of fit of count data to the negative binomial distribution. The main input argument stats
should be the output of gofTest.

seizure 15

Value
it returns invisibly a list with two components x and y corresponding to the coordinates of the plotted
statistics.

References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

See Also

compareCountDist testShapePT

Examples

Generate a random matrix of counts
counts <- matrix(rPT(n=2000, a=0.5, mu=10, D=5), nrow=20)

Perform the goodness-of-fit tests for every row in the matrix
chi2gof <- gofTest(counts)

gachisq(chi2gof)

seizure Epileptic seizure counts

Description

Data on seizure counts for 59 epileptics.

Usage

data(seizure)

Format
A data frame with 236 observations on the following 6 variables.

id anumeric vector, identification number for each patient
count a numeric vector, seizure counts

visit a numeric vector, visit number

trx anumeric vector, treatment: progabide (1) or placebo (0)
baseline a numeric vector, baseline 8 week seizure count

age anumeric vector, age of patient

16 seizure

Details

The data are from a placebo-controlled clinical trial of 59 epileptics. Patients with partial seizures
were enrolled in a randomized clinical trial of the anti-epileptic drug, progabide. Participants in the
study were randomized to either progabide or a placebo, as an adjuvant to the standard anti-epileptic
chemotherapy. Progabide is an anti-epileptic drug whose primary mechanism of action is to enhance
gamma-aminobutyric acid (GABA) content; GABA is the primary inhibitory neurotransmitter in
the brain. Prior to receiving treatment, baseline data on the number of epileptic seizures during
the preceding 8-week interval were recorded. Counts of epileptic seizures during 2-week intervals
before each of four successive post-randomization clinic visits were recorded.

Value

void

Source

P.F Thall, and S.C. Vail (1990). Some covariance models for longitudinal count data with overdis-
persion. Biometrics, 46, 657-671,

References

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997): Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

See Also

testPoissonTweedie mlePoissonTweedie

Examples

Although this is not a differential expression dataset, it is appropriate
to illustrate the application of the Poisson-Tweedie in
epidemiological studies

data(seizure)
summary (seizure)

Aggregate
aggCounts <- aggregate(x = cbind(seizure$count, seizure$trx), by =
list(seizure$id), FUN = sum)

Estimation of the three parameters for all individuals
mleSeizure <- mlePoissonTweedie(x = aggCounts[,2], a.ini = @, D.ini = 10)
mleSeizure

#Poisson-Tweedie test
testPoissonTweedie(x = aggCounts[,2], group = aggCounts[,3])

testShapePT 17

testShapePT Test shape parameter of PT

Description

Function to test whether the shape parameter is equal to a given value.

Usage

testShapePT(x, a = 0)

Arguments
X object of class "'mlePT’.
a numeric scalar smaller than 1. The function will test whether the shape param-
eter is equal to the introduced ’a’ (default is 0).
Details

By default a =0, and therefore the function tests whether the count data follows a Negative-Binomial
distribution or not. In this case, a Likelihood Ratio Test is performed. When the given value for ’a’
is different from 0, a Wald test is performed.

If a = 1, the function tests whether the count data follows a Poisson distribution or not.

If a = 0.5, the function tests whether the count data follows a Poisson-inverse Gaussian distribution
or not.

If a = -1, the function tests whether the count data follows a Polya-Aeppli distribution or not.

Value

numeric p-value of the test.

References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie
family. Environmetrics 22, pages 152-164.

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

See Also

gofTest mlePoissonTweedie compareCountDist

18 tweeDE

Examples

Generate a random matrix of counts
counts <- rPT(n=1000, a=0.5, mu=10, D=5)

Maximum likelihood estimation of the Poisson-Tweedie parameters
mleEstimate <- mlePoissonTweedie(x = counts, a.ini = @, D.ini
= 10)

Test whether data comes from Negative-Binomial distribution
testShapePT(mleEstimate)

Test whether data comes from Poisson-inverse Gaussian
testShapePT(mleEstimate, a = 0.5)

tweeDE Score test for differences between two Poisson-Tweedie groups

Description

Carry out a score test for differences between two Poisson-Tweedie groups.

Usage
tweeDE(object, group, mc.cores = 1, pair = NULL, a = NULL, ...)
testPoissonTweedie(x, group, saveModel = FALSE, a = NULL, log = FALSE, ...)
MAplot(x, ...)
Vplot(x, ...)

S3 method for class 'tweeDE'

print(x, n=6L, sort.by="pval”,
log2fc.cutoff=0,
pval.adjust.cutoff=1,

print=TRUE, ...)
S3 method for class 'tweeDE'
MAplot(x, log2fc.cutoff=0, highlight=NULL, ...)

S3 method for class 'tweeDE'
Vplot(x, log2fc.cutoff=0, pval.adjust.cutoff=1, highlight=NULL,

ylab=expression(paste(-log[10], " Raw P-value"”)), ...)
Arguments
object adata.frame or a matrix of RNA-seq counts.
group vector giving the experimental group/condition for each sample/library.
mc.cores number of cpu cores to be used. This option is only available when the *multi-
core’ package is installed and loaded first. In such a case, if the default value of
mc.cores=1 is not changed, all available cores will be used.
pair vector of two elements containing the representants of each of the two groups

(default is 'NULL").

tweeDE

n

sort.by

log2fc.cutoff

19

for *tweeDE’ function, numerical vector with values strictly less than 1. It allows
to fix the shape parameter ’a’ during differential expression tests for each of
the genes (rows of ’object’). for ’testPoissonTweedie’ function, numeral value
strictly less than 1 which fixes the shape parameter *a’ for the test.

maximum number of genes printed.

character string, indicating whether genes should be ranked by their P-value
(pval), which is the default setting, or by absolute log2 fold-change (log2fc).

cutoff on the minimum value of the log2 fold change.

pval.adjust.cutoff

print

highlight

ylab

saveModel

log

Details

cutoff on the maximum adjusted P-value (FDR).
logical; it indicates whether the output should be printed on the terminal.

list of arguments to the points() plotting function in order to highlight genes
in the MA or volcano plots. A component called genes is expected to have the
identifiers of the genes to be higlighted.

label on the y-axis of the volcano plot set by default to -log10 of the raw P-value
which is what this plot displays on that axis.

object returned by the function tweeDE in the case of print and vector of count
data in the case of testPoissonTweedie.

logical indicating whether the results of fitting the model should be saved or not
(default is "FALSE’).

logical (default is FALSE). If FALSE, the tested Null Hypothesis states that the
difference between the means is 0 while, if TRUE, it states that the quotient
between the logarithm of means is equal to 1. For this last case, the standard
error is computed using the Delta Method.

additional arguments.

"testPoissonTweedie’ performs the test for a vector of counts.

tweeDE’ performs the test for a whole ’data.frame’. The P-values are then corrected using the
Benjamini and Hochberg method.

Value

*testPoissonTweedie’ returns a list with:

’mean’: means for each group ’pvalue’: p-value for the test

’tweeDE’ returns a ’data.frame’ with columns

’overallMean’: overall mean counts “'meanA’: mean counts of the first group "'meanB’: mean counts
of the second group ’log2fc’: logarigthm (base 2) of the fold-change (second group vs. first group)
’pval’: p-value for the test "pval.adjust’: adjusted p-value using Benjamini-Hochberg method

20 tweeDEseq-internal

References

Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model
to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experi-
ments. BMC Bioinformatics 14: 254

A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie
family. Environmetrics 22, pages 152-164.

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.
See Also

normalizeCounts mlePoissonTweedie

Examples

Generate a random matrix of counts
counts <- matrix(rPT(n = 1000, a = 0.5, mu = 10, D = 5), ncol = 40)

Test for differences between the two groups
tweeDE (counts, group = rep(c(1,2),20))

tweeDEseqg-internal Internal "tweeDEseq’ functions

Description

Internal tweeDEseq functions

Usage

loglikPoissonTweedie(p, x, mu, verbose = FALSE, tol = 1le-15, probs =
FALSE, w = NULL)

loglikPoissonTweedie2(p, a, x, mu, verbose = FALSE, tol = 1e-15, probs =
FALSE, w = NULL)

momentEstimates(x, w)

shapeTrend(x)

loglikG1mPT (par, X, Y, offset = NULL, allFactors=FALSE, a=NULL,
tol=1e-300, maxCount, verbose = FALSE)

glmPT.fit(X, Y, offset=NULL, allFactors=FALSE, a = NULL, maxCount =
2000, ...)

Details

These are not to be called by the user

Value

void

tweeDEXxact 21

Examples

message("These are not to be called by the user”)

tweeDExact Exact test for differences between two Poisson-Tweedie groups

Description

Carry out an exact test for differences between two Poisson-Tweedie populations.

Usage

tweeDExact(counts, group, tol = 1e-15, mc.cores = 1)
exactTestPT(counts, group, tol = 1e-15, threshold = 150e3)

Arguments
counts The RNA-seq counts. An object of type "matrix’ or ’data.frame’ for "tweeDEx-
act’, or an object of type ’vector’ for ’exactTest’.
group vector giving the experimental group/condition for each sample/library.
tol Tolerance for the Poisson-Tweedie probability computations. The probabilities
under the ’tol” value will automatically considered as 0.
threshold an integer (default is 50e3). If the sum of all counts in a certain gene excedes this
value ’testPoissonTweedie’ will be called instead of ’exactTest’. Larger values
will result in a longer computing time.
mc.cores number of cpu cores to be used. This option is only available when the *multi-
core’ package is installed and loaded first. In such a case, if the default value of
’mc.cores=1" is not changed, all available cores will be used.
Details

“exactTest’ performs the exact test for a vector of counts.

’tweeDExact’ performs the test for a whole ’data.frame’. The P-values are then corrected using the
Benjamini and Hochberg method.

Value
“exactTest’ returns the p-value resulting from the exact test between two different Poisson-Tweedie
populations, as well as the method that was used to compute it.

tweeDExact’ returns a ’data.frame’. Each row corresponds to a gene and it contains the following
information:

- In the first columns the mean of counts in each of the subgroups.
- In the third column the p-value of the test for differential expression between the two subgroups.

- In the fourth column the p-value corrected for multiple comparisons using the Benjamini-Hochberg
FDR procedure.

- In the last (fifth) column the method that was used to compute the p-value.

22 tweeDEXxact

Author(s)
Mikel Esnaola

References

P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by
mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

See Also

testPoissonTweedie tweeDExact

Examples

counts <- matrix(rPT(n = 1000, a = 0.5, mu = 10, D = 5), ncol = 40)

tweeDExact(counts, group = rep(c(1,2),20))

Index

+ datasets
seizure, 15

* distribution
dPT, 3

* htest
gofTest, 8
qqchisq, 14
testShapePT, 17
tweeDE, 18
tweeDExact, 21

* internal
tweeDEseg-internal, 20

+ methods
Methods for objects of class

"mlePT’, 9

* misc
filterCounts, 5
normalizeCounts, 12

+* models
compareCountDist, 2
mlePoissonTweedie, 10

compareCountDist, 2,4, 15,17

confint.mlePT (Methods for objects of
class ’'mlePT’),9

cqn, 13

dPT, 3

edgeR, 13
estimateTagwiseDisp, 12
exactTestPT (tweeDExact), 21

filterCounts, 5, 13

getParam (mlePoissonTweedie), 10
glmPT, 6

glmPT.fit (tweeDEseq-internal), 20
gofTest, 8, 14,17

23

loglLik.mlePT (Methods for objects of
class 'mlePT’),9

loglikGImPT (tweeDEseq-internal), 20

loglikPoissonTweedie
(tweeDEseq-internal), 20

loglikPoissonTweedie2
(tweeDEseg-internal), 20

MAplot (tweeDE), 18

Methods for objects of class 'mlePT’,9
mlePoissonTweedie, 10, 10, 16, 17, 20
mlePT (mlePoissonTweedie), 10
momentEstimates (tweeDEseg-internal), 20

normalizeCounts, 6, 12, 20

plot, 14

print.mlePT, /1]

print.mlePT (Methods for objects of
class 'mlePT’),9

print.tweeDE (tweeDE), 18

qqchisq, 3, 14
rPT (dPT), 3

seizure, 15
shapeTrend (tweeDEseqg-internal), 20

testPoissonTweedie, /6, 22
testPoissonTweedie (tweeDE), 18
testShapePT, 3, 4,8, 11, 15,17
tweeDE, 18

tweeDEglm (glmPT), 6
tweeDEseg-internal, 20
tweeDExact, 21, 22

Vplot (tweeDE), 18

zscoreGamma, /4

	compareCountDist
	dPT
	filterCounts
	glmPT
	gofTest
	Methods for objects of class 'mlePT'
	mlePoissonTweedie
	normalizeCounts
	qqchisq
	seizure
	testShapePT
	tweeDE
	tweeDEseq-internal
	tweeDExact
	Index

