Package 'spaSim'

October 24, 2025

```
Version 1.11.0
Date 2023-05-22
Description A suite of functions for simulating spatial patterns of cells in
     tissue images. Output images are multitype point data in SingleCellExperiment
     format. Each point represents a cell, with its 2D locations and cell type.
     Potential cell patterns include background cells, tumour/immune cell clusters,
     immune rings, and blood/lymphatic vessels.
License Artistic-2.0
URL https://trigosteam.github.io/spaSim/
BugReports https://support.bioconductor.org/t/spaSim
biocViews StatisticalMethod, Spatial, BiomedicalInformatics
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.2
Imports ggplot2, methods, stats, dplyr, spatstat.geom,
     spatstat.random, SpatialExperiment, SummarizedExperiment, RANN
Depends R (>= 4.2.0)
LazyData true
Suggests RefManageR, BiocStyle, knitr, testthat (>= 3.0.0),
     sessioninfo, rmarkdown, markdown
Config/testthat/edition 3
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/spaSim
git_branch devel
git_last_commit 7c4ef82
git_last_commit_date 2025-04-15
Repository Bioconductor 3.23
```

Title Spatial point data simulator for tissue images

Date/Publication 2025-10-24

2 bg1

Author Yuzhou Feng [aut, cre] (ORCID: https://orcid.org/0000-0002-2955-4053), Anna Trigos [aut] (ORCID: https://orcid.org/0000-0002-5915-2952)

Contents

bg1	Background cells (4915 cells in a 2000*2000 window)	
Index		21
	simulate_mixing	17
	simulate_immune_rings	14
	simulate_clusters	10
	plot_cells	
	multiple_images_with_clusters	ϵ
	multiple_background_images	3
	bg1	

Description

A data frame containing 4915 background cells on 2000 by 2000 size window

Usage

bg1

Format

A data frame with 4915 rows (cells) and 3 columns:

Cell.X.Position X coordinate

Cell.Y.Position Y coordinate

Cell.Type cell type

format_spe 3

format_spe

format_spe

Description

Format a data frame object into a SpatialExperiment class object where the count assay is empty.

Usage

```
format_spe(df)
```

Arguments

df

A data frame where each row contains information about a cell. The columns of the data frame will become the colData of the SpatialExperiment object.

Value

An SPE object

```
multiple_background_images
```

Simulate multiple background images (mixed cell types)

Description

Generate a set of background images with different proportions of mixed cell types all at once. The default values for the arguments give an example of multiple image simulation which enable an automatic multiple image simulation without the specification of any argument.

Usage

```
multiple_background_images(
  bg_sample = bg1,
  idents = c("Tumour", "Immune", "Others"),
  props = list(rep(0.1, 9), seq(0, 0.4, 0.05), seq(0.9, 0.5, -0.05)),
  plot_image = TRUE,
  plot_colours = NULL
)
```

Arguments

bg_sample	A data frame or SpatialExperiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image.
idents	String Vector. Names of the cell types to generate.
props	List. Each element is a vector of proportions of the corresponding cell type. The length of the vector is how many images to generate. All vectors should be of the same length, also equal to the number of images.
plot_image	Boolean. Whether plot the simulated images or not. Default is TRUE.
plot_colours	String Vector. If plot_image is TRUE, this param is the corresponding colours for the idents arg. Default is NULL, the predefined colour vector would be used for plotting.

Value

A list of SPE objects

See Also

multiple_images_with_clusters for simulating multiple images with clusters, and multiple_images_with_immune_ring for simulating multiple images with immune rings.

Other simulate multiple images functions: multiple_images_with_clusters(), multiple_images_with_immune_rings

Examples

```
idents <- c("Tumour","Immune","Others")
prop1 <- rep(0.1,9)
prop2 <- seq(0, 0.4, 0.05)
prop3 <- seq(0.9,0.5,-0.05)
set.seed(610)
bg_image_list <- multiple_background_images(bg_sample = bg1,
idents = idents, props = list(prop1, prop2, prop3), plot_image = FALSE)</pre>
```

```
multiple_images_with_clusters
```

Simulate multiple images with clusters

Description

Generate a set of images with different cluster properties. Trying out the default parameters is recommended for understanding this function. The default values for the arguments give an example of multiple image simulation which enable an automatic multiple image simulation without the specification of any argument.

Usage

```
multiple_images_with_clusters(
  bg_sample = bg1,
  cluster_shape = 2,
  prop_infiltration = 0.1,
  cluster_size = seq(200, 1000, 100),
  cluster_loc_x = 0,
  cluster_loc_y = 0,
  plot_image = TRUE,
  plot_categories = NULL,
  plot_colours = NULL
)
```

Arguments

bg_sample

A data frame or SpatialExperiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image.

cluster_shape

Number. Choose from one of the following pre-designed shapes (1 or 2 for tumour cluster or 3 for immune cluster). The pre-designed shape contains information of the cell names of the cluster, the infiltration cell types, the proportions of infiltration, the cluster size, and the cluster centre locations. In order to simulate a set of images, use the arguments below to specify the ranges of the properties. The predefined cell types can not be changed, while users can change them manually after the simulation.

prop_infiltration

Numeric Vector. The degree of infiltration. If numeric, all simulated images have the same infiltration degree. If vector, images with a range of different infiltration proportions will be simulated.

cluster_size

Numeric Vector. The size of the cluster. If numeric, all simulated images have the same cluster size. If vector, images with a range of different cluster sizes will be simulated. The size should not exceed the limit of the image sides.

cluster_loc_x

Numeric or Vector. The X location of the cluster center offset. If numeric, all simulated images have the same center X location. If vector, images with a range of different center locations will be simulated.

cluster_loc_y

Numeric or Vector of the same length of cluster_loc_x. The Y location of the cluster center offset.

plot_image

Boolean Whether plot the simulated images or not.Default is TRUE.

plot_categories

String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for plotting.

plot_colours

String Vector specifying the order of the colours that correspond to the plot_categories arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

A list of SPE objects

See Also

multiple_background_images for simulating multiple mixed background images, and multiple_images_with_immune_r for simulating multiple images with immune rings.

Other simulate multiple images functions: multiple_background_images(), multiple_images_with_immune_rings()

Examples

```
set.seed(610)
cluster_image_list <- multiple_images_with_clusters(bg_sample=bg1,
cluster_shape=2, prop_infiltration=0.1, cluster_size = seq(200,1000,100),
cluster_loc_x = 0, cluster_loc_y = 0, plot_image = TRUE)</pre>
```

Description

Generate a set of images with different immune ring properties. The default values for the arguments give an example of multiple image simulation which enable an automatic multiple image simulation without the specification of any argument.

Usage

```
multiple_images_with_immune_rings(
  bg_sample = bg1,
  cluster_size = 200,
  ring_shape = 1,
  prop_infiltration = 0,
  ring_width = seq(50, 100, 10),
  cluster_loc_x = 0,
  cluster_loc_y = 0,
  prop_ring_infiltration = seq(0, 0.2, 0.05),
  plot_image = TRUE,
  plot_categories = NULL,
  plot_colours = NULL
)
```

Arguments

bg_sample A data frame or SpatialExperiment class object with locations of points rep-

resenting background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By

default use the internal bg1 background image.

cluster_size Numeric Vector. The size of the cluster. If numeric, all simulated images have the same cluster size. If vector, images with a range of different cluster sizes

will be simulated. The size should not exceed the limit of the image sides.

ring_shape Number. Choose from one of the following pre-designed shapes (1,2 or 3).

The pre-designed shape contains information of the cell names of the cluster, the infiltration cell types, the proportions of infiltration, the cluster size, the ring width, the proportions of infiltrated cells into immune rings and the cluster centre locations. In order to simulate a set of images, use the arguments below to specify the ranges of the properties. The predefined cell types can not be changed, while users can change them manually after the simulation.

prop_infiltration

Numeric Vector. The degree of infiltration. If numeric, all simulated images have the same infiltration degree. If vector, images with a range of different

infiltration proportions will be simulated.

ring_width Numeric Vector. The width of the immune ring. If numeric, all simulated images

have the same ring width. If vector, images with a range of different ring widths

will be simulated.

cluster_loc_x Numeric or Vector. The X location of the cluster center offset. If numeric, all

simulated images have the same center X location. If vector, images with a

range of different center locations will be simulated.

cluster_loc_y Numeric or Vector of the same length of cluster_loc_x. The Y location of the

cluster center offset.

prop_ring_infiltration

Numeric or Vector. The degree of tumour infiltration in the region of immune

rıngs.

plot_image Boolean Whether plot the simulated images or not.Default is TRUE.

plot_categories

String Vector specifying the order of the cell cateories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for

s NOLL - the cen categories under the Cen. Type column

plotting.

plot_colours String Vector specifying the order of the colours that correspond to the plot_categories

arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

A list of spe objects

8 plot_cells

See Also

multiple_background_images for simulating multiple mixed background images, and multiple_images_with_clusters for simulating multiple images with clusters.

Other simulate multiple images functions: multiple_background_images(), multiple_images_with_clusters()

Examples

```
set.seed(610)
ring_image_list <- multiple_images_with_immune_rings(bg_sample = bg1,
ring_shape = 1, prop_infiltration = 0, ring_width = seq(50,100,10),
cluster_size = 200, cluster_loc_x = 0, cluster_loc_y = 0,
prop_ring_infiltration = seq(0, 0.2,0.05), plot_image = TRUE)</pre>
```

plot_cells

plot_cells

Description

Produces a scatter plot of the cells in the tissue. Cells are coloured categorically by Cell.Type column. Cell categories not specified will be coloured "lightgrey" and labled "Unspecified".

Usage

```
plot_cells(
   spe_object,
   categories_of_interest = NULL,
   colour_vector = NULL,
   feature_colname = "Cell.Type"
)
```

Arguments

```
spe_object SpatialExperiment object or a data.frame that has cell locations and cell type info.

categories_of_interest String Vector of cell categories to be coloured.

colour_vector String Vector specifying the colours of each cell type.

feature_colname

String specifying the column the cell categories belong to.
```

Value

A plot is returned

```
simulate_background_cells
```

Simulate background cells

Description

Simulate cell locations. The 2D locations of the cells are simulated and plotted in a rectangular window. Users can specify the window size, cell number and the minimum distance between two cells. All cells have the same cell type, specified by the "Cell.Type" param.

Usage

```
simulate_background_cells(
    n_cells,
    width,
    height,
    method = "Hardcore",
    min_d,
    oversampling_rate = 1.2,
    jitter = 0.3,
    Cell.Type = "Others",
    plot_image = TRUE
)
```

Arguments

n_cells	Numeric.	Number	of cells	to simular	te in the	background.

width, height Numeric. The width and height of the image.

method String. The distribution model for the background cells. Options are "Hardcore"

for tumour tissues and "Even" for normal tissues. Default is "Hardcore".

min_d (OPTIONAL) Numeric. Use when method is "Hardcore". The minimum dis-

tance between two cells.

oversampling_rate

(OPTIONAL) Numeric. Use when method is "Hardcore". The multiplier for oversampling. Without oversampling, the simulation deletes cells that are within min_d from each other, resulting in a less total number of cells than n_cells. Default is 1.2 (this should be set based on n_cells and min_d; should always

be larger than 1).

jitter (OPTIONAL) Numeric. Use when method is "Even". The uniform distribution

parameter to generate the jitter distance for each cell from the vertices of the

hexagon.

Cell. Type (OPTIONAL) String. The name of the background cell type. Default is "Others"

since there shouldn't be any identity of the background cells.

plot_image (OPTIONAL) Boolean. Default is TRUE.

10 simulate_clusters

Details

There are two options for the background cell distribution model. 1) Hardcore model for tumour tissues. This model uses rHardcore spatstat.random. Since rHardcore deletes cells that are within the distance of min_d to another cell, resulting in fewer cell specified by users, we here introduce parameter oversampling_rate to generate more cells than specified. 2) Normal tissues use an evenly-spaced model where the cells are distributed approximately according to the vertices of a hexagon. The function accomplishes this by generating cells on a hexagonal grid and individually applying a bounded uniform random jitter. In our algorithm, jitter is the parameter to define the uniform distribution of the jitter of the cells from the hexagon vertices. If there is a reference image, jitter can be estimated by comparing the average minimum distance between cells of the simulated image and the reference image. If without a reference image, We suggest 0.3 as the default value of jitter as this gives a sensible outcome.

Value

A data.frame of the simulated background image

See Also

```
simulate_mixing for mixed background simulation, simulate_clusters for cluster simulation, simulate_immune_rings/simulate_double_rings for immune ring simulation, and simulate_stripes for vessel simulation.
```

```
Other simulate pattern functions: simulate_clusters(), simulate_double_rings(), simulate_immune_rings(), simulate_mixing(), simulate_stripes()
```

Examples

simulate_clusters

Simulate clusters

Description

Based on an existing background image, simulate clusters of cells where the same type of cells aggregate. The default values for the arguments give an example of cluster simulation which enable an automatic simulation of clusters without the specification of any argument.

simulate_clusters 11

Usage

Arguments

bg_sample (OPTIONAL) A data frame or SpatialExperiment class object with locations

of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of

the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions".

By default use the internal bg1 background image.

n_clusters Numeric. Number of clusters. This must match the length(cluster_properties).

bg_type (OPTIONAL) String. The name of the background cell type if the background

sample does not have a "Cell.Type" column. By default is "Others".

cluster_properties

List of properties of the clusters. See examples for the format of this arg.

plot_image Boolean. Whether the simulated image is plotted.

plot_categories

String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for

plotting.

plot_colours String Vector specifying the order of the colours that correspond to the plot_categories

arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

A data.frame of the simulated image

See Also

simulate_background_cells for all cell simulation, simulate_mixing for mixed background simulation, simulate_immune_rings/simulate_double_rings for immune ring simulation, and simulate_stripes for vessel simulation.

```
Other simulate pattern functions: simulate_background_cells(), simulate_double_rings(), simulate_immune_rings(), simulate_mixing(), simulate_stripes()
```

Examples

```
set.seed(610)
cluster_image <- simulate_clusters(bg_sample = bg1,
n_clusters=2, cluster_properties=list(C1=list(name_of_cluster_cell="Tumour",
size=300, shape="0val", centre_loc=data.frame("x"=500, "y"=500),
infiltration_types=c("Immune1", "Others"), infiltration_proportions=c(0.1, 0.05)),
C2=list(name_of_cluster_cell="Immune1", size=500, shape="Irregular",
centre_loc=data.frame("x"=1500,"y"=500), infiltration_types=c("Immune2", "Others"),
infiltration_proportions=c(0.1, 0.05))))</pre>
```

simulate_double_rings Simulate double immune rings

Description

Based on an existing background image, simulate double rings of immune cells that surround tumour clusters. The inner ring is the internal margin of a tumour cluster. The outer ring is the external tumour margin. The tumour clusters and the double immune rings are simulated at the same time. The default values for the arguments give an example of double ring simulation which enable an automatic simulation of double rings without the specification of any argument.

Usage

```
simulate_double_rings(
 bg_sample = bg1,
 bg_type = "Others".
 n_dr = 2,
 dr_properties = list(D1 = list(name_of_cluster_cell = "Tumour", size = 300, shape =
    "Circle", centre_loc = data.frame(x = 1000, y = 1000), infiltration_types =
  c("Immune1", "Immune2", "Others"), infiltration_proportions = <math>c(0.15, 0.05, 0.05),
    name_of_ring_cell = "Immune1", immune_ring_width = 150,
  immune_ring_infiltration_types = c("Others"), immune_ring_infiltration_proportions =
   c(0.15), name_of_double_ring_cell = "Immune2", double_ring_width = 100,
  double_ring_infiltration_types = c("Others"), double_ring_infiltration_proportions =
   c(0.15)),
    D2 = list(name_of_cluster_cell = "Tumour", size = 300, shape =
    "Oval", centre_loc = data.frame(x = 1200, y = 1200), infiltration_types =
  c("Immune1", "Immune2", "Others"), infiltration_proportions = c(0.15, 0.05, 0.05),
    name_of_ring_cell = "Immune1", immune_ring_width = 150,
  immune_ring_infiltration_types = c("Others"), immune_ring_infiltration_proportions =
    c(0.15), name_of_double_ring_cell = "Immune2", double_ring_width = 100,
  double_ring_infiltration_types = c("Others"), double_ring_infiltration_proportions =
    c(0.15)),
 plot_image = TRUE,
 plot_categories = NULL,
 plot_colours = NULL
)
```

simulate_double_rings 13

Arguments

bg_sample (OPTIONAL) A data frame or Spatial Experiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image. (OPTIONAL) String The name of the background cell type. By default is "Othbg_type ers". Number of double immune rings. This must match the length(dr_properties). n_dr List of properties of the double immune rings. Please refer to the examples for dr_properties the structure of dr_properties. Boolean. Whether the simulated image is plotted. plot_image plot_categories String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for plotting. plot_colours String Vector specifying the order of the colours that correspond to the plot_categories arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

A data.frame of the simulated image

See Also

simulate_background_cells for all cell simulation, simulate_mixing for mixed background simulation, simulate_clusters for cluster simulation, simulate_immune_rings for single immune ring simulation, and simulate_stripes for vessel simulation.

Other simulate pattern functions: simulate_background_cells(), simulate_clusters(), simulate_immune_rings(), simulate_mixing(), simulate_stripes()

Examples

```
set.seed(610)
# manually define the properties of the immune ring
dr_properties <- list(D1 = list(name_of_cluster_cell = "Tumour", size = 300,
shape = "Circle",centre_loc = data.frame("x" = 1000, "y" = 1000),infiltration_types
= c("Immune1", "Immune2", "Others"),infiltration_proportions = c(0.15, 0.05, 0.05),
name_of_ring_cell = "Immune1",immune_ring_width = 150,immune_ring_infiltration_types
= c("Others"),immune_ring_infiltration_proportions = c(0.15),name_of_double_ring_cell
= "Immune2",double_ring_width = 100,double_ring_infiltration_types = c("Others"),
double_ring_infiltration_proportions = c(0.15)),
D2 = list(name_of_cluster_cell = "Tumour",size = 300,shape = "Oval",centre_loc
= data.frame("x" = 1200, "y" = 1200),infiltration_types = c("Immune1", "Immune2", "Others"),
infiltration_proportions = c(0.15, 0.05, 0.05),name_of_ring_cell = "Immune1",
immune_ring_width = 150,immune_ring_infiltration_types = c("Others"),
immune_ring_width = 100,double_ring_infiltration_types = c("Others"),</pre>
```

```
double_ring_infiltration_proportions = c(0.15)))
double_ring_image <- simulate_double_rings(bg_sample = bg1,
n_dr = 2, dr_properties = dr_properties)</pre>
```

simulate_immune_rings simulate_immune_rings

Description

Based on an existing background image, simulate rings of immune cells that surround tumour clusters. The tumour clusters and immune rings are simulated at the same time. The default values for the arguments give an example of immune ring simulation which enable an automatic simulation of immune rings without the specification of any argument.

Usage

```
simulate_immune_rings(
 bg_sample = bg1,
 bg_type = "Others",
 n_{ir} = 2
 ir_properties = list(I1 = list(name_of_cluster_cell = "Tumour", size = 600, shape =
    "Circle", centre_loc = data.frame(x = 930, y = 1000), infiltration_types =
  c("Immune1", "Immune2", "Others"), infiltration_proportions = <math>c(0.15, 0.05, 0.05),
   name_of_ring_cell = "Immune1", immune_ring_width = 150,
  immune_ring_infiltration_types = c("Others"), immune_ring_infiltration_proportions =
  c(0.15)), I2 = list(name_of_cluster_cell = "Tumour", size = 500, shape = "Oval",
  centre_loc = data.frame(x = 1330, y = 1100), infiltration_types = c("Immune1",
    "Immune2", "Others"), infiltration_proportions = c(0.15, 0.05, 0.05),
   name_of_ring_cell = "Immune1", immune_ring_width = 150,
  immune_ring_infiltration_types = c("Others"), immune_ring_infiltration_proportions =
   c(0.15)),
  plot_image = TRUE,
 plot_categories = NULL,
 plot_colours = NULL
)
```

Arguments

bg_sample

(OPTIONAL) A data frame or SpatialExperiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image.

bg_type

(OPTIONAL) String The name of the background cell type. By default is "Others".

simulate_immune_rings 15

n_ir Number of immune rings. This must match the arg length(ir_properties).
ir_properties List of properties of the immune rings. Please refer to the examples for the structure of ir_properties.
plot_image Boolean. Whether the simulated image is plotted.
plot_categories
String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for plotting.
plot_colours
String Vector specifying the order of the colours that correspond to the plot_categories arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

A data.frame of the simulated image

See Also

simulate_background_cells for all cell simulation, simulate_mixing for mixed background simulation, simulate_clusters for cluster simulation, simulate_double_rings for double immune ring simulation, and simulate_stripes for vessel simulation.

Other simulate pattern functions: simulate_background_cells(), simulate_clusters(), simulate_double_rings(), simulate_mixing(), simulate_stripes()

Examples

```
set.seed(610)
# manually define the properties of the immune ring
ir_properties <- list(I1=list(name_of_cluster_cell="Tumour", size=600,
shape="Circle",centre_loc=data.frame("x"=930, "y"=1000),
infiltration_types=c("Immune1", "Immune2", "Others"), infiltration_proportions
=c(0.15, 0.05, 0.05), name_of_ring_cell="Immune1", immune_ring_width=150,
immune_ring_infiltration_types=c("Others"), immune_ring_infiltration_proportions=c(0.15)),
I2=list(name_of_cluster_cell="Tumour", size=500, shape="Oval",
centre_loc=data.frame("x"=1330, "y"=1100), infiltration_types=c("Immune1", "Immune2", "Others"),
infiltration_proportions=c(0.15, 0.05, 0.05), name_of_ring_cell="Immune1",
immune_ring_width=150, immune_ring_infiltration_types=c("Others"),
immune_ring_infiltration_proportions=c(0.15)))
# simulate immune rings (`n_ir` should match the length of `ir_properties`)
immune_ring_image <- simulate_immune_rings(bg_sample=bg1,
n_ir=2, ir_properties=ir_properties)</pre>
```

16 simulate_mixing

simulate_	mixing	Simi
STINUTACE.		Silli

Simulate mixed background image

Description

Based on an existing background image, simulate mixed cell types with specified cell types and proportions. The default values for the arguments give an example of mixed cell type simulation which enable an automatic simulation of mixed cell types without the specification of any argument.

Usage

```
simulate_mixing(
  bg_sample = bg1,
  idents = c("Tumour", "Immune", "Others"),
  props = c(0.2, 0.4, 0.4),
  plot_image = TRUE,
  plot_colours = NULL
)
```

Arguments

bg_sample	(OPTIONAL) A data frame or SpatialExperiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image.
idents	String Vector of the mixed cell types.
props	Numeric Vector of the proportions of the mixed cell types.
plot_image	Boolean. Whether the simulated image is plotted.
plot_colours	String Vector specifying the order of the colours that correspond to the idents arg. Default is NULL - the predefined colour vector would be used for plotting

Value

A data.frame of the simulated image

See Also

```
simulate_background_cells for all cell simulation, simulate_clusters for cluster simulation, simulate_immune_rings/simulate_double_rings for immune ring simulation, and simulate_stripes for vessel simulation.
```

```
Other simulate pattern functions: simulate_background_cells(), simulate_clusters(), simulate_double_rings(), simulate_immune_rings(), simulate_stripes()
```

simulate_stripes 17

Examples

```
set.seed(610)
mix_background <- simulate_mixing(bg_sample=bg1,
idents=c("Tumour","Immune", "Others"), props=c(0.2, 0.4, 0.4),
plot_image=TRUE)</pre>
```

simulate_stripes

simulate_stripes

Description

Based on an existing background image, simulate stripes of cells representing vessels. The cell types and widths of the stripes can be specified. The locations of the stripes are randomly simulated. Please refer to the examples to check what properties of the stripes can be specified. The default values for the arguments give an example of vessel simulation which enable an automatic simulation of vessels without the specification of any argument.

Usage

```
simulate_stripes(
  bg_sample = bg1,
  n_stripe_type = 2,
  stripe_properties = list(S1 = list(number_of_stripes = 1, name_of_stripe_cell =
    "Others", width_of_stripe = 80, infiltration_types = c("Immune"),
    infiltration_proportions = c(0.08)), S2 = list(number_of_stripes = 1,
    name_of_stripe_cell = "Others", width_of_stripe = 80, infiltration_types =
    c("Immune"), infiltration_proportions = c(0.08))),
    plot_image = TRUE,
    plot_categories = NULL,
    plot_colours = NULL
)
```

Arguments

bg_sample

(OPTIONAL) A data frame or SpatialExperiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords() of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image.

n_stripe_type Number of stripe types. Should be the same as length(stripe_properties. stripe_properties

List of the properties of the stripes. See examples for the format of the properties. Please refer to the examples for the structure of stripe_properties.

plot_image

Boolean. Whether the simulated image is plotted. Default is TRUE.

TIS

plot_categories

String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for plotting.

plot_colours

String Vector specifying the order of the colours that correspond to the plot_categories arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

A data frame of the simulated image

See Also

simulate_background_cells for all cell simulation, simulate_mixing for mixed background simulation, simulate_clusters for cluster simulation, and simulate_immune_rings/simulate_double_rings for immune ring simulation

Other simulate pattern functions: simulate_background_cells(), simulate_clusters(), simulate_double_rings(), simulate_immune_rings(), simulate_mixing()

Examples

```
stripe_properties <- list(
S1 = list(
   number_of_stripes = 1,
   name_of_stripe_cell = "Others",
   width_of_stripe = 80,
   infiltration_types = c("Immune"),
   infiltration_proportions = c(0.08)
), S2 = list(
   number_of_stripes = 1,
   name_of_stripe_cell = "Others",
   width_of_stripe = 80,
   infiltration_types = c("Immune"),
   infiltration_proportions = c(0.08)))
set.seed(610)
stripe_image <- simulate_stripes(bg_sample = bg1, n_stripe_type=2,
   stripe_properties = stripe_properties, plot_image = TRUE)</pre>
```

TIS

Tissue Image Simulator (TIS)

Description

Tissue Image Simulator (TIS) integrates the basic simulation functions in spaSim, including simulating (mixed) background image, clusters, immune rings, double immune rings and stripes. The patterns are simulated on separate layers sequentially (e.g. immune rings are simulated after/on top of background cells). And each layer is also plot sequentially.

TIS 19

Pattern properties (e.g. properties_of_clusters) contain the properties of a pattern in the format of list where each element is one pattern. These properties need to be manually defined. Details about the format of the properties see the examples in simulate_clusters simulate_immune_rings simulate_double_rings simulate_stripes

Usage

```
TIS(
  bg_sample = NULL,
  n_{cells} = NULL,
 width = NULL,
 height = NULL,
  bg_method = NULL,
 min_d = NULL,
  oversampling_rate = 1.2,
  jitter = 0.3,
  names_of_bg_cells = NULL,
  proportions_of_bg_cells = NULL,
  n_clusters = NULL,
  properties_of_clusters = NULL,
  n_immune_rings = NULL,
  properties_of_immune_rings = NULL,
  n_double_rings = NULL,
  properties_of_double_rings = NULL,
  n_stripe_type = NULL,
  properties_of_stripes = NULL,
  image_name = NULL,
  plot_image = FALSE,
  plot_categories = NULL,
  plot_colours = NULL
)
```

Arguments

bį	g_sample	(OPTIONAL) A data frame or SpatialExperiment class object with locations of points representing background cells. Further cell types will be simulated based on this background sample. The data.frame or the spatialCoords of the SPE object should have colnames including "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal bg1 background image.
n.	_cells	(OPTIONAL) Number of background cells to simulate. Only when bg_sample is NULL.
W	idth	(OPTIONAL) Number The width of the image.
h	eight	(OPTIONAL) Number The height of the image.
b	g_method	(OPTIONAL) String specifying the distribution of the background cells. Choose from "Hardcore" and "Even".
m	in_d	(OPTIONAL) Number The minimum distance between two cells.

20 TIS

oversampling_rate

(OPTIONAL) Numeric. The multiplier for oversampling. Without oversampling, the simulation deletes cells that are within min_d from each other, resulting in a less total number of cells than n_cells. Default is 1.2 (this should be set based on n_cells and min_d; should always be larger than 1).

jitter

(OPTIONAL) Numeric. Use when method is "Even". The uniform distribution parameter to generate the jitter distance for each cell from the vertices of the hexagon.

names_of_bg_cells

(OPTIONAL) Vector The cell types of the background cells. If NULL, the background cells are of one type.

proportions_of_bg_cells

(OPTIONAL) Vector The corresponding proportion of each cell type in the background cells.

n_clusters (OPTIONAL) Number of cell clusters. If NULL, no clusters to simulate. properties_of_clusters

(OPTIONAL) List of parameters to define the clusters.

n_immune_rings (OPTIONAL) Number of immune rings. If NULL, no immune rings to simulate. properties_of_immune_rings

(OPTIONAL) List of parameters to define the immune rings.

n_double_rings (OPTIONAL) Number of double immune rings. If NULL, no double rings to simulate.

properties_of_double_rings

(OPTIONAL) List of parameters to define the double immune rings.

n_stripe_type (OPTIONAL) Number of stripe (vessel) types. If NULL, no stripes to simulate. properties_of_stripes

(OPTIONAL) List of parameters to define the stripes.

image_name (OPTIONAL) String to name the output tissue image.

plot_image Boolean. Whether the simulated image is plotted.

plot_categories

String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for plotting.

plot_colours

String Vector specifying the order of the colours that correspond to the plot_categories arg. Default is NULL - the predefined colour vector would be used for plotting.

Value

An spe object of the simulated image

Examples

```
set.seed(610)
double_ring_image <- TIS(bg_sample=bg1, n_clusters=1,
properties_of_clusters=list(C1=list( name_of_cluster_cell="Tumour",
size=300, shape="Oval", centre_loc=data.frame("x"=500, "y"=500),
infiltration_types=c("Immune1", "Others"), infiltration_proportions=c(0.1, 0.05))),
plot_image=TRUE)</pre>
```

Index

```
* datasets
    bg1, 2
* simulate multiple images functions
    multiple_background_images, 3
    multiple_images_with_clusters, 4
    multiple_images_with_immune_rings,
* simulate pattern functions
    simulate_background_cells, 9
    simulate_clusters, 10
    simulate_double_rings, 12
    simulate_immune_rings, 14
    simulate_mixing, 16
    simulate_stripes, 17
bg1, 2, 4, 5, 7, 11, 13, 14, 16, 17, 19
format_spe, 3
multiple_background_images, 3, 6, 8
multiple_images_with_clusters, 4, 4, 8
multiple_images_with_immune_rings, 4, 6,
         6
plot_cells, 8
simulate_background_cells, 9, 11, 13, 15,
simulate_clusters, 10, 10, 13, 15, 16, 18, 19
simulate_double_rings, 10, 11, 12, 15, 16,
         18, 19
simulate_immune_rings, 10, 11, 13, 14, 16,
         18, 19
simulate_mixing, 10, 11, 13, 15, 16, 18
simulate_stripes, 10, 11, 13, 15, 16, 17, 19
{\it spatstat.random}, 10
TIS, 18
```