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background_df Simulated Background Data for cPCA and scPCA
Description

The background data consisting of 400 observations and 30 variables was simulated as follows:

Usage

 Each of the first 10 variables was drawn from $N(0, 10)$
* Variables 11 through 20 were drawn from $N(0, 3)$
* Variables 21 through 30 were drawn from $N(0, 1)$

data(background_df)

Format

A simple data.frame.


https://orcid.org/0000-0002-4850-2507
https://orcid.org/0000-0002-7127-2789
https://orcid.org/0000-0002-6069-8629

bpContrastiveCov

Examples

data(background_df)

bpContrastiveCov

Parallelized Contrastive Covariance Matrices

Description

Compute the list of contrastive covariance matrices in parallel using bplapply.

Usage

bpContrastiveCov(

target,
background,
contrasts,
center,
scale,
scaled_matrix

Arguments

target

background
contrasts

center

scale

scaled_matrix

Value

= FALSE

The target (experimental) data set, in a standard format such as a data.frame
or matrix.

The background data set, in a standard format such as a data. frame or matrix.
A numeric vector of the contrastive parameters.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision. Defaults to FALSE.

A list of contrastive covariance matrices. Each element has an associated contrastive parameter in
the contrasts vector.
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bpFitCPCA

Contrastive Principal Component Analysis in Parallel

Description

Given target and background dataframes or matrices, cPCA will perform contrastive principal com-
ponent analysis (cPCA) of the target data for a given number of eigenvectors and a vector of real
valued contrast parameters. This is identical to the implementation of cPCA method by Abid et al.
Abid et al. (2018). Analogous to fitCPCA, but replaces all lapply calls by bplapply.

Usage

bpFitCPCA(
target,
center,
scale,
c_contrasts,
contrasts,
n_eigen,
n_medoids,

eigdecomp_tol,
eigdecomp_iter

Arguments

target

center

scale

c_contrasts

contrasts

n_eigen
n_medoids

eigdecomp_tol

eigdecomp_iter

The target (experimental) data set, in a standard format such as a data.frame
or matrix.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A list of contrastive covariances.

A numeric vector of the contrastive parameters used to compute the contrastive
covariances.

A numeric indicating the number of eigenvectors to be computed.
A numeric indicating the number of medoids to consider.

A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to Te-10.

A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.
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Value

A list of lists containing the cPCA results for each contrastive parameter deemed to be a medoid.

* rotation - the list of matrices of variable loadings
* x - the list of rotated data, centred and scaled if requested, multiplied by the rotation matrix
* contrast - the list of contrastive parameters

* penalty - set to zero, since loadings are not penalized in cPCA

References

Abid A, Zhang MJ, Bagaria VK, Zou J (2018). “Exploring patterns enriched in a dataset with
contrastive principal component analysis.” Nature communications, 9(1), 2134.

bpFitGrid Identify the Optimal Contrastive and Penalty Parameters in Parallel

Description

This function is used to automatically select the optimal contrastive parameter and L1 penalty term
for scPCA based on a clustering algorithm and average silhouette width. Analogous to fitGrid,
but replaces all 1apply calls by bplapply.

Usage

bpFitGrid(
target,
target_valid
center,
scale,
c_contrasts,
contrasts,
penalties,
n_eigen,
alg,
clust_method = c("kmeans”, "pam”, "hclust"),
n_centers,
max_iter = 10,
linkage_method = "complete”,
clusters = NULL,
eigdecomp_tol = 1e-10,
eigdecomp_iter = 1000

NULL,
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Arguments

target The target (experimental) data set, in a standard format such as a data.frame
or matrix.

target_valid A holdout set of the target (experimental) data set, in a standard format such
as a data. frame or matrix. NULL by default but used by cvSelectParams for
cross-validated selection of the contrastive and penalization parameters.

center A logical indicating whether the target and background data sets should be
centered to mean zero.

scale A logical indicating whether the target and background data sets should be
scaled to unit variance.

c_contrasts A list of contrastive covariances.

contrasts A numeric vector of the contrastive parameters used to compute the contrastive
covariances.

penalties A numeric vector of the penalty terms.

n_eigen A numeric indicating the number of eigenvectors to be computed.

alg A character indicating the SPCA algorithm used to sparsify the contrastive

loadings. Currently supports iterative for the Zou et al. (2006) implementen-
tation, var_proj for the non-randomized Erichson et al. (2018) solution, and
rand_var_proj fir the randomized Erichson et al. (2018) result.

clust_method A character specifying the clustering method to use for choosing the optimal

constrastive parameter. Currently, this is limited to either k-means, partitioning
around medoids (PAM), and hierarchical clustering. The default is k-means

clustering.
n_centers A numeric giving the number of centers to use in the clustering algorithm.
max_iter A numeric giving the maximum number of iterations to be used in k-means

clustering, defaulting to 10.

linkage_method A character specifying the agglomerative linkage method to be used if clust_method
= "hclust”. The options are ward.D2, single, complete, average, mcquitty,
median, and centroid. The default is complete.

clusters A numeric vector of cluster labels for observations in the target data. Defaults
to NULL, but is otherwise used to identify the optimal set of hyperparameters
when fitting the scPCA and the automated version of cPCA.

eigdecomp_tol A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to 1e-10.

eigdecomp_iter A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.

Value

A list similar to that output by prcomp:

* rotation - the matrix of variable loadings
* x - the rotated data, centred and scaled, if requested, data multiplied by the rotation matrix
* contrast - the optimal contrastive parameter

* penalty - the optimal L1 penalty term
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References

Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.

Zou H, Hastie T, Tibshirani R (2006). “Sparse principal component analysis.” Journal of com-
putational and graphical statistics, 15(2), 265-286.

checkArgs

Check Arguments passed to the scPCA Function

Description

Checks whether or not the all arguments in the scPCA functions are input properly.

Usage

checkArgs(
target,

background,

center,
scale,
n_eigen,

contrasts,
penalties,
clust_method,
linkage_method,
clusters,
eigdecomp_tol,
eigdecomp_iter,
n_centers,
scaled_matrix

Arguments

target

background

center

scale

n_eigen
contrasts

penalties

The target (experimental) data set, in a standard format such as a data.frame
or matrix.

The background data set, in a standard format such as a data. frame or matrix.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A numeric indicating the number of eigenvectors to be computed.
A numeric vector of the contrastive parameters.

A numeric vector of the penalty terms.
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clust_method A character specifying the clustering method to use for choosing the optimal
constrastive parameter. Currently, this is limited to either k-means, partitioning
around medoids (PAM), and hierarchical clustering. The default is k-means
clustering.

linkage_method A character specifying the agglomerative linkage method to be used if clust_method
="hclust”. The options are ward.D2, single, complete, average, mcquitty
median, and centroid. The default is complete

clusters A numeric vector of cluster labels for observations in the target data. Defaults
to NULL, but is otherwise used to identify the optimal set of hyperparameters
when fitting the scPCA and the automated version of cPCA.

eigdecomp_tol A numeric providing the level of precision used by eigendecompositon calcula-
tions.

eigdecomp_iter A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations.

n_centers A numeric giving the number of centers to use in the clustering algorithm. If set
to 1, cPCA, as first proposed by Erichson et al. (2018), is performed, regardless
of what the penalties argument is set to.

scaled_matrix A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision.

Value

Whether all argument conditions are satisfied

References

Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.

contrastiveCov Contrastive Covariance Matrices

Description

Compute the list of contrastive covariance matrices.

Usage

contrastiveCov(
target,
background,
contrasts,
center,
scale,
scaled_matrix = FALSE



covMat

Arguments

target

background
contrasts

center
scale

scaled_matrix

Value

The target (experimental) data set, in a standard format such as a data.frame
or matrix.

The background data set, in a standard format such as a data. frame or matrix.
A numeric vector of the contrastive parameters.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision. Defaults to FALSE.

A list of contrastive covariance matrices. Each element has an associated contrastive parameter in
the contrasts vector.

covMat

Compute Sample Covariance Matrix

Description

covMat computes the sample covariance matrix of a data set. If a variable in the dataset has zero
variance, then its corresponding row and column in the covariance matrix are zero vectors.

Usage

covMat(data, center = TRUE, scale = TRUE, scaled_matrix = FALSE)

Arguments

data

center
scale

scaled_matrix

Value

The data for which to compute the sample covariance matrix.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision. Defaults to FALSE.

the covariance matrix of the data.
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cvSelectParams

cvSelectParams

Fold-Specific Selection of Contrastive and Penalization Parameters

Description

A wrapper function for fitting various internal functions to select the optimal setting of the con-
trastive and penalization parameters via cross-validation. For internal use only.

Usage

cvSelectParams(

fold,
target,

background,

center,
scale,
n_eigen,
alg = alg,
contrasts,
penalties,

clust_method,

n_centers,
max_iter,

linkage_method,

n_medoids,
parallel,
clusters,

eigdecomp_tol,
eigdecomp_iter,
scaled_matrix

Arguments

fold
target

background

center

scale

n_eigen

Object specifying cross-validation folds as generated by a call to make_folds.

The target (experimental) data set, in a standard format such as a data.frame
or matrix.

The background data set, in a standard format such as a data. frame or matrix.
Note that the number of features must match the number of features in the target
data.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A numeric indicating the number of eigenvectors (or sparse contrastive compo-
nents) to be computed. The default is to compute two such eigenvectors.
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alg A character indicating the SPCA algorithm used to sparsify the contrastive
loadings. Currently supports iterative for the Zou et al. (2006) implemen-
tation, var_proj for the non-randomized Erichson et al. (2018) solution, and
rand_var_proj for the randomized Erichson et al. (2018) result.

contrasts A numeric vector of the contrastive parameters. Each element must be a unique
non-negative real number. The default is to use 40 logarithmically spaced values
between 0.1 and 1000.

penalties A numeric vector of the L1 penalty terms on the loadings. The default is to use
20 equidistant values between 0.05 and 1.

clust_method A character specifying the clustering method to use for choosing the optimal
contrastive parameter. Currently, this is limited to either k-means, partitioning
around medoids (PAM), and hierarchical clustering. The default is k-means
clustering.

n_centers A numeric giving the number of centers to use in the clustering algorithm. If
set to 1, cPCA, as first proposed by Abid et al., is performed, regardless of what
the penalties argument is set to.

max_iter A numeric giving the maximum number of iterations to be used in k-means
clustering, defaulting to 10.

linkage_method A character specifying the agglomerative linkage method to be used if clust_method
= "hclust”. The options are ward.D2, single, complete, average, mcquitty,
median, and centroid. The default is complete.

n_medoids A numeric indicating the number of medoids to consider if n_centers is set to
1. The default is 8 such medoids.
parallel A logical indicating whether to invoke parallel processing via the BiocParallel

infrastructure. The default is FALSE for sequential evaluation.

clusters A numeric vector of cluster labels for observations in the target data. Defaults
to NULL, but is otherwise used to identify the optimal set of hyperparameters
when fitting the scPCA and the automated version of cPCA.

eigdecomp_tol A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to 1e-10.

eigdecomp_iter A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.

scaled_matrix A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision.

Value
Output structure matching either that of fitCPCA or fitGrid (or their parallelized variants, namely
either bpFitCPCA and link{bpFitGrid}, respectively).

References

Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.
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fitCPCA

Zou H, Hastie T, Tibshirani R (2006). “Sparse principal component analysis.” Journal of com-
putational and graphical statistics, 15(2), 265-286.

fitCPCA

Contrastive Principal Component Analysis

Description

Given target and background dataframes or matrices, cPCA will perform contrastive principal com-
ponent analysis (cPCA) of the target data for a given number of eigenvectors and a vector of real
valued contrast parameters. This is identical to the implementation of cPCA method of Abid et al.

(2018).

Usage

fitCPCA(
target,
center,
scale,
c_contrasts,
contrasts,
n_eigen,
n_medoids,

eigdecomp_tol,
eigdecomp_iter

Arguments

target
center
scale

c_contrasts

contrasts

n_eigen

n_medoids
eigdecomp_tol

eigdecomp_iter

The target (experimental) data set, in a standard format such as a data.frame
or matrix.

A logical indicating whether the target and background data sets should be
centered to mean zero.

A logical indicating whether the target and background data sets should be
scaled to unit variance.

A list of contrastive covariances.

A numeric vector of the contrastive parameters used to compute the contrastive
covariances.

A numeric indicating the number of eigenvectors to be computed.

A numeric indicating the number of medoids to consider. Not used if contrasts
is a single value.

A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to 1e-10.

A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.
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Value

A list of lists containing the cPCA results for each contrastive parameter deemed to be a medoid.

* rotation - the list of matrices of variable loadings
* x - the list of rotated data, centred and scaled if requested, multiplied by the rotation matrix
* contrast - the list of contrastive parameters

* penalty - set to zero, since loadings are not penalized in cPCA

References

Abid A, Zhang MJ, Bagaria VK, Zou J (2018). “Exploring patterns enriched in a dataset with
contrastive principal component analysis.” Nature communications, 9(1), 2134.

fitGrid Identify the Optimal Contrastive and Penalty Parameters

Description

This function is used to automatically select the optimal contrastive parameter and L1 penalty term
for scPCA based on a clustering algorithm and average silhouette width.

Usage

fitGrid(
target,
target_valid = NULL,
center,
scale,
c_contrasts,
contrasts,
alg,
penalties,
n_eigen,
clust_method = c("kmeans”, "pam”, "hclust"),
n_centers,
max_iter = 10,
linkage_method = "complete”,
clusters = NULL,
eigdecomp_tol = 1e-10,
eigdecomp_iter = 1000
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Arguments

target The target (experimental) data set, in a standard format such as a data.frame
or matrix.

target_valid A holdout set of the target (experimental) data set, in a standard format such
as a data. frame or matrix. NULL by default but used by cvSelectParams for
cross-validated selection of the contrastive and penalization parameters.

center A logical indicating whether the target and background data sets should be
centered to mean zero.

scale A logical indicating whether the target and background data sets should be
scaled to unit variance.

c_contrasts A list of contrastive covariances.

contrasts A numeric vector of the contrastive parameters used to compute the contrastive
covariances.

alg A character indicating the SPCA algorithm used to sparsify the contrastive

loadings. Currently supports iterative for the Zou et al. (2006) implementen-
tation, var_proj for the non-randomized Erichson et al. (2018) solution, and
rand_var_proj for the randomized Erichson et al. (2018) result.

penalties A numeric vector of the penalty terms.

n_eigen A numeric indicating the number of eigenvectors to be computed.

clust_method A character specifying the clustering method to use for choosing the optimal
constrastive parameter. Currently, this is limited to either k-means, partitioning
around medoids (PAM), and hierarchical clustering. The default is k-means

clustering.
n_centers A numeric giving the number of centers to use in the clustering algorithm.
max_iter A numeric giving the maximum number of iterations to be used in k-means

clustering, defaulting to 10.

linkage_method A character specifying the agglomerative linkage method to be used if clust_method
= "hclust”. The options are ward.D2, single, complete, average, mcquitty,
median, and centroid. The default is complete.

clusters A numeric vector of cluster labels for observations in the target data. Defaults
to NULL, but is otherwise used to identify the optimal set of hyperparameters
when fitting the scPCA and the automated version of cPCA.

eigdecomp_tol A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to 1e-10.

eigdecomp_iter A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.

Value

A list similar to that output by prcomp:

* rotation - the matrix of variable loadings
* x - the rotated data, centred and scaled, if requested, data multiplied by the rotation matrix
* contrast - the optimal contrastive parameter

* penalty - the optimal L1 penalty term
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References
Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.

Zou H, Hastie T, Tibshirani R (2006). “Sparse principal component analysis.” Journal of com-
putational and graphical statistics, 15(2), 265-286.

safeColScale Safe Centering and Scaling of Columns

Description

safeColScale is a safe utility for centering and scaling an input matrix X. It is intended to avoid the
drawback of using scale on data with constant variance by inducing adding a small perturbation to
truncate the values in such columns. It also takes the opportunity to be faster than scale through
relying on matrixStats or DelayedMatrixStats, depending on the type of matrix being processed,
for a key internal computation.

Usage
safeColScale(
X,
center = TRUE,
scale = TRUE,
tol = .Machine$double.eps,
eps = 0.01,
scaled_matrix = FALSE
)
Arguments
X An input matrix to be centered and/or scaled. If X is not of class matrix or
DelayedMatrix, then it must be coercible to a matrix.
center A logical indicating whether to re-center the columns of the input X.
scale A logical indicating whether to re-scale the columns of the input X.
tol A tolerance level for the lowest column variance (or standard deviation) value
to be tolerated when scaling is desired. The default is set to double.eps of
machine precision .Machine.
eps The desired lower bound of the estimated variance for a given column. When

the lowest estimate falls below tol, it is truncated to the value specified in this
argument. The default is 0.01.

scaled_matrix A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision. Defaults to FALSE.
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Value

A centered and/or scaled version of the input data.

scPCA Sparse Contrastive Principal Component Analysis

Description

Given target and background data frames or matrices, scPCA will perform the sparse contrastive
principal component analysis (scPCA) of the target data for a given number of eigenvectors, a
vector of real-valued contrast parameters, and a vector of sparsity inducing penalty terms.

If instead you wish to perform contrastive principal component analysis (cPCA), set the penalties
argument to @. So long as the n_centers parameter is larger than one, the automated hyperpa-
rameter tuning heuristic described in Boileau et al. (2020) is used. Otherwise, the semi-automated
approach of Abid et al. (2018) is used to select the appropriate hyperparameter.

Usage

scPCA(
target,
background,
center = TRUE,
scale = FALSE,
n_eigen = 2,
cv = NULL,
alg = c("iterative”, "var_proj", "rand_var_proj"),
contrasts = exp(seq(log(@.1), log(1000), length.out = 40)),
penalties = seq(0.05, 1, length.out = 20),
clust_method = c("kmeans”, "pam”, "hclust"),
n_centers = NULL,
max_iter = 10,
linkage_method = "complete”,
n_medoids = 8,
parallel = FALSE,
clusters = NULL,
eigdecomp_tol = 1e-10,
eigdecomp_iter = 1000,
scaled_matrix = FALSE

)
Arguments
target The target (experimental) data set, in a standard format such as a data.frame
or matrix. dgCMatrix and DelayedMatrix objects are also supported.
background The background data set, in a standard format such as a data. frame or matrix.

The features must match the features of the target data set. dgCMatrix and
DelayedMatrix objects are also supported.
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center A logical indicating whether the target and background data sets’ features
should be centered to mean zero.

scale A logical indicating whether the target and background data sets’ features
should be scaled to unit variance.

n_eigen A numeric indicating the number of eigenvectors (or (sparse) contrastive com-
ponents) to be computed. Two eigenvectors are computed by default.

cv A numeric indicating the number of cross-validation folds to use in choos-
ing the optimal contrastive and penalization parameters from over the grids of
contrasts and penalties. Cross-validation is expected to improve the robust-
ness and generalization of the choice of these parameters. However, it increases
the time the procedure costs. The default is therefore NULL, corresponding to no
cross-validation.

alg A character indicating the sparse PCA algorithm used to sparsify the con-
trastive loadings. Currently supports iterative for the Zou et al. (2006) im-
plementation, var_proj for the non-randomized Erichson et al. (2018) solution,
and rand_var_proj for the randomized Erichson et al. (2018) implementation.
Defaults to iterative.

contrasts A numeric vector of the contrastive parameters. Each element must be a unique,
non-negative real number. By default, 40 logarithmically spaced values between
0.1 and 1000 are used. If a single value is provided and penalties is set to 0,
then n_centers, clust_method, max_iter, linkage_method, n_medoids, and
parallel can be safely ignored.

penalties A numeric vector of the L1 penalty terms on the loadings. The default is to use
20 equidistant values between 0.05 and 1. If penalties is set to 0, then cPCA
is performed in place of scPCA. See contrasts and n_centers arguments for
more infotmation.

clust_method A character specifying the clustering method to use for choosing the optimal
contrastive parameter. Currently, this is limited to either k-means, partitioning
around medoids (PAM), and hierarchical clustering. The default is k-means
clustering.

n_centers A numeric giving the number of centers to use in the clustering algorithm. If
set to 1, cPCA, as first proposed by Abid et al. (2018), is performed, regardless
of what the penalties argument is set to.

max_iter A numeric giving the maximum number of iterations to be used in k-means
clustering. Defaults to 10.

linkage_method A character specifying the agglomerative linkage method to be used if clust_method
= "hclust”. The options are ward.D2, single, complete, average, mcquitty,
median, and centroid. The default is complete.

n_medoids A numeric indicating the number of medoids to consider if n_centers is set to
1 and contrasts is a vector of length 2 or more. The default is 8 medoids.

parallel A logical indicating whether to invoke parallel processing via the BiocParallel
infrastructure. The default is FALSE for sequential evaluation.

clusters A numeric vector of cluster labels for observations in the target data. De-
faults to NULL, but is otherwise used to identify the optimal set of hyperparam-
eters when fitting the scPCA and the automated version of cPCA. If a vector
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is provided, the n_centers, clust_method, max_iter, linkage_method, and
n_medoids arguments can be safely ignored.

eigdecomp_tol A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to Te-10.

eigdecomp_iter A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.

scaled_matrix A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision. Defaults to FALSE.

Value

A list containing the following components:

* rotation: The matrix of variable loadings if n_centers is larger than one. Otherwise, a list
of rotation matrices is returned, one for each medoid. The number of medoids is specified by
n_medoids.

* x: The rotated data, centred and scaled if requested, multiplied by the rotation matrix if
n_centers is larger than one. Otherwise, a list of rotated data matrices is returned, one for
each medoid. The number of medoids is specified by n_medoids.

* contrast: The optimal contrastive parameter.
* penalty: The optimal L1 penalty term.
* center: A logical indicating whether the target dataset was centered.

* scale: A logical indicating whether the target dataset was scaled.

References

Abid A, Zhang MJ, Bagaria VK, Zou J (2018). “Exploring patterns enriched in a dataset with con-
trastive principal component analysis.” Nature communications, 9(1), 2134.

Boileau P, Hejazi NS, Dudoit S (2020). “Exploring High-Dimensional Biological Data with Sparse
Contrastive Principal Component Analysis.” Bioinformatics. ISSN 1367-4803. doi:10.1093/bioinformatics/
btaal76. btaal76, https://academic.oup.com/bioinformatics/article-pdf/doi/10.1093/bioinformatics/btaal 76/32914142/btaal

Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.

Zou H, Hastie T, Tibshirani R (2006). “Sparse principal component analysis.” Journal of com-
putational and graphical statistics, 15(2), 265-286.

Examples

# perform cPCA on the simulated data set
scPCA(

target = toy_df[, 1:30],

background = background_df,


https://doi.org/10.1093/bioinformatics/btaa176
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contrasts = exp(seq(log(@.1), log(100), length.out = 5)),
penalties = 0,
n_centers = 4

)

# perform scPCA on the simulated data set
scPCA(
target = toy_df[, 1:30],
background = background_df,
contrasts = exp(seq(log(@.1), log(100), length.out = 5)),
penalties = seq(@.1, 1, length.out = 3),
n_centers = 4

# perform cPCA on the simulated data set with known clusters
scPCA(
target = toy_df[, 1:30],
background = background_df,
contrasts = exp(seq(log(@.1), log(100), length.out = 5)),
penalties = 0,
clusters = toy_df[, 31]

# cPCA as implemented in Abid et al.
scPCA(
target = toy_df[, 1:30],
background = background_df,
contrasts = exp(seq(log(@.1), log(100), length.out = 10)),

penalties = 0,
n_centers = 1
)
selectParams Selection of Contrastive and Penalization Parameters
Description

A wrapper function for fitting various internal functions to select the optimal setting of the con-
trastive and penalization parameters. For internal use only.

Usage

selectParams(
target,
background,
center,
scale,
n_eigen,
alg,
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contrasts,
penalties,
clust_method,
n_centers,
max_iter,
linkage_method,
n_medoids,
parallel,
clusters,
eigdecomp_tol,
eigdecomp_iter,
scaled_matrix

)
Arguments

target The target (experimental) data set, in a standard format such as a data.frame
or matrix.

background The background data set, in a standard format such as a data. frame or matrix.
Note that the number of features must match the number of features in the target
data.

center A logical indicating whether the target and background data sets should be
centered to mean zero.

scale A logical indicating whether the target and background data sets should be
scaled to unit variance.

n_eigen A numeric indicating the number of eigenvectors (or sparse contrastive compo-
nents) to be computed. The default is to compute two such eigenvectors.

alg A character indicating the SPCA algorithm used to sparsify the contrastive
loadings. Currently supports iterative for the Zou et al. (2006) implemen-
tation, var_proj for the non-randomized Erichson et al. (2018) solution, and
rand_var_proj for the randomized Erichson et al. (2018) result.

contrasts A numeric vector of the contrastive parameters. Each element must be a unique
non-negative real number. The default is to use 40 logarithmically spaced values
between 0.1 and 1000.

penalties A numeric vector of the L1 penalty terms on the loadings. The default is to use

20 equidistant values between 0.05 and 1.

clust_method A character specifying the clustering method to use for choosing the optimal
contrastive parameter. Currently, this is limited to either k-means, partitioning
around medoids (PAM), and hierarchical clustering. The default is k-means
clustering.

n_centers A numeric giving the number of centers to use in the clustering algorithm. If
set to 1, cPCA, as first proposed by Abid et al., is performed, regardless of what
the penalties argument is set to.

max_iter A numeric giving the maximum number of iterations to be used in k-means
clustering, defaulting to 10.
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linkage_method A character specifying the agglomerative linkage method to be used if clust_method
= "hclust”. The options are ward.D2, single, complete, average, mcquitty,
median, and centroid. The default is complete.

n_medoids A numeric indicating the number of medoids to consider if n_centers is set to
1. The default is 8 such medoids.

parallel A logical indicating whether to invoke parallel processing via the BiocParallel
infrastructure. The default is FALSE for sequential evaluation.

clusters A numeric vector of cluster labels for observations in the target data. Defaults
to NULL, but is otherwise used to identify the optimal set of hyperparameters
when fitting the scPCA and the automated version of cPCA.

eigdecomp_tol A numeric providing the level of precision used by eigendecompositon calcula-
tions. Defaults to 1e-10.

eigdecomp_iter A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations. Defaults to 1000.

scaled_matrix A logical indicating whether to output a ScaledMatrix object. The centering
and scaling procedure is delayed until later, permitting more efficient matrix
multiplication and row or column sums downstream. However, this comes at
the at the cost of numerical precision.

Value

Output structure matching either that of fitCPCA or fitGrid (or their parallelized variants, namely
either bpFitCPCA and link{bpFitGrid}, respectively).

References

Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.

Zou H, Hastie T, Tibshirani R (2006). “Sparse principal component analysis.” Journal of com-
putational and graphical statistics, 15(2), 265-286.

spcaWrapper Sparse PCA Wrapper

Description

This wrapper function specifies which implementation of sparse pricincipal component analysis
(SPCA) is used to sparsify the loadings of the contrastive covariance matrix. Currently, the scPCA
package supports the iterative algorithm detailed by Zou et al. (2006), and Erichson et al. (2018)’s
randomized and non-randomized versions of SPCA solved via variable projection. These methods
are implemented in the elasticnet and sparsepca packages.
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Usage

spcaWrapper(
alg,
contrast_cov,
contrast,
K,
penalty,

spcaWrapper

eigdecomp_tol,
eigdecomp_iter

Arguments

alg

contrast_cov

contrast

penalty

eigdecomp_tol

eigdecomp_iter

Value

A character indicating the SPCA algorithm used to sparsify the contrastive
loadings. Currently supports iterative for the Zou et al. (2006) implementen-
tation, var_proj for the non-randomized Erichson et al. (2018) solution, and
rand_var_proj for the randomized Erichson et al. (2018) result.

A contrastive covariance matrix.

A numeric contrastive parameter used to compute the contrastive covariance
matrix.

A numeric indicating the number of eigenvectors (or sparse contrastive compo-
nents) to be computed.

A numeric indicating the L1 penalty parameter applied to the loadings.

A numeric providing the level of precision used by eigendecompositon calcula-
tions.

A numeric indicating the maximum number of interations performed by eigen-
decompositon calculations.

A p x k sparse loadings matrix, where p is the number of features, and k is the number of sparse
contrastive components.

References

Erichson NB, Zeng P, Manohar K, Brunton SL, Kutz JN, Aravkin AY (2018). “Sparse Principal
Component Analysis via Variable Projection.” ArXiv, abs/1804.00341.

Zou H, Hastie T, Tibshirani R (2006). “Sparse principal component analysis.” Journal of com-
putational and graphical statistics, 15(2), 265-286.
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toy_df Simulated Target Data for cPCA and scPCA

Description
The toy data consisting of 400 observations and 31 variables was simulated as follows:

» Each of the first 10 variables was drawn from $N(0, 10)$

* For group 1 and 2, variables 11 through 20 were drawn from $N(0, 1)$
* For group 3 and 4, variables 11 through 20 were drawn from $N(3, 1)$
* For group 1 and 3, variables 21 though 30 were drawn from $N(-3, 1)$
* For group 2 and 4, variables 21 though 30 were drawn from $N(0, 1)$

The last column provides each observations group number

Usage
data(toy_df)

Format

A simple data. frame.

Examples

data(toy_df)
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