Type Package

Package ‘paircompviz’
October 24, 2025

Title Multiple comparison test visualization

Version 1.47.0
Date 2013-06-01

Author Michal Burda

Maintainer Michal Burda <michal.burda@osu.cz>

Description This package provides visualization of the results from
the multiple (i.e. pairwise) comparison tests such as
pairwise.t.test, pairwise.prop.test or pairwise.wilcox.test.

The groups being compared are visualized as nodes in Hasse
diagram. Such approach enables very clear and vivid depiction
of which group is significantly greater than which others,
especially if comparing a large number of groups.

Imports Rgraphviz

Depends R (>=2.10), Rgraphviz
Suggests multcomp, reshape, rpart, plyr, xtable

License GPL (>=3.0)

biocViews GraphAndNetwork
git_url https://git.bioconductor.org/packages/paircompviz

git_branch devel

git_last_commit df4863e
git_last_commit_date 2025-04-15
Repository Bioconductor 3.23
Date/Publication 2025-10-24

Contents

paircompviz-package L

brokentrans

paircomp .

transReduct

brokentrans

Index 10

paircompviz-package Multiple comparison test visualization

Description

This package provides visualization of the results from the multiple (i.e. pairwise) comparison tests
such as pairwise.t.test, pairwise.prop.test or pairwise.wilcox.test. The groups being compared are
visualized as nodes in Hasse diagram. Such approach enables very clear and vivid depiction of

which group is significantly greater than which others, especially if comparing a large number of
groups.

Author(s)

Michal Burda <michal.burda@osu.cz>

Examples

paircomp(InsectSprays$count, InsectSprays$spray, test="t")

brokentrans Artificial dataset that suffers with broken transitivity of the pairwise
t-test comparisons

Description

This is a dataset of artificial data created to demonstrate that there exists a data sample such that
pairwise comparisons using t-test break transitivity of the results, i.e. that if treatment 1 is signifi-

cantly lower than 2 and treatment 2 is lower than 3, it is not always the case that also treatment 1 is
significantly lower than 3.

Usage

data(brokentrans)

Format

A data frame of two columns:

1. x is the measured value,

2. gis the treatment group.

hasse 3

Examples

data(brokentrans)

For \alpha = 10*{-9}, we obtain significant difference

between 1-2, 2-3, but not 1-3.

tapply(brokentrans$x, brokentrans$g, mean)
pairwise.t.test(brokentrans$x, brokentrans$g, pool.sd=FALSE)

hasse Visualization of Hasse diagram specified by an adjacency matrix

Description

Given an adjacency matrix, this function displays the corresponding Hasse diagram. This is a
wrapper function for graph creation using the Rgraphviz package.

Usage
hasse(e,
v=NULL,
elab="",
ecol="black",
ebg="gray",
vcol="black",
vbg="white",
vsize=1,
fvlab=".",
fvcol="black",
fvbg="white",
fvsize=1,
febg="black",
fesize=1,
main=paste("Hasse Diagram of", deparse(substitute(e))),
compress=FALSE)
Arguments
e An adjacency matrix, with e; ; indicating the edge size between vertices ¢ and j
(e;,; = 0 means no edge between ¢ and 7). The matrix must be rectangular with
non-negative non-missing values.
v Vector of names of the vertices. If null, the vertex names will be obtained from
column names of adjacency matrix e.
elab Labels of the edges. If it is a scalar value, all edges would have the same label.

Otherwise, elab must be a rectangular matrix (similar to adjacency matrix e). A
value on ¢-th row and j-th column is a label of the edge between vertex ¢ and
vertex j.

ecol

ebg

vcol

vbg

vsize

fvlab
fvcol
fvbg
fvsize
febg

fesize

main

compress

Details

hasse

Edge label color. If scalar, all edge labels have the same color. Otherwise, ecol
must be in the form of adjacency matrix: a value on i-th row and j-th column is
a color of the label of the edge between vertex ¢ and vertex j.

Edge line color. If scalar, all edges have the same color. Otherwise, ebg must be
in the form of adjacency matrix: a value on ¢-th row and j-th column is a color
of the edge between vertex ¢ and vertex j.

Vertex label color. If scalar, all vertices have the same label color. Otherwise,
vcol must be a vector of the size corresponding to the number of vertices.

Vertex background color. If scalar, all vertices have the same background color.
Otherwise, vcol must be a vector of the size corresponding to the number of
vertices.

Vertex sizes. If scalar, all vertices have the same size in the image. Otherwise,
vsize must be a vector of the size corresponding to the number of vertices.

Labels of "dot" vertices. Must be scalar.

"dot" vertex label color. Must be scalar.

"dot" vertex background color. Must be scalar.

"dot" vertex size. Must be scalar.

Color of edges introduced by edge compression. Must be scalar.

Thickness of edges introduced by edge compression. Must be scalar and non-
negative.

Main title of the diagram.

TRUE if the edges should be compressed, i.e. if the maximum bi-cliques have to
be found in the graph and replaced with a "dot" vertex. (See examples.)

This function depicts a Hasse diagram specified with an adjacency matrix e. Hasse diagram is a
visualization of partially ordered set, by drawing its transitive reduction as an oriented graph. Each
vertex corresponds to an element of the set. There is an edge between vertex ¢ and vertex j iff ¢ < j
and there is no z such that ¢ < z < j.

The function is also capable of edge compression via introducing the "dot" edges: Let U, V be two
disjoint non-empty sets of edges, such that for each u from U and v from V, there exists an edge
from w to v. (The number of such edges equals |U] - |V].) Starting from |U| > 2 and |V'| > 2, the
Hasse diagram may become too complicated and hence confusing. Therefore a compress argument
exists in this function that enables “compression” of the edges in such a way that a new “dot” node
w is introduced and |U]| - |V| edges between sets U and V' are replaced with |U| + |V| edges from
set U to node w and from node w to set V.

Value

Nothing.

Author(s)
Michal Burda

paircomp 5

See Also

paircomp

Examples

linear order
e <- matrix(c(o, 1, 1, @0, @, 1, @, @, @), nrow=3, byrow=TRUE)
hasse(e)

prepare adjacency matrix
m <- matrix(@, byrow=TRUE, nrow=5, ncol=5)

m3, 11 <- 1

m[3, 2] <=1

ml4, 11 <- 9

m4, 2] <- 1

m[5, 1] <=1

m[5, 2] <- 1

m

mc <- m

mc[mc > @] <- "red”
ms <-m

ms[ms > @] <- "blue”

view m with default settings
hasse(m, ebg="black")

view m WITHOUT edge compression and some fancy adjustments
hasse(v=c(”a", "b", "c", "d", "e"),
vcol=c(gray(@.5), gray(1), rep(gray(@), 3)),
vbg=gray(5:1/5), vsize=1:5, e=m, ecol=mc, ebg=ms, elab=m,
compress=FALSE)

view m WITH edge compression and some fancy adjustments
hasse(v=c("a", "b", "c", "d", "e"),
vcol=c(gray(0.5), gray(1), rep(gray(@), 3)),
vbg=gray(5:1/5), vsize=1:5, e=m, ecol=mc, ebg=ms, elab=m,
compress=TRUE)

paircomp Visualization of multiple pairwise comparison test results

Description

This function performs multiple pairwise comparison tests on given data and views the results in
the form of Hasse diagram.

Usage

paircomp(

Arguments

obj

grouping

test

level

main

compress

visualize

result

draw

paircomp

obj,

grouping=NULL,

test=c("t", "prop”, "wilcox"),

level=0.05,

main=NULL,

compress=TRUE,

visualize=c("position”, "size", "pvalue"),
result=FALSE,

draw=TRUE,

)

either a vector or an object of class glht as returned from the glht function of
the multcomp package.

If obj is an object of class glht, then arguments grouping and test may
be arbitrary, because they will be not used. Otherwise, if test equals "t" or
"wilcox", obj should be a numeric vector of responses, and if test equals
"prop", obj should be a vector of 0’s and 1°s.

a grouping factor. If obj is a numeric vector, grouping must be a factor. If obj
is an object of class glht, grouping should be NULL.

a name of the test to use. If obj is an object of class glht, the value of test does
not have any effect. Otherwise, the values determine the type of the pairwise
comparison test procedure. Allowed values "t", "prop” or "wilcox" imply in-
ternal call of pairwise.t.test(), pairwise.prop.test() orpairwise.wilcox.test(),

respectively.

the maximum p-value that will be considered as significant; i.e. pairwise test
results with p-value lower than the specified level will be represented with an
edge in the resulting Hasse diagram.

main title of the diagram.

TRUE if the edges should be compressed, i.e. if the maximum bi-cliques have to
be found in the graph and replaced with a "dot" vertex. (See examples.)

vector of additional information to be included in the diagram: "position”
enables vertex background color to be derived from the treatment’s proportion
("prop” test) or mean value (otherwise); "size" enables vertex size to corre-
spond to the treatment’s sample size; "pvalue” sets the edges’ line thickness
accordingly to p-value (lower p-value corresponds to thicker line).

whether to return test results as a return value.
whether to render the diagram.

other arguments that will be passed to the underlying function that performs pair-
wise comparisons (e.g. pairwise.t.test, pairwise.prop.testorpairwise.wilcox.test.

paircomp 7

Details

All treatments in a set are compared in pairs using a selected statistical test. If the results form a
partially ordered set, they can be viewed in a Hasse diagram.

Hasse diagram is a graph with each treatment being represented as a vertex. An edge is drawn
downwards from vertex y to vertex x if and only if treatment z is significantly lower than treatment
y, and there is no such treatment z that x was lower than z and z lower than y. Each edge is
connected to exactly two vertices: its two endpoints. If there does not exist a path between some
two treatments, it means that these two treatments are incomparable (i.e. the difference among them
is not statistically significant).

The function accepts two types of inputs: either an instance of class glht or a vector obj of mea-
sured values and a factor grouping of treatments.

The glht object may be obtained from function glht of the multcomp package and set as the obj
argument. Argument grouping must be NULL, in that case.

If obj is a numeric vector of measured values, grouping must not be NULL and also a type of
statistical test must be selected by setting test argument.

Edge compression (introducing "dot" edges):

Sometimes, pairwise comparison tests may yield in such bipartite setting that each pair of nodes of
some two node subsets would be inter-connected with an edge (without any edge between nodes in
the same subset). More specifically, let U, V be two disjoint non-empty sets of edges, such that for
each v from U and v from V, there exists an edge from u to v. (The number of such edges equals
|U| -|V].) Starting from |U| > 2 and |V'| > 2, the Hasse diagram may become too complicated and
hence confusing. Therefore a compress argument exists in this function that enables “compression”
of the edges in such a way that a new “dot” node w is introduced and |U]| - |V| edges between sets
U and V are replaced with |U| 4 |V'| edges from set U to node w and from node w to set V.

Value

If argument result is TRUE, the function returns everything that is returned by the underlying test
function (pairwise.t.test, pairwise.prop.test or pairwise.wilcox.test accordingly to the
test argument), or a copy of the obj argument, if obj is an instance of class glht.

Author(s)
Michal Burda

See Also

pairwise.t.test, pairwise.prop.test, pairwise.wilcox.test, glht hasse

Examples

Example of test="prop":

o <- c(rep(1, 10), rep(0, 10), rep(c(0,1), 5))
g <- c(rep(1,10), rep(2, 10), rep(3, 10))
paircomp(o, g, test="prop")

Example of test="t" and test="wilcox":

8 transReduct

paircomp(InsectSprays$count, InsectSprays$spray, test="t")
paircomp(InsectSprays$count, InsectSprays$spray, test="wilcox")

Example of t-test with non-pooled SD and Bonferroni adjustment

for multiple comparisons:

paircomp(InsectSprays$count, InsectSprays$spray, test="t",
pool.sd=FALSE, p.adjust.method="bonferroni")

Compare diagrams with and without compressed edges:

paircomp(InsectSprays$count, InsectSprays$spray, test="t",
compress=FALSE)

paircomp(InsectSprays$count, InsectSprays$spray, test="t",
compress=TRUE)

perform Tukey test:

library(rpart) # for car90 dataset
library(multcomp) # for glht() function

aovR <- aov(Price ~ Type, data = car90)

glhtR <- glht(aovR, linfct = mcp(Type = "Tukey"))
paircomp(glhtR)

transReduct Remove transitive edges from an adjacency matrix

Description

This function removes transitive edges from an adjacency matrix.

Usage
transReduct(e)
Arguments
e an adjacency matrix, i.e. a rectangular matrix with value e; ; above zero indi-
cating an edge between vertices ¢ and j of the corresponding graph.
Details

This function takes an adjacency matrix as the argument e. Both rows and columns correspond to
graph vertices, with value e; ; above zero indicating an edge between vertices ¢ and j. The function
removes all transitive edges, i.e. sets to zero corresponding elements of matrix e. The transitive
edge is such an edge between vertices 7 and j that after removing it from the graph, there still exists
a path from s to j.

Value

An adjacency matrix e with transitive edges being removed.

transReduct

Author(s)
Michal Burda

See Also

paircomp, hasse

Examples

e <- matrix(c(o, 1, 1, @, @, 1, @, @, @), nrow=3, byrow=TRUE)
transReduct(e)

Index

+ datasets
brokentrans, 2

* hplot
hasse, 3
paircomp, 5
paircompviz-package, 2
transReduct, 8

* htest
paircomp, 5
paircompviz-package, 2

brokentrans, 2
glht, 6, 7
hasse, 3,7, 9

paircomp, 5,5, 9

paircompviz (paircompviz-package), 2
paircompviz-package, 2
pairwise.prop.test, 7
pairwise.t.test, 7
pairwise.wilcox.test, 7

transReduct, 8

10

	paircompviz-package
	brokentrans
	hasse
	paircomp
	transReduct
	Index

