Package ‘nnSVG’

October 24, 2025

Version 1.13.1

Title Scalable identification of spatially variable genes in
spatially-resolved transcriptomics data

Description Method for scalable identification of spatially variable genes
(SVGs) in spatially-resolved transcriptomics data. The method is based on
nearest-neighbor Gaussian processes and uses the BRISC algorithm for model
fitting and parameter estimation. Allows identification and ranking of SVGs
with flexible length scales across a tissue slide or within spatial domains
defined by covariates. Scales linearly with the number of spatial locations
and can be applied to datasets containing thousands or more spatial
locations.

URL https://github.com/1lmweber/nnSVG

BugReports https://github.com/1lmweber/nnSVG/issues
License MIT + file LICENSE
Encoding UTF-8

biocViews Spatial, SingleCell, Transcriptomics, GeneExpression,
Preprocessing

Depends R (>=4.2)

Imports SpatialExperiment, SingleCellExperiment, SummarizedExperiment,
BRISC, BiocParallel, Matrix, matrixStats, stats, methods

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, STexampleData,
WeberDivechal.Cdata, scran, ggplot2, testthat

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/nnSVG
git_branch devel

git_last_commit dffcd75

git_last_commit_date 2025-05-18

Repository Bioconductor 3.23

Date/Publication 2025-10-24

https://github.com/lmweber/nnSVG
https://github.com/lmweber/nnSVG/issues

2 filter_genes

Author Lukas M. Weber [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3282-1730>),
Stephanie C. Hicks [aut] (ORCID:
<https://orcid.org/0000-0002-7858-0231>)

Maintainer Lukas M. Weber <1mweb@12@gmail.com>

Contents
filter_genes 2
nSVG . . L e e 3
Index 8
filter_genes Preprocessing function to filter genes
Description

Preprocessing function to filter low-expressed genes and/or mitochondrial genes for 'nnSVG’.

Usage

filter_genes(
spe,

filter_genes_ncounts = 3,
filter_genes_pcspots = 0.5,
filter_mito = TRUE
)
Arguments
spe SpatialExperiment: Input data, assumed to be formatted as a SpatialExperiment

object with an assay slot named counts containing raw expression counts.

filter_genes_ncounts
numeric: Filtering parameter for low-expressed genes. Filtering retains genes
containing at least filter_genes_ncounts expression counts in at least filter_genes_pcspots
percent of the total number of spatial locations (spots). Defaults: filter_genes_ncounts
=3, filter_genes_pcspots = 0.5, i.e. keep genes with at least 3 counts in at
least 0.5 percent of spots. Set to NULL to disable.

filter_genes_pcspots
numeric: Second filtering parameter for low-expressed genes. Set to NULL to
disable. See filter_genes_ncounts for details.

filter_mito logical: Whether to filter out mitochondrial genes, identified by gene names
starting with "MT" or "mt". This requires that the rowData slot of the input
object contains a column named gene_name. Default = TRUE. Set to FALSE to
disable.

https://orcid.org/0000-0002-3282-1730
https://orcid.org/0000-0002-7858-0231

nmSVG 3

Details

Preprocessing function to filter low-expressed genes and/or mitochondrial genes for 'nnSVG’.

This function can be used to filter out low-expressed genes and/or mitochondrial genes before ad-
ditional preprocessing (calculating logcounts or deviance residuals) and running 'nnSVG’.

We use this function in the examples and vignettes in the 'nnSVG’ package, and provide default
filtering parameter values that are appropriate for 10x Genomics Visium data.

The use of this function is optional. Users can also perform filtering and preprocessing separately,
and run nnSVG on a preprocessed SpatialExperiment object.

Value

Returns SpatialExperiment with filtered genes (rows) removed.

Examples

library(SpatialExperiment)
library(STexampleData)

load example dataset from STexampleData package
spe <- Visium_humanDLPFC()

preprocessing steps

keep only spots over tissue
spe <- spe[, colData(spe)$in_tissue == 1]
dim(spe)

filter low-expressed and mitochondrial genes
spe <- filter_genes(spe)
dim(spe)

nnSVG nnSVG

Description

Function to run 'nnSVG’ method to identify spatially variable genes (SVGs) in spatially-resolved
transcriptomics data.

Usage

nNSVYG(
input,
spatial_coords = NULL,
X = NULL,
assay_name = "logcounts”,

4 nmSVG

n_neighbors = 10,
order = "AMMD",
n_threads = 1,
BPPARAM = NULL,
verbose = FALSE

Arguments

input SpatialExperiment or numeric matrix: Input data, which can either be a
SpatialExperiment object or a numeric matrix of values. Ifitis a SpatialExperiment
object, it is assumed to have an assay slot containing either logcounts (e.g. from
the scran package) or deviance residuals (e.g. from the scry package), and a
spatialCoords slot containing spatial coordinates of the measurements. If it is
a numeric matrix, the values are assumed to already be normalized and trans-
formed (e.g. logcounts), formatted as rows = genes and columns = spots, and
a separate numeric matrix of spatial coordinates must also be provided with the
spatial_coords argument.

spatial_coords numeric matrix: Matrix containing columns of spatial coordinates, formatted as
rows = spots. This must be provided if input is provied as a numeric matrix
of values, and is ignored if input is provided as a SpatialExperiment object.
Default = NULL.

X numeric matrix: Optional design matrix containing columns of covariates per
spatial location, e.g. known spatial domains. Number of rows must match
the number of spatial locations. Default = NULL, which fits an intercept-only
model.

assay_name character: If input is provided as a SpatialExperiment object, this argu-
ment selects the name of the assay slot in the input object containing the pre-
processed gene expression values. For example, logcounts for log-transformed
normalized counts from the scran package, or binomial_deviance_residuals
for deviance residuals from the scry package. Default = "logcounts”, or ig-
nored if input is provided as a numeric matrix of values.

n_neighbors integer: Number of nearest neighbors for fitting the nearest-neighbor Gaus-
sian process (NNGP) model with BRISC. The default value is 10, which we
recommend for most datasets. Higher numbers (e.g. 15) may give slightly im-
proved likelihood estimates in some datasets (at the expense of slower runtime),
and smaller numbers (e.g. 5) will give faster runtime (at the expense of reduced
performance). Default = 10.

order character: Ordering scheme to use for ordering coordinates with BRISC. De-
fault = "AMMD" for "approximate maximum minimum distance", which is rec-
ommended for datasets with at least 65 spots. For very small datasets (n <=
65), "Sum_coords” can be used instead. See BRISC documentation for details.
Default = "AMMD".

n_threads integer: Number of threads for parallelization. Default = 1. We recommend
setting this equal to the number of cores available (if working on a laptop or
desktop) or around 10 or more (if working on a compute cluster).

nmSVG 5

BPPARAM BiocParallelParam: Optional additional argument for parallelization. This
argument is provided for advanced users of BiocParallel for further flexibil-
ity for parallelization on some operating systems. If provided, this should be
an instance of BiocParallelParam. For most users, the recommended option
is to use the n_threads argument instead. Default = NULL, in which case
n_threads will be used instead.

verbose logical: Whether to display verbose output for model fitting and parameter
estimation from BRISC. Default = FALSE.

Details

Function to run 'nnSVG’ method to identify spatially variable genes (SVGs) in spatially-resolved
transcriptomics data.

The 'nnSVG’ method is based on nearest-neighbor Gaussian processes (Datta et al. 2016) and
uses the BRISC algorithm (Saha and Datta 2018) for model fitting and parameter estimation. The
method scales linearly with the number of spatial locations, and can be applied to datasets contain-
ing thousands or more spatial locations. For more details on the method, see our paper.

This function runs 'nnSVG’ for a full dataset. The function fits a separate model for each gene,
using parallelization with BiocParallel for faster runtime. The parameter estimates from BRISC
(sigma.sq, tau.sq, phi) for each gene are stored in "Theta’ in the BRISC output.

Note that the method and this function are designed for a single tissue section. For an example of
how to run nnSVG in a dataset consisting of multiple tissue sections, see the tutorial in the nnSVG
package vignette.

'nnSVG’ performs inference on the spatial variance parameter estimates (sigma.sq) using a likeli-
hood ratio (LR) test against a simpler linear model without spatial terms (i.e. without tau.sq or phi).
The estimated LR statistics can then be used to rank SVGs. P-values are calculated from the LR
statistics using the asymptotic chi-squared distribution with 2 degrees of freedom, and multiple test-
ing adjusted p-values are calculated using the Benjamini-Hochberg method. We also calculate an
effect size, defined as the proportion of spatial variance, ’prop_sv = sigma.sq / (sigma.sq + tau.sq)’.

The function assumes the input is provided either as a SpatialExperiment object or a numeric
matrix of values. If the input is a SpatialExperiment object, it is assumed to contain an assay slot
containing either log-transformed normalized counts (also known as logcounts, e.g. from the scran
package) or deviance residuals (e.g. from the scry package), which have been preprocessed, quality
controlled, and filtered to remove low-quality spatial locations. If the input is a numeric matrix of
values, these values are assumed to already be normalized and transformed (e.g. logcounts).

Value

If the input was provided as a SpatialExperiment object, the output values are returned as addi-
tional columns in the rowData slot of the input object. If the input was provided as a numeric matrix
of values, the output is returned as a numeric matrix. The output values include spatial variance
parameter estimates, likelihood ratio (LR) statistics, effect sizes (proportion of spatial variance),
p-values, and multiple testing adjusted p-values.

Examples

library(SpatialExperiment)

nmSVG

library(STexampleData)
library(scran)

Example 1
for more details see extended example in vignette

load example dataset from STexampleData package
spel <- Visium_humanDLPFC()

preprocessing steps

keep only spots over tissue

spel <- spel[, colData(spel)$in_tissue == 1]

skip spot-level quality control (already performed in this dataset)
filter low-expressed and mitochondrial genes

spel <- filter_genes(spel)

calculate logcounts using library size factors

spel <- computelLibraryFactors(spel)

spel <- logNormCounts(spel)

select small number of genes for fast runtime in this example
set.seed(123)
ix <= ¢(
which(rowData(spel)$gene_name %in% c("PCP4", "NPY")),
sample(seq_len(nrow(spel)), 2)
)

spel <- spellix, 1]

run nnSVG
set.seed(123)
spel <- nnSVG(spel)

show results
rowData(spel)

#i## Example 2: With covariates
for more details see extended example in vignette

load example dataset from STexampleData package
spe2 <- SlideSeqV2_mouseHPC()

preprocessing steps
remove spots with NA cell type labels
spe2 <- spe2[, !is.na(colData(spe2)$celltype)]
skip spot-level quality control (already performed in this dataset)
filter low-expressed and mitochondrial genes
spe2 <- filter_genes(
spe2, filter_genes_ncounts = 1, filter_genes_pcspots = 1,
filter_mito = TRUE
)
calculate logcounts using library size normalization
spe2 <- computelLibraryFactors(spe2)

nmSVG

spe2 <- logNormCounts(spe2)

select small number of genes for fast runtime in this example
set.seed(123)
ix <= ¢(
which(rowData(spe2)$gene_name %in% c("Cpne9”, "Rgs14")),
sample(seq_len(nrow(spe2)), 2)
)
spe2 <- spe2[ix,]

create model matrix for cell type labels
X <- model.matrix(~ colData(spe2)$celltype)

run nnSVG with covariates
set.seed(123)
spe2 <- nnSVG(spe2, X = X)

show results
rowData(spe2)

Index

filter_genes, 2

nnSVG, 3,3

	filter_genes
	nnSVG
	Index

