Package ‘miaSim’

October 24, 2025

Type Package
Version 1.15.1
Title Microbiome Data Simulation

Description Microbiome time series simulation with generalized Lotka-Volterra model,
Self-Organized Instability (SOI), and other models. Hubbell's Neutral model
is used to determine the abundance matrix. The resulting abundance matrix
is applied to (Tree)SummarizedExperiment objects.

License Artistic-2.0 | file LICENSE

biocViews Microbiome, Software, Sequencing, DNASeq, ATACSeq, Coverage,
Network

Encoding UTF-8
RoxygenNote 7.3.2
Depends TreeSummarizedExperiment

Imports SummarizedExperiment, deSolve, stats, poweRlaw,
MatrixGenerics, S4Vectors

Suggests ape, cluster, foreach, doParallel, dplyr, GGally, ggplot2,
igraph, network, reshape2, sna, vegan, rmarkdown, knitr,
BiocStyle, testthat, mia, miaViz, colourvalues, philentropy

URL https://github.com/microbiome/miaSim

BugReports https://github.com/microbiome/miaSim/issues
Roxygen list(markdown = TRUE)

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/miaSim

git_branch devel

git_last_commit 481aa59

git_last_commit_date 2025-07-20

Repository Bioconductor 3.23

Date/Publication 2025-10-24

https://github.com/microbiome/miaSim
https://github.com/microbiome/miaSim/issues

.applyInterType

Author Yagmur Simsek [cre, aut],
Karoline Faust [aut],
Yu Gao [aut],
Emma Gheysen [aut],
Daniel Rios Garza [aut],
Tuomas Borman [aut] (ORCID: <https://orcid.org/0000-0002-8563-8884>),
Leo Lahti [aut] (ORCID: <https://orcid.org/0000-0001-5537-637X>),
Geraldson Muluh [ctb],
Akewak Jeba [ctb] (ORCID: <https://orcid.org/0009-0007-1347-7552>)

Maintainer Yagmur Simsek <yagmur.simsek.98@gmail.com>

Contents
applylnterType o o L e 2
.estimateAFromSimulations L 3
LetInteractions L L L e e 4
dsPosInt . . . L L e 4
replaceByZeroo 5
simulationTimes L L L L e 5
powerlawA . . L L e 6
randomA L L e e e e 7
randomE L 9
rdirichlet L 12
simulateConsumerResource 12
simulateEventTimes e 16
simulateGLV e 17
simulateHubbell e 20
simulateHubbellRates 21
simulateRicker e 23
simulateSOIL e e e 25
simulateStochasticLogistic 26

Index 30

.applyInterType Generate pairs of interactions according to interaction types
Description

A helper function to be used in combination with .getInteractions()

Usage

.applyInterType(I, pair, interType)

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0009-0007-1347-7552

.estimate AFromSimulations 3

Arguments

I

pair

interType

Value

Matrix: defining the interaction between each pair of species

Numeric: a vector with a length of 2, indicating the 2 focusing species in the
process of applying the interaction types

Character: one of 'mutualism’, ’commensalism’, *parasitism’, ’amensalism’, or
’competition’. Defining the interaction type

A matrix of interaction types with one pair changed

.estimateAFromSimulations

Get the interspecies interaction matrix A using leave-one-out method

Description

generate matrix A from the comparisons between simulations with one absent species and a simu-
lation with complete species (leave-one-out)

Usage

.estimateAFromSimulations(

simulations,
simulations2,

n_instances = 1,

t_end = NULL,

scale_off_diagonal = 0.1,
diagonal = -0.5,
connectance = 0.2

Arguments

simulations
simulations2
n_instances
t_end

A list of simulation(s) with complete species
A list of simulation(s), each with one absent species
Integer: number of instances to generate (default: n_instances = 1)

Numeric: end time of the simulation. If not identical with t_end in params_list,
then it will overwrite t_end in each simulation (default: t_end = 1000)

scale_off_diagonal

diagonal

Numeric: scale of the off-diagonal elements compared to the diagonal. Same to
the parameter in function randomA. (default: scale_off_diagonal =0.1)

Values defining the strength of self-interactions. Input can be a number (will be
applied to all species) or a vector of length n_species. Positive self-interaction
values lead to exponential growth. Same to the parameter in function randomA.
(default: diagonal = -0.5)

4 .1sPosInt

connectance Numeric frequency of inter-species interactions. i.e. proportion of non-zero off-
diagonal terms. Should be in the interval 0 <= connectance <= 1. Same to the
parameter in function randomA. (default: connectance = 9.2)

Value

a matrix A with dimensions (n_species x n_species) where n_species equals to the number of ele-
ments in simulations2

.getInteractions Generate interactions according to five types of interactions and their
weights

Description

Generate interactions according to five types of interactions and their weights

Usage

.getInteractions(n_species, weights, connectance)

Arguments
n_species Integer: defining the dimension of matrix of interaction
weights Numeric: defining the weights of mutualism, commensalism, parasitism, amen-
salism, and competition in all interspecies interactions.
connectance Numeric: defining the density of the interaction network. Ranging from O to 1
Value

A matrix of interactions with all interactions changed according to the weights and connectance.

.isPosInt Check whether a number is a positive integer

Description

Check whether a number is a positive integer

Usage
.isPosInt(x, tol = .Machine$double.eps”0.5)

.replaceByZero 5

Arguments

X Numeric number to test

tol Numeric tolerance of detection
Value

A logical value: whether the number is a positive integer.

.replaceByZero Replace one element with zero in a list

Description

If the list contains m elements, then lengths of each element must be m, too. This function is
intended to generate a list of x0 (the initial community) with one missing species, to prepare the
parameter simulations_compare in estimateAFromSimulations.

Usage

.replaceByZero(input_list)

Arguments

input_list A list containing m elements, and lengths of each element must be m, too.

Value

A list of same dimension as input_list, but with O at specific positions in the elements of the list.

.simulationTimes Generate simulation times and the indices of time points to return in
simulation functions.

Description

Generate simulation times and the indices of time points to return in simulation functions.

Usage

.simulationTimes(t_start = @, t_end = 1000, t_step = 0.1, t_store = 1000)

6 powerlawA

Arguments
t_start Numeric scalar. Indicates the initial time of the simulation. (Default: @)
t_end Numeric scalar. Indicates the final time of the simulation (Default: 1000)
t_step Numeric scalar. Indicates the interval between simulation steps (Default: @. 1)
t_store Integer scalar. Indicates the number of evenly distributed time points to keep
(Default: 100)
Value

lists containing simulation times (t_sys) and the indices to keep.

Examples

Time <- .simulationTimes(
t_start = @, t_end = 100, t_step = 0.5,
t_store = 100

)

DefaultTime <- .simulationTimes(t_end = 1000)

powerlawA Interaction matrix with Power-Law network adjacency matrix

Description

N is the an Interspecific Interaction matrix with values drawn from a normal distribution H the
interaction strength heterogeneity drawn from a power-law distribution with the parameter alpha,
and G the adjacency matrix of with out-degree that reflects the heterogeneity of the powerlaw. A
scaling factor s may be used to constrain the values of the interaction matrix to be within a desired
range. Diagonal elements of A are defined by the parameter d.

Usage

powerlawA(n_species, alpha = 3, stdev =1, s = 0.1, d = -1, symmetric = FALSE)

Arguments
n_species Integer scalar. Indicates the number of species.
alpha Numeric scalar. Specifies the power-law distribution. Should be > 1. Larger

values will give lower interaction strength heterogeneity, whereas values closer
to 1 give strong heterogeneity in interaction strengths between the species. In
other words, values of alpha close to 1 will give Strongly Interacting Species
(SIS). (Default: 3.0)

stdev Numeric scalar. Specifies the standard deviation of the normal distribution
with mean 0 from which the elements of the nominal interspecific interaction
matrix N are drawn. (Default: 1)

randomA 7

s Numeric scalar. Specifies the scaling with which the final global interaction
matrix A is multiplied. (Default: 0. 1)
d Numeric scalar. Diagonal values, indicating self-interactions (use negative
values for stability). (Default: 1.0)
symmetric Logical scalar. Whether a symmetric interaction matrix is returned. (Default:
FALSE)
Value

The interaction matrix A with dimensions (n_species X n_species)

References

Gibson TE, Bashan A, Cao HT, Weiss ST, Liu YY (2016) On the Origins and Control of Community
Types in the Human Microbiome. PLOS Computational Biology 12(2): e1004688. https://doi.org/10.1371/journal.pcbi.1004

Examples

Low interaction heterogeneity

A_low <- powerlawA(n_species = 10, alpha = 3)

Strong interaction heterogeneity

A_strong <- powerlawA(n_species = 10, alpha = 1.01)

randomA Generate random interaction matrix for GLV model

Description

Generates a random interaction matrix for Generalized Lotka-Volterra (GLV) model.

Usage

randomA (
n_species,
names_species = NULL,
diagonal = -0.5,
connectance = 0.2,
scale_off_diagonal = 0.1,
mutualism = 1,
commensalism =
parasitism = 1,
amensalism = 1
competition = 1,
interactions = NULL,
symmetric = FALSE,
list_A = NULL

T,

’

Arguments

n_species

names_species

diagonal

connectance

randomA

Integer: number of species

Character: names of species. If NULL, paste@("sp"”, seq_len(n_species))
is used. (default: names_species = NULL)

Numeric vector. Defines the strength of self-interactions. Input can be a num-
ber (will be applied to all species) or a vector of length n_species. Positive
self-interaction values lead to exponential growth. (Default: -0.5)

Numeric scalar. Specifies the frequency of inter-species interactions. i.e. pro-
portion of non-zero off-diagonal terms. Between @ and 1. (Default: 0. 2)

scale_off_diagonal

mutualism

commensalism

parasitism

amensalism

competition

interactions

symmetric

list_A

Value

Numeric scalar. Indicates the scale of the off-diagonal elements compared to
the diagonal. (Default: @.1)

Numerical scalar. Specifies the relative proportion of interactions terms con-
sistent with mutualism (positive <-> positive). (Default: 1)

Numeric scalar. Indicates the relative proportion of interactions terms consis-
tent with commensalism (positive <-> neutral). (Default: 1)

Numeric scalar. Indicates the relative proportion of interactions terms consis-
tent with parasitism (positive <-> negative). (Default: 1)

Numeric scalar. Indicates the relative proportion of interactions terms consis-
tent with amensalism (neutral <-> negative). (Default: 1)

Numeric scalar. Indicates the relative proportion of interactions terms consis-
tent with competition (negative <-> negative). (Default: 1)

Numeric scalar. Indicates the values of the n_species"2 pairwise interaction
strengths. Diagonal terms will be replaced by the ’diagonal’ parameter. If

NULL, interactions are drawn from runif (n_species”2, min=0, max=abs(diagonal)).

Negative values are first converted to positive then the signs are defined by the
relative weights of the biological interactions (i.e. mutualism, commensalism,
parasitism, amensalism, competition). (Default: NULL)

Logical scalar. whether the strength of mutualistic and competitive interac-
tions are symmetric. This is implemented by overwrite a half of the matrix,
so the proportions of interactions might deviate from expectations. (Default:
FALSE)

List. A list of matrices generated by randomA. Used to support different groups
of interactions. If NULL (by default), no group is considered. Otherwise the
given list of matrices will overwrite values around the diagonal. (Default: NULL)

randomA returns a matrix A with dimensions (n_species x n_species)

Examples

dense_A <- randomA(

n_species =

10,

scale_off_diagonal = 1,

randomE 9

diagonal = -1.0,
connectance = 0.9

sparse_A <- randomA(
n_species = 10,
diagonal = -1.0,
connectance = 0.09

user_interactions <- rbeta(n = 10*2, .5, .5)
user_A <- randomA(n_species = 10, interactions = user_interactions)

competitive_A <- randomA(
n_species = 10,
mutualism = @,
commensalism =
parasitism = 0,
amensalism = 0,
competition = 1,
connectance = 1,
scale_off_diagonal = 1

9,

parasitism_A <- randomA(
n_species = 10,
mutualism = 0,
commensalism = @,
parasitism = 1,
amensalism = 0,
competition = @,
connectance = 1,
scale_off_diagonal = 1,
symmetric = TRUE

list_A <- list(dense_A, sparse_A, competitive_A, parasitism_A)
groupA <- randomA(n_species = 40, list_A = list_A)

randomk Generate random efficiency matrix

Description

Generate random efficiency matrix for consumer resource model from Dirichlet distribution, where
positive efficiencies indicate the consumption of resources, whilst negatives indicate that the species
would produce the resource.

10 randomE

Usage

randomk (
n_species,
n_resources,
names_species = NULL,
names_resources = NULL,
mean_consumption = n_resources/4,
mean_production = n_resources/6,
maintenance = 0.5,
trophic_levels = NULL,
trophic_preferences = NULL,
exact = FALSE

)

Arguments
n_species Integer: number of species
n_resources Integer: number of resources

names_species Character: names of species. If NULL, paste@("”sp”, seq_len(n_species))
is used. (default: names_species = NULL)

names_resources
Character: names of resources. f NULL, paste@("res"”, seq_len(n_resources))
is used.

mean_consumption
Numeric scalar. Specifies the mean number of resources consumed by each
species drawn from a poisson distribution (Default: n_resources/4)

mean_production
Numeric scalar. Specifies the mean number of resources produced by each
species drawn from a poisson distribution (Default: n_resources/6)

maintenance Numeric scalar. Specifies the proportion of resources that cannot be converted
into products between 0~1 the proportion of resources used to maintain the
living of microorganisms. O means all the resources will be used for the re-
production of microorganisms, and 1 means all the resources would be used
to maintain the living of organisms and no resources would be left for their
growth(reproduction). (Default: @.5)

trophic_levels Integer scalar. Indicates the number of species in microbial trophic levels. If
NULL, by default, microbial trophic levels would not be considered. (Default:
NULL)

trophic_preferences
List. Indicates the preferred resources and productions of each trophic level.
Positive values indicate the consumption of resources, whilst negatives indicate
that the species would produce the resource. (Default: NULL)

exact Logical scalar. Whether to set the number of consumption/production to be
exact as mean_consumption/mean_production or to set them using a Poisson
distribution. (Default: FALSE) If length(trophic_preferences) is smaller
than length(trophic_levels), then NULL values would be appended to lower

randomE 11

trophic levels. If NULL, by default, the consumption preference will be defined
randomly. (Default: trophic_preferences =NULL)

Value

randomE returns a matrix E with dimensions (n_species X n_resources), and each row represents a
species.

Examples

example with minimum parameters
ExampleEfficiencyMatrix <- randomE(n_species = 5, n_resources = 12)

examples with specific parameters
ExampleEfficiencyMatrix <- randomE(
n_species = 3, n_resources = 6,
names_species = letters[1:3],
names_resources = paste@("res”, LETTERS[1:6]),
mean_consumption = 3, mean_production = 1
)
ExampleEfficiencyMatrix <- randomE(
n_species = 3, n_resources = 6,
maintenance = 0.4
)
ExampleEfficiencyMatrix <- randomE(
n_species = 3, n_resources = 6,
mean_consumption = 3, mean_production = 1, maintenance = 0.4

)

examples with microbial trophic levels
ExampleEfficiencyMatrix <- randomE(
n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1),
trophic_preferences = list(
c(rep(1, 5), rep(-1, 5), rep(o, 5)),
c(rep(@, 5), rep(1, 5), rep(-1, 5)),
c(rep(@, 10), rep(1, 5))

)

)

ExampleEfficiencyMatrix <- randomE(
n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1),
trophic_preferences = list(c(rep(1, 5), rep(-1, 5), rep(@, 5)), NULL, NULL)

)

ExampleEfficiencyMatrix <- randomk(
n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1)

12 simulateConsumerResource

rdirichlet Generate dirichlet random deviates

Description

Generate dirichlet random deviates

Usage
rdirichlet(n, alpha)

Arguments
n Number of random vectors to generate.
alpha Vector containing shape parameters.
Value

a vector containing the Dirichlet density

Examples

dirichletExample <- rdirichlet(1, c(1, 2, 3))

simulateConsumerResource
Consumer-resource model simulation

Description

Simulates time series with the consumer-resource model.

Usage

simulateConsumerResource(
n_species,
n_resources,
names_species = NULL,
names_resources = NULL,
E = NULL,
x@ = NULL,
resources = NULL,
resources_dilution = NULL,
growth_rates = NULL,
monod_constant = NULL,

simulateConsumerResource 13

sigma_drift
sigma_epoch =
sigma_external = 0.3,
sigma_migration = 0.01,

epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
stochastic = FALSE,

migration_p = 0.01,
metacommunity_probability = NULL,
error_variance = 0,

norm = FALSE,

t_end = 1000,

trophic_priority = NULL,
inflow_rate = 0,

outflow_rate = 0,

volume = 1000,

001,
1

’

0.
0.

)

Arguments
n_species Integer: number of species
n_resources Integer: number of resources

names_species Character: names of species. If NULL, paste@("”sp”, seq_len(n_species))
is used. (default: names_species = NULL)

names_resources
Character: names of resources. If NULL, paste@("res"”, seq_len(n_resources))
is used.

E Matrix. Defines the efficiency of resource-to-biomass conversion (positive val-
ues) and the relative conversion of metabolic by-products (negative values). If
NULL, randomE (n_species, n_resources) is used. (Default: NULL)

X0 Numeric scalar. Specifies the initial abundances of simulated species. If NULL,
runif(n=n_species, min=0.1, max = 10) is used. (Default: NULL)

resources Numeric scalar. Specifies the initial concentrations of resources. If NULL,
runif(n=n_resources, min=1, max = 100) is used. (Default: NULL)
resources_dilution
Numeric scalar. Specifies the concentrations of resources in the continuous
inflow (applicable when inflow_rate > 0). If NULL, resources is used. (Default:
NULL)

growth_rates Numeric vector. Specifies the maximum growth rates(mu) of species. If NULL,
rep(1, n_species) is used. (Default: NULL)

monod_constant Matrix. Specifies the constant of additive monod growth of n_species con-
suming n_resources. If NULL, matrix(rgamma(n = n_species*n_resources,
shape = 50*max (resources), rate =1), nrow = n_species) is used. (De-
fault: NULL)

14

simulateConsumerResource

sigma_drift Numeric: standard deviation of a normally distributed noise applied in each time
step (t_step) (default: sigma_drift =0.001)

sigma_epoch Numeric: standard deviation of a normally distributed noise applied to random
periods of the community composition with frequency defined by the epoch_p
parameter (default: sigma_epoch=0.1)

sigma_external Numeric: standard deviation of a normally distributed noise applied to user-
defined external events/disturbances (default: sigma_external = 0. 3)
sigma_migration
Numeric: standard deviation of a normally distributed variable that defines the
intensity of migration at each time step (t_step) (default: sigma_migration =
0.01)

epoch_p Numeric: the probability/frequency of random periodic changes introduced to
the community composition (default: epoch_p = 0.001)
t_external_events
Numeric: the starting time points of defined external events that introduce ran-
dom changes to the community composition (default: t_external_events =
NULL)
t_external_durations
Numeric: respective duration of the external events that are defined in the "t_external_events’
(times) and sigma_external (std). (default: t_external_durations = NULL)

stochastic Logical: whether to introduce noise in the simulation. If False, sigma_drift,
sigma_epoch, and sigma_external are ignored. (default: stochastic = FALSE)

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p=0.01)

metacommunity_probability
Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha=rep(1,n_species)) isused. (default: metacommunity_probability
= NULL)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

trophic_priority
Matrix. Defines the orders of resources to be consumed by each species. If
NULL, by default, this feature won’t be turned on, and species will consume all
resources simultaneously to grow. The dimension should be identical to matrix
E. (Default: NULL)

inflow_rate outflow_rate Numeric scalar. The inflow of a culture process. By default,
inflow_rate and is 0, indicating a batch culture process. When larger than 0, we
can simulate a continuous culture(e.g. chemostat).

simulateConsumerResource 15

outflow_rate Numeric scalar. outflow rate of a culture process By default, outflow_rate is

volume

Value

0, indicating a batch culture process. When larger than 0, we can simulate a
continuous culture(e.g. chemostat).

Numeric scalar. Indicates the volume of the continuous cultivation. This pa-
rameter is important for simulations where inflow_rate or outflow_rate are not
0. (Default: 1000)

additional parameters, see utils to know more.

an TreeSummarizedExperiment class object

Examples

n_species <- 2

n_resources <- 4

tse <- simulateConsumerResource(
n_species = n_species,
n_resources = n_resources

Not run:
example with user-defined values (names_species, names_resources, E, x0,
resources, growth_rates, error_variance, t_end, t_step)

ExampleE <- randomE(
n_species = n_species, n_resources = n_resources,
mean_consumption = 3, mean_production = 1, maintenance = 0.4

)

ExampleResources <- rep(100, n_resources)

tsel <- simulateConsumerResource(
n_species = n_species,
n_resources = n_resources, names_species = letters[seq_len(n_species)],
names_resources = paste@("res”, LETTERS[seq_len(n_resources)]), E = ExampleE,

X0 =

rep(0.001, n_species), resources = ExampleResources,

growth_rates = runif(n_species),
error_variance = 0.01,

t_end = 5000,

t_step =1

example with trophic levels

n_species <- 10

n_resources <- 15

ExampleEfficiencyMatrix <- randomk(
n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1),
trophic_preferences = list(

c(rep(1, 5), rep(-1, 5), rep(@, 5)),
c(rep(@, 5), rep(1, 5), rep(-1, 5)),
c(rep(@, 10), rep(1, 5))

ExampleResources <- c(rep(500, 5), rep(200, 5), rep(50, 5))

tse2 <- simulateConsumerResource(
n_species = n_species,
n_resources = n_resources,
names_species = letters[1:n_species],
names_resources = pasted(

"res"”, LETTERS[1:n_resources]

),
E = ExampleEfficiencyMatrix,
X0 = rep(0.001, n_species),
resources = ExampleResources,
growth_rates = rep(1, n_species),
error_variance = 0.001,
t_end = 5000, t_step =1

example with trophic priority

n_species <- 4

n_resources <- 6

ExampleE <- randomE(
n_species = n_species,
n_resources = n_resources,
mean_consumption = n_resources,
mean_production = @

)

ExampleTrophicPriority <- t(apply(
matrix(sample(n_species * n_resources),

nrow = n_species

),
1, order

)

make sure that for non-consumables resources for each species,

the priority is @ (smaller than any given priority)

ExampleTrophicPriority <- (ExampleE > @) * ExampleTrophicPriority

tse3 <- simulateConsumerResource(
n_species = n_species,
n_resources = n_resources,
E = ExampleE,
trophic_priority = ExampleTrophicPriority,
t_end = 2000

End(Not run)

simulateEventTimes

simulateEventTimes Generate a vector of event times

simulateGLV 17

Description

Generate a vector of event times

Usage
simulateEventTimes(t_events = NULL, t_duration = NULL, t_end = 1000, ...)
Arguments
t_events Numeric vector; starting time of the events
t_duration Numeric vector; duration of the events
t_end Numeric: end time of the simulation
: additional parameters to pass to simulationTimes, including t_start, t_step, and
t_store.
Value

A vector of time points in the simulation

Examples

tEvent <- simulateEventTimes(
t_events = c(10, 50, 100),
t_duration = c(1, 2, 3),

t_end = 100,
t_store = 100,
t_step = 1
)
simulateGLV Generalized Lotka-Volterra (gLV) simulation
Description

Simulates time series with the generalized Lotka-Volterra model.

Usage

simulateGLV(
n_species,
names_species = NULL,
A = NULL,
x@ = NULL,
growth_rates = NULL,
sigma_drift = @.001,
sigma_epoch = 0.1,
sigma_external = 0.3,

18 simulateGLV

sigma_migration = 0.01,

epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
stochastic = TRUE,

migration_p = 0.01,
metacommunity_probability = NULL,
error_variance = 0,

norm = FALSE,
t_end = 1000,
)
Arguments
n_species Integer: number of species

names_species Character: names of species. If NULL, paste@("sp"”, seq_len(n_species))
is used. (default: names_species = NULL)

A Matrix. Interaction matrix defining the positive and negative interactions be-
tween n_species. If NULL, randomA(n_species) is used. (Default: NULL)

X0 Numeric scalar. Indicates the initial abundances of simulated species. If NULL,
runif(n=n_species, min =0, max = 1) is used. (Default: NULL)

growth_rates Numeric scalar. Indicates the growth rates of simulated species. If NULL,
runif(n=n_species, min =0, max = 1) is used. (Default: NULL)

sigma_drift Numeric: standard deviation of a normally distributed noise applied in each time
step (t_step) (default: sigma_drift =0.001)

sigma_epoch Numeric: standard deviation of a normally distributed noise applied to random
periods of the community composition with frequency defined by the epoch_p
parameter (default: sigma_epoch=0.1)

sigma_external Numeric: standard deviation of a normally distributed noise applied to user-
defined external events/disturbances (default: sigma_external = 0. 3)

sigma_migration
Numeric: standard deviation of a normally distributed variable that defines the
intensity of migration at each time step (t_step) (default: sigma_migration =
0.01)

epoch_p Numeric: the probability/frequency of random periodic changes introduced to
the community composition (default: epoch_p = 0.001)

t_external_events
Numeric: the starting time points of defined external events that introduce ran-
dom changes to the community composition (default: t_external_events =
NULL)

t_external_durations
Numeric: respective duration of the external events that are defined in the ’t_external_events’
(times) and sigma_external (std). (default: t_external_durations = NULL)

stochastic Logical: whether to introduce noise in the simulation. If False, sigma_drift,
sigma_epoch, and sigma_external are ignored. (default: stochastic = FALSE)

simulateGLV 19

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p=20.01)

metacommunity_probability
Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha=rep(1,n_species)) isused. (default: metacommunity_probability
= NULL)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

additional parameters, see utils to know more.

Details

Simulates a community time series using the generalized Lotka-Volterra model, defined as dx/dt =
x(b+Ax), where x is the vector of species abundances, diag(x) is a diagonal matrix with the diagonal
values set to x. A is the interaction matrix and b is the vector of growth rates.

Value

simulateGLV returns a TreeSummarizedExperiment class object

Examples

generate a random interaction matrix
ExampleA <- randomA(n_species = 4, diagonal = -1)

run the model with default values (only stochastic migration considered)
tse <- simulateGLV(n_species = 4, A = ExampleA)

run the model with two external disturbances at time points 240 and 480
with durations equal to 1 (10 time steps when t_step by default is 0.1).
ExampleGLV <- simulateGLV(

n_species = 4, A = ExampleA,

t_external_events = c(0, 240, 480), t_external_durations = c(0, 1, 1)
)

run the model with no perturbation nor migration
set.seed(42)
tsel <- simulateGLV(
n_species = 4, A = ExampleA, stochastic = FALSE,
sigma_migration = @

20

simulateHubbell

run the model with no perturbation nor migration but with measurement error
set.seed(42)
tse2 <- simulateGLV(

n_species = 4, A = ExampleA, stochastic = FALSE,

error_variance = 0.001, sigma_migration = @

simulateHubbell Hubbell’s neutral model simulation

Description

Neutral species abundances simulation according to the Hubbell model.

Usage

simulateHubbell(
n_species,
M,
carrying_capacity = 1000,
k_events = 10,
migration_p = 0.02,

t_skip = 0,
t_end,
norm = FALSE

)

Arguments
n_species Integer scalar. Specifies the amount of different species initially in the local
community.
M Integer scalar. Specifies the amount of different species in the metacommu-

nity, including those of the local community

carrying_capacity
Integer scalar. Indicates the fixed amount of individuals in the local commu-
nity. (Default: 1000)

k_events Inteer scalar. Indicates the fixed amount of deaths of local community indi-
viduals in each generation (Default: 10)

migration_p Numeric scalar. The immigration rate; specifies the probability that a death in
the local community is replaced by a migrant of the metacommunity rather than
by the birth of a local community member (Default: 0.02)

t_skip Integer scalar. Indicates the number of generations that should not be in-
cluded in the outputted species abundance matrix. (Default: 0)

t_end Integer scalar. Indicates the number of simulations to be simulated

norm Logical scalar. Whether the time series should be returned with the abun-

dances as proportions (norm = TRUE) or the raw counts. (Default: FALSE)

simulateHubbellRates 21

Value

simulateHubbell returns a TreeSummarizedExperiment class object

References

Rosindell, James et al. "The unified neutral theory of biodiversity and biogeography at age ten."
Trends in ecology & evolution vol. 26,7 (2011).

Examples

tse <- simulateHubbell(
n_species = 8, M = 10, carrying_capacity = 1000, k_events = 50,
migration_p = 0.02, t_end = 100

simulateHubbellRates Hubbell’s neutral model simulation applied to time series

Description

Neutral species abundances simulation according to the Hubbell model. This model shows that
losses in society can be replaced either by the birth of individuals or by immigration depending on
their probabilities. The specific time between the events of birth or migration is calculated and time
effect is considered to determine the next event.

Usage

simulateHubbellRates(
n_species = NULL,
x@ = NULL,
names_species = NULL,
migration_p = 0.01,
metacommunity_probability = NULL,
k_events = 1,
growth_rates = NULL,
error_variance = 0,

norm = FALSE,
t_end = 1000,
)
Arguments
n_species Integer: number of species
X0 Numeric scalar. Indicates the initial species composition. If NULL, rep(100,

n_species) is used.

22 simulateHubbellRates

names_species Character: names of species. If NULL, paste@("”sp”, seq_len(n_species))
is used. (default: names_species = NULL)

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p=0.01)

metacommunity_probability
Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha=rep(1,n_species)) isused. (default: metacommunity_probability
= NULL)

k_events Integer scalar. Indicates the number of events to simulate before updating
the sampling distributions. (Default: 1)

growth_rates Numeric scalar. Indicates the maximum growth rates(mu) of species. If NULL,
rep(1, n_species) is used. (Default: NULL)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

additional parameters, see utils to know more.

Value

simulateHubbellRates returns a TreeSummarizedExperiment class object

References

Rosindell, James et al. "The unified neutral theory of biodiversity and biogeography at age ten."
Trends in ecology & evolution vol. 26,7 (2011).

Examples

set.seed(42)
tse <- simulateHubbellRates(n_species = 5)

miaViz::plotSeries(tse, assay.type = "counts”,
time.col = "time", colour.by = "rownames")

no migration, all stochastic birth and death
set.seed(42)
tsel <- simulateHubbellRates(n_species = 5, migration_p = 0)

all migration, no stochastic birth and death
set.seed(42)
tse2 <- simulateHubbellRates(

n_species = 5,

simulateRicker 23

migration_p = 1,
metacommunity_probability = c(@.1, 0.15, 0.2, 0.25, 0.3),
t_end = 20,
t_store = 200
)

all migration, no stochastic birth and death, but with measurement errors
set.seed(42)
tse3 <- simulateHubbellRates(

n_species = 5,

migration_p = 1,

metacommunity_probability = c(0.1, .15, 0.2, 0.25, 0.3),

t_end = 20,

t_store = 200,

error_variance = 100

model with specified inputs
set.seed(42)
tse4 <- simulateHubbellRates(
n_species = 5,
migration_p = 0.1,
metacommunity_probability = c(0.1, .15, 0.2, 0.25, 0.3),
t_end = 200,
t_store = 1000,
k_events = 5,
growth_rates = c¢(1.1, 1.05, 1, 0.95, 0.9)

simulateRicker Generate time series with the Ricker model

Description

The Ricker model is a discrete version of the generalized Lotka-Volterra model and is implemented
here as proposed by Fisher and Mehta in PLoS ONE 2014.

Usage

simulateRicker(
n_species,
A,
names_species = NULL,
X0 = runif(n_species),
carrying_capacities = runif(n_species),
error_variance = 0.05,
explosion_bound = 108,
t_end = 1000,

24 simulateRicker

norm = FALSE,
)
Arguments
n_species Integer: number of species
A interaction matrix

names_species Character: names of species. If NULL, paste@("”sp"”, seq_len(n_species))
is used. (default: names_species = NULL)

X0 Numeric scalar. Indicates the initial abundances of simulated species. If NULL,
runif(n=n_species, min =0, max = 1) is used.

carrying_capacities
Numeric scalar. Indicates carrying capacities. f NULL, runif(n = n_species,
min =0, max = 1) is used.

error_variance Numeric scalar. Specifies the variance of measurement error. By default it
equals to 0, indicating that the result won’t contain any measurement error. This
value should be non-negative. (Default: 0.05)

explosion_bound
Numeric scalar. Specifies the boundary for explosion. (Default: 10*8)

t_end Integer scalar. Indicates simulations to be simulated

norm Logical scalar. Whether normalised abundances (proportions in each genera-
tion) is returned. (Default: FALSE)

additional parameters, see utils to know more.

Value

simulateRicker returns a TreeSummarizedExperiment class object

References

Fisher & Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from Metage-
nomic Timeseries using Sparse Linear Regression. PLoS One 9:¢102451

Examples

A <- powerlawA(10, alpha = 1.01)
tse <- simulateRicker(n_species = 10, A, t_end = 100)

simulateSOI 25

simulateSOI Self-Organised Instability model (SOI) simulation

Description

Generate time-series with The Self-Organised Instability (SOI) model. Implements a K-leap method
for accelerating stochastic simulation.

Usage

simulateSOI(
n_species,
x@ = NULL,
names_species = NULL,
carrying_capacity = 1000,

A = NULL,
k_events = 5,
t_end = 1000,
metacommunity_probability = runif(n_species, min = 0.1, max = 0.8),
death_rates = runif(n_species, min = 0.01, max = 0.08),
norm = FALSE

)

Arguments
n_species Integer: number of species
X0 Numeric scalar. Specifies initial community abundances If NULL, based on

migration rates. (Default: NULL)

names_species Character: names of species. If NULL, paste@("”sp”, seq_len(n_species))
is used. (default: names_species = NULL)

carrying_capacity
Integer scalar. Indicates community size, number of available sites (individ-
uals). (Default: 1000)

A Matrix. Defines the positive and negative interactions between n_species. If
NULL, powerlawA(n_species) is used. (Default: NULL)

k_events Integer scalar. Indicates the number of transition events that are allowed to
take place during one leap. Higher values reduce runtime, but also accuracy of
the simulation. (Default: 5).

t_end Numeric scalar. Specifies the end time of the simulation, defining the modeled
time length of the community. (Default: 1000)

metacommunity_probability
Numeric scalar: Indicates the normalized probability distribution of the likeli-
hood that species from the metacommunity can enter the community during the
simulation. (Default: runif(n_species, min=0.1, max =0.8))

26 simulateStochasticLogistic

death_rates Numeric scalar. Indicates the death rates of each species. (Default: runif(n_species,
min=0.01, max =0.08))
norm Logical scalar. Whether the time series should be returned with the abun-

dances as proportions (norm = TRUE) or the raw counts. (Default: FALSE)

Value

simulateSOI returns a TreeSummarizedExperiment class object

Examples

Generate interaction matrix

A <- miaSim::powerlawA(10, alpha = 1.2)

Simulate data from the SOI model

tse <- simulateSOI(
n_species = 10, carrying_capacity = 1000, A = A,
k_events = 5, x@ = NULL, t_end = 150, norm = TRUE

simulateStochasticlLogistic
Stochastic Logistic simulation

Description

Simulates time series with the (stochastic) logistic model

Usage

simulateStochasticlLogistic(
n_species,
names_species = NULL,
growth_rates = NULL,
carrying_capacities = NULL,
death_rates = NULL,
x@ = NULL,
sigma_drift = 0.001,
sigma_epoch = 0.1,
sigma_external = 0.3,
sigma_migration = 0.01,
epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
migration_p = 0.01,
metacommunity_probability = NULL,
stochastic = TRUE,
error_variance = 0,

simulateStochasticLogistic 27

norm = FALSE,
t_end = 1000,
)
Arguments
n_species Integer: number of species

names_species Character: names of species. If NULL, paste@("”sp”, seq_len(n_species))
is used. (default: names_species = NULL)

growth_rates Numeric scalar. Specifies the growth rates of simulated species. If NULL,
runif(n=n_species, min=0.1, max =0.2) is used. (Default: NULL)

carrying_capacities
Numeric scalar. Indicates the max population of species supported in the com-
munity. If NULL, runif(n=n_species, min = 1000, max = 2000) is used.
(Default: NULL)

death_rates Numeric scalar. Indicates the death rates of each species. If NULL, runif(n
=n_species, min =0.0005, max = 0.0025) is used. (Default: NULL)

X0 Numeric scalar. Indicates the initial abundances of simulated species. If NULL,
runif(n=n_species, min=0.1, max = 10) is used. (Default: NULL)

sigma_drift Numeric: standard deviation of a normally distributed noise applied in each time
step (t_step) (default: sigma_drift =0.001)

sigma_epoch Numeric: standard deviation of a normally distributed noise applied to random

periods of the community composition with frequency defined by the epoch_p
parameter (default: sigma_epoch=10.1)

sigma_external Numeric: standard deviation of a normally distributed noise applied to user-
defined external events/disturbances (default: sigma_external =0.3)
sigma_migration
Numeric: standard deviation of a normally distributed variable that defines the
intensity of migration at each time step (t_step) (default: sigma_migration =
0.01)

epoch_p Numeric: the probability/frequency of random periodic changes introduced to
the community composition (default: epoch_p = 0.001)
t_external_events
Numeric: the starting time points of defined external events that introduce ran-
dom changes to the community composition (default: t_external_events =
NULL)
t_external_durations
Numeric: respective duration of the external events that are defined in the ’t_external_events’
(times) and sigma_external (std). (default: t_external_durations = NULL)

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p=0.01)

metacommunity_probability
Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,

28 simulateStochasticLogistic

rdirichlet(1, alpha=rep(1,n_species)) isused. (default: metacommunity_probability
= NULL)

stochastic Logical scalar. Whether to introduce noise in the simulation. If False, sigma_drift,
sigma_epoch, and sigma_external are ignored. (Default: TRUE)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

additional parameters, see utils to know more.

Details

The change rate of the species was defined as dx/dt = b*x*(1-(x/k))*rN - drxx, where b is the
vector of growth rates, x is the vector of initial species abundances, k is the vector of maximum
carrying capacities, rN is a random number ranged from O to 1 which changes in each time step,
dr is the vector of constant death rates. Also, the vectors of initial dead species abundances can be
set. The number of species will be set to O if the dead species abundances surpass the alive species
abundances.

Value

simulateStochasticlLogistic returns a TreeSummarizedExperiment class object

Examples

Example of logistic model without stochasticity, death rates, or external
disturbances
set.seed(42)
tse <- simulateStochasticlLogistic(
n_species = 5,
stochastic = FALSE, death_rates = rep(@, 5)
)

Adding a death rate
set.seed(42)
tsel <- simulateStochasticlLogistic(
n_species = 5,
stochastic = FALSE, death_rates = rep(@.01, 5)
)

Example of stochastic logistic model with measurement error
set.seed(42)
tse2 <- simulateStochasticlLogistic(

n_species = 5,

error_variance = 1000

simulateStochasticLogistic

)

example with all the initial parameters defined by the user
set.seed(42)
tse3 <- simulateStochasticlLogistic(
n_species = 2,
names_species = c("speciesl”, "species2"),
growth_rates = c(0.2, 0.1),
carrying_capacities = c(1000, 2000),
death_rates = c(0.001, 0.0015),
x0 = c(3, 0.1),
sigma_drift = 0.001,
sigma_epoch = 0.3,
sigma_external = 0.5,
sigma_migration = 0.002,
epoch_p = 0.001,
t_external_events = c(100, 200, 300),
t_external_durations = c(0.1, 0.2, 0.3),
migration_p = 0.01,
metacommunity_probability = miaSim::rdirichlet(1, alpha = rep(1, 2)),
stochastic = TRUE,
error_variance = 0,
norm = FALSE, # TRUE,
t_end = 400,
t_start = 0, t_step = 0.01,
t_store = 1500

29

Index

* internal

.simulationTimes, 5
.applyInterType, 2
.estimateAFromSimulations, 3
.getInteractions, 4
.isPosInt, 4
.replaceByZero, 5
.simulationTimes, 5

powerlawA, 6

randomA, 7
randomk, 9
rdirichlet, 12

simulateConsumerResource, 12
simulateEventTimes, 16
simulateGLV, 17
simulateHubbell, 20
simulateHubbellRates, 21
simulateHubbellRates, numeric-method
(simulateHubbellRates), 21
simulateHubbellRates-numeric
(simulateHubbellRates), 21
simulateRicker, 23
simulateSOI, 25
simulateStochasticlogistic, 26

utils, 15, 19, 22, 24, 28

30

	.applyInterType
	.estimateAFromSimulations
	.getInteractions
	.isPosInt
	.replaceByZero
	.simulationTimes
	powerlawA
	randomA
	randomE
	rdirichlet
	simulateConsumerResource
	simulateEventTimes
	simulateGLV
	simulateHubbell
	simulateHubbellRates
	simulateRicker
	simulateSOI
	simulateStochasticLogistic
	Index

