Package 'hdxmsqc'

October 24, 2025

Type Package

Title An R package for quality Control for hydrogen deuterium exchange mass spectrometry experiments

Version 1.5.0

Description The hdxmsqc package enables us to analyse and visualise the quality of HDX-MS experiments. Either as a final quality check before downstream analysis and publication or as part of a interative procedure to determine the quality of the data. The package builds on the QFeatures and Spectra packages to integrate with other mass-spectrometry data.

License file LICENSE

Encoding UTF-8

LazyData false

Depends R(>= 4.3), QFeatures, S4Vectors, Spectra

Imports dplyr, tidyr, ggplot2, BiocStyle, knitr, methods, grDevices, stats, MsCoreUtils

Suggests RColorBrewer, pheatmap, MASS, patchwork, testthat

VignetteBuilder knitr

Roxygen list(markdown=TRUE)

RoxygenNote 7.2.3

biocViews QualityControl,DataImport, Proteomics, MassSpectrometry, Metabolomics

BugReports https://github.com/ococrook/hdxmsqc/issues

URL http://github.com/ococrook/hdxmsqc

Language en-US

git_url https://git.bioconductor.org/packages/hdxmsqc

git_branch devel

git_last_commit dc90710

git_last_commit_date 2025-04-15

Repository Bioconductor 3.23

BRD4df

Date/Publication 2025-10-24

Author Oliver M. Crook [aut, cre] (ORCID:

<https://orcid.org/0000-0001-5669-8506>)

Maintainer Oliver M. Crook <oliver.crook@stats.ox.ac.uk>

Contents

BRD4c	lf	This is data	to be inc	cludea	l in my	packa	ge		
Index									23
	spectraSimilarity .		• • • •	• • •				 	. 21
	rTimeOutliers								
	replicateOutlier								
	replicateCorrelation								
	qualityControl								
	processHDE								
	plotrTimeOutliers .								
	plotMonotoneStat .								
	plotMissing								
	plotMassError								
	plotIntensityOutliers								
	plotImTimeOutlier								
	isotopicDistributionl	HDXfourier						 	. 10
	isMissingAtRandom	1						 	. 10
	$intensity Outliers \ . \ .$. 9
	imTimeOutlier							 	. 8
	hdxmsqc							 	. 8
	generateSpectra								
	fourierIsotope								
	exchangeableAmide								
	computeMonotoneS								
	computeMassError								
	compatibleUptake.								
	chargeCorrelationHo								
	BRD4df								. 2

Description

A small HDX-MS dataset for BRD4 in apo state and in complex with IBET151 $\,$

Author(s)

My Name <ocorook@gmail.com>

BRD4df_full 3

BRD4df_full	This is data to be included in my package
-------------	---

Description

A complete HDX-MS dataset for BRD4 in apo state and in complex with IBET151

Author(s)

```
My Name <ococrook@gmail.com>
```

chargeCorrelationHdx Charge states should have correlated incorperation but they need not be exactly the same

Description

Charge states should have correlated incorperation but they need not be exactly the same

Usage

```
chargeCorrelationHdx(object, experiment = NULL, timepoints = NULL)
```

Arguments

object An object of class QFeatures

experiment A character vector indicating the experimental conditions timepoints A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

```
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- chargeCorrelationHdx(object = BRD4df_full_imputed,
experiment = experiment,
timepoints = timepoints)</pre>
```

4 computeMassError

compatibleUptake Check whether deuterium uptakes are compatible with difference lapping sequences.	over-
--	-------

Description

Check whether deuterium uptakes are compatible with difference overlapping sequences.

Usage

```
compatibleUptake(object, overlap = 5, experiment = NULL, timepoints = NULL)
```

Arguments

object An object of class QFeatures

overlap How much overlap is required to check consistentcy. Default is sequences within

5 residues

experiment A character vector indicating the experimental conditions timepoints A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

Examples

```
data("BRD4df")
result <- compatibleUptake(BRD4df, experiment = 1, timepoints = 1)</pre>
```

computeMassError

Empirical versus theoretical mass errors

Description

Empirical versus theoretical mass errors

Usage

```
computeMassError(object, eCentroid = "Exp.Cent", tCentroid = "Theor.Cent")
```

Arguments

object An object of class QFeatures

eCentroid character string indicating column identifier for experimental centroid tCentroid character string indicating column identifier for theoretical centroid

computeMonotoneStats 5

Value

The error difference between the empirical and theoretical centroid

Author(s)

Oliver Crook

Examples

```
data("BRD4df")
result <- computeMassError(BRD4df, "Exp.Cent", "Theor.Cent")
head(result)</pre>
```

computeMonotoneStats Monotonicity based outlier detection.

Description

Monotonicity based outlier detection.

Usage

```
computeMonotoneStats(object, experiment = NULL, timepoints = NULL)
```

Arguments

object An object of class QFeatures

experiment A character vector indicating the experimental conditions
timepoints A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

```
data("BRD4df")
result <- computeMonotoneStats(BRD4df, experiment = 1, timepoint = 1)</pre>
```

6 fourierIsotope

exchangeableAmides

Compute exchangeable amides.

Description

Computes the number of exchangeable amides based on the sequnece

Usage

```
exchangeableAmides(sequence)
```

Arguments

sequence

The sequence of the peptide

Value

Returns a numeric indicating the number of exchangeable amides

Examples

```
exchangeableAmides(sequence = "HDAEHAHEAPRKL")
```

fourierIsotope

fourier transform approach to computing isotopic distribution

Description

fourier transform approach to computing isotopic distribution

Usage

```
fourierIsotope(
  elements,
  incorp = 0,
  num_exch_sites = 0,
  charge = 1,
  isotopes = NULL
)
```

Arguments

elements A list of elements

incorp The deuterium incoperation

num_exch_sites The number of exchangable amides. Default is 0.

charge The charge state of the peptide

isotopes The number of isotopes to compute. The default is NULL, in whiich a default

heuristic is used to make a good guess that covers the expected peaks.

generateSpectra 7

Value

A list of mass and intensity value corresponding to the isotope distribution

Author(s)

Oliver Crook

Examples

```
fourierIsotope(c(C = \emptyset, H = \emptyset, N = \emptyset, O = \emptyset, S = \emptyset, P = \emptyset))
```

generateSpectra

generate Spectra using a fourier transform

Description

generate Spectra using a fourier transform

Usage

```
generateSpectra(
   sequences,
   incorps,
   charges,
   customs = list(code = NULL, elements = NULL)
)
```

Arguments

sequences A vector of peptide sequences
incorps A vector of deuterium incoperation
charges A vector of charge states of the peptide
customs Custom elements supplied as a list

Value

A Spectra object corresponding to the isotope distributions

Author(s)

Oliver Crook

```
generateSpectra(sequence = "HDAEHAHEAPRKL", incorps = c(0.5), charges = 2)
```

8 imTimeOutlier

hdxmsqc	A package to perfrom quality control for mass-spectrometry based hydrogen deuterium exchange experiment.
	ŭ .

Description

'hdxmsqc' provides the functionality to assess the quality and perform quality control of HDX-MS experiments. Raw and processed data can be visualized and analyzed to identify potential issues with the data. The package is designed to work with data from any HDX-MS platform. Typically, users will have exported results from either HDExaminer or DynamX software. There is not need to filter the data in either of those software systems.

Author(s)

Oliver Crook

imTimeOutlier

Ion Mobility time based outlier analysis

Description

Ion Mobility time based outlier analysis

Usage

```
imTimeOutlier(
  object,
  rightIMS = "rightIMS",
  leftIMS = "leftIMS",
  searchIMS = "Search.IMS"
)
```

Arguments

object An object of class QFeatures

rightIMS A string indicating the right boundary of the ion mobility separation time. De-

faults is "rightIMS".

leftIMS A string indicating the left boundary of the ion mobility separation time. Default

is "leftIMS".

searchIMS A string indicating the actual ion mobility search time. The default is "Search.IMS"

Author(s)

Oliver Crook

intensityOutliers 9

Examples

```
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
imTimeOutlier(object = BRD4df_full_imputed)</pre>
```

intensity Outliers

Intensity based deviations

Description

Intensity based deviations

Usage

```
intensityOutliers(object, fcolIntensity = "Max.Inty")
```

Arguments

object An object of class QFeatures

fcolIntensity character to intensity intensity columns. Default is "Max.Inty" and uses regular

expressions to find relevant columns

Value

The Cook's distance to characterise outleirs

Author(s)

Oliver Crook

```
data("BRD4df_full")
intensityOutliers(BRD4df_full)
```

isMissingAtRandom

Missing at random versus missing not at random

Description

Missing at random versus missing not at random

Usage

```
isMissingAtRandom(object, threshold = NULL, filter = TRUE)
```

Arguments

object An object of class QFeatures

threshold A threshold indicated how many missing values indicate whether missingness is

not at random. Default is NULL, which means leads to a threshold which is half

the number of columns.

filter A logial indicating whether to filter out data that is deemed missing not at ran-

dom

data("BRD4df_full")

isMissingAtRandom(BRD4df_full)

Value

Adds a missing not at random indicator column

Author(s)

Oliver Crook

isotopic Distribution HDX fourier

fourier transform approach to computing isotopic distribution

Description

fourier transform approach to computing isotopic distribution

Usage

```
isotopicDistributionHDXfourier(
  sequence,
  incorp = 0,
  charge = 1,
  custom = list(code = NULL, elements = NULL)
)
```

plotImTimeOutlier 11

Arguments

sequence A peptide

incorp The deuterium incoperation charge The charge state of the peptide

custom custom amino acids can be provided here provide a list of the elements.

Value

A list of mass and intensity value corresponding to the isotope distribution

Author(s)

Oliver Crook

Examples

```
isotopicDistributionHDXfourier(sequence = "HDAEHAHEAPRKL")
```

plotImTimeOutlier

Ion Mobility time based outlier analysis

Description

Ion Mobility time based outlier analysis

Usage

```
plotImTimeOutlier(
  object,
  rightIMS = "rightIMS",
  leftIMS = "leftIMS",
  searchIMS = "Search.IMS"
)
```

Arguments

object An object of class QFeatures

rightIMS A string indicating the right boundary of the ion mobility separation time. De-

faults is "rightIMS".

leftIMS A string indicating the left boundary of the ion mobility separation time. Default

is "leftIMS".

searchIMS A string indicating the actual ion mobility search time. The default is "Search.IMS"

Author(s)

Oliver Crook

12 plotIntensityOutliers

Examples

```
library(RColorBrewer)
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
plotImTimeOutlier(object = BRD4df_full_imputed)</pre>
```

Description

Intensity based deviation plot

Usage

```
plotIntensityOutliers(object, fcolIntensity = "Max.Inty")
```

Arguments

object An object of class QFeatures

fcolIntensity character to intensity intensity columns. Default is "Max.Inty" and uses regular

expressions to find relevant columns

Value

A ggplot2 object showing intensity based outliers

Author(s)

Oliver Crook

```
data("BRD4df_full")
library(RColorBrewer)
plotIntensityOutliers(BRD4df_full)
```

plotMassError 13

plotMassError

Mass error plot

Description

Mass error plot

Usage

```
plotMassError(object, eCentroid = "Exp.Cent", tCentroid = "Theor.Cent")
```

Arguments

object An object of class QFeatures

eCentroid character string indicating column identifier for experimental centroid tCentroid character string indicating column identifier for theoretical centroid

Value

a ggplot2 object which can be used to visualise the

Author(s)

Oliver Crook

Examples

```
library(RColorBrewer)
data("BRD4df")
result <- plotMassError(BRD4df, "Exp.Cent", "Theor.Cent")</pre>
```

plotMissing

missing value plot

Description

```
missing value plot
```

Usage

```
plotMissing(object, ...)
```

Arguments

object An object of class QFeatures
... Additional arguemnts to pheatmap

14 plotMonotoneStat

Value

a pheatmap showing missing values

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
library(pheatmap)
library(RColorBrewer)
plotMissing(BRD4df_full)
```

plotMonotoneStat

Monotonicity based outlier detection, plot.

Description

Monotonicity based outlier detection, plot.

Usage

```
plotMonotoneStat(object, experiment = NULL, timepoints = NULL)
```

Arguments

object An object of class QFeatures

experiment A character vector indicating the experimental conditions timepoints A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

```
library("RColorBrewer")
data("BRD4df_full")
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- computeMonotoneStats(object = BRD4df_full,
experiment = experiment,
timepoints = timepoints)</pre>
```

plotrTimeOutliers 15

plotrTimeOutliers

Retention time based analysis

Description

Retention time based analysis

Usage

```
plotrTimeOutliers(
  object,
  leftRT = "leftRT",
  rightRT = "rightRT",
  searchRT = "Search.RT"
)
```

Arguments

object An object of class QFeatures

leftRT A character indicated pattern associated with left boundary of retention time

search. Default is "leftRT".

rightRT A character indicated pattern associated with right boundary of retneton time

search. Default is "rightRT".

searchRT The actual search retention time pattern. Default is "Search.RT"

Value

a ggplot2 object showing distribution of retention time windows.

Author(s)

Oliver Crook

```
data("BRD4df_full")
library(RColorBrewer)
plotrTimeOutliers(BRD4df_full)
```

16 qualityControl

processHDE	Function to curate and HDExaminer file so that in contains all the information in a sensible format. This object can then be straightforwardly passed to a object of class QFeatures

Description

Function to curate and HDExaminer file so that in contains all the information in a sensible format. This object can then be straightforwardly passed to a object of class QFeatures

Usage

```
processHDE(HDExaminerFile, proteinStates = NULL)
```

Arguments

HDExaminerFile an object of class data.frame containing an HDExaminer data proteinStates a character vector indicating the protein states

Value

A wide format data frame with HDExaminer data

Author(s)

Oliver Crook

Examples

```
sample_data <- data.frame(read.csv(system.file("extdata", "ELN55049_AllResultsTables_Uncurated.csv", package = "
processHDE(sample_data)</pre>
```

 ${\it quality Control \ table \ function. \ Generate \ a \ table \ that \ collates \ quality} \\ {\it control \ metrics}$

Description

Quality Control table function. Generate a table that collates quality control metrics

qualityControl 17

Usage

```
qualityControl(
  object,
 massError = NULL,
  intensityOutlier = NULL,
  retentionOutlier = NULL,
 monotonicityStat = NULL,
 mobilityOutlier = NULL,
  chargeCorrelation = NULL,
  replicateCorrelation = NULL,
  replicateOutlier = NULL,
  sequenceCheck = NULL,
  spectraCheck = NULL,
  experiment = NULL,
  timepoints = NULL,
  undeuterated = FALSE
)
```

Arguments

object An object of class Qfeatures, with the data used for the analysis massError The output of the computeMassError function intensityOutlier The output of the intensityOutliers function retentionOutlier The output of the rTimeOutliers function monotonicityStat The output of the computeMonotoneStats function mobilityOutlier The output of the imTimeOutliers function chargeCorrelation The output of the chargeCorrelationsHdx function replicateCorrelation The output of the replicateCorrelation function replicateOutlier The output of the replicateOutlier function The output of the compatibleUptake function sequenceCheck spectraCheck The output of the spectraSimiarity function experiment The experimental conditions. The timepoints used in the analysis, must include repeat for replicates timepoints undeuterated A logical indicating whether only the undeuterated data should be exported

Value

An object of class DataFrame containing a summary of the quality control results.

18 replicateCorrelation

Author(s)

Oliver Crook

```
replicateCorrelation Correlation based checks
```

Description

Correlation based checks

Usage

```
replicateCorrelation(object, experiment, timepoints)
```

Arguments

object An object of class QFeatures.

experiment A character vector indicating the experimental conditions
timepoints A numeric vector indicating the experimental timepoints

Value

Returns A list of the same length as the number of experiments indicating outlier from correlation analysis. Outliers are flagged if their deuterium uptake is highly variable.

Author(s)

Oliver Crook

```
data("BRD4df_full")
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- replicateCorrelation(object = BRD4df_full,
experiment = experiment,
timepoints = timepoints)</pre>
```

replicateOutlier 19

teOutlier Correlation based checks
iler Correlation based che

Description

Correlation based checks

Usage

```
replicateOutlier(object, experiment, timepoints)
```

Arguments

object An object of class QFeatures.

experiment A character vector indicating the experimental conditions
timepoints A numeric vector indicating the experimental timepoints

Value

Returns A list of the same length as the number of experiments indicating outlier from correlation analysis. Outliers are flagged if their deuterium uptake is highly variable.

Author(s)

Oliver Crook

```
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- replicateOutlier(object = BRD4df_full_imputed,
experiment = experiment,
timepoints = timepoints)</pre>
```

20 rTimeOutliers

rTimeOutliers

Retention time based analysis

Description

Retention time based analysis

Usage

```
rTimeOutliers(
  object,
  leftRT = "leftRT",
  rightRT = "rightRT",
  searchRT = "Search.RT"
)
```

Arguments

object An object of class QFeatures

leftRT A character indicated pattern associated with left boundary of retention time

search. Default is "leftRT".

rightRT A character indicated pattern associated with right boundary of retneton time

search. Default is "rightRT".

searchRT The actual search retention time pattern. Default is "Search.RT"

Value

A list indicating the retention time based outliers.

Author(s)

Oliver Crook

```
data("BRD4df_full")
rTimeOutliers(BRD4df_full)
```

spectraSimilarity 21

spectraSimilarity Spectral che

Spectral checking using data from HDsite

Description

Spectral checking using data from HDsite

Usage

```
spectraSimilarity(
  peaks,
  object,
  experiment = NULL,
  mzCol = 14,
  startRT = "Start.RT",
  endRT = "End.RT",
  charge = "z",
  incorpD = "X.D.left",
  maxD = "maxD",
  numSpectra = NULL,
  ppm = 300,
  BPPARAM = bpparam()
)
```

Arguments

a data.frame containing data exported from hdsite peaks object a data.frame obtained from HDexaminer data A character vector indicating the experimental conditions experiment mzCol The column in the peak information indicating the base mz value startRT The column indicatng the start of the retention time. Default is "Start.RT" endRT The column indicating the end of the retention time. Default is "End.RT The column indicating the charge information. Default is "z". charge incorpD The deuterium uptake value column. Default is "X.D.left". maxD The maximum allowed deuterium incorporation column. Default is "maxD". numSpectra The number of spectra to analyse. Default is NULL in which all Spectra are analysed. The ppm error ppm **BPPARAM** Bioconductor parallel options.

Value

Two list of spectra observed and matching theoretical Spectra

22 spectraSimilarity

Author(s)

Oliver Crook

Index

```
* data
    BRD4df, 2
    BRD4df_full, 3
BRD4df, 2
BRD4df_full, 3
{\tt chargeCorrelationHdx}, {\tt 3}
compatibleUptake, 4
computeMassError, 4
computeMonotoneStats, 5
exchangeableAmides, 6
fourierIsotope, 6
generateSpectra, 7
hdxmsqc, 8
imTimeOutlier, 8
intensityOutliers, 9
isMissingAtRandom, 10
{\tt isotopicDistributionHDX fourier,}\ 10
plotImTimeOutlier, 11
plotIntensityOutliers, 12
plotMassError, 13
plotMissing, 13
plotMonotoneStat, 14
plotrTimeOutliers, 15
processHDE, 16
qualityControl, 16
replicateCorrelation, 18
replicateOutlier, 19
rTimeOutliers, 20
spectraSimilarity, 21
```