Package ‘epialleleR’

October 24, 2025

Title Fast, Epiallele-Aware Methylation Caller and Reporter
Version 1.17.1

Description Epialleles are specific DNA methylation patterns that are
mitotically and/or meiotically inherited. This package calls and reports
cytosine methylation as well as frequencies of hypermethylated
epialleles at the level of genomic regions or individual cytosines
in next-generation sequencing data using binary alignment map (BAM) files as
an input. Among other things, this package can also extract and visualise
methylation patterns and assess allele specificity of methylation.

SystemRequirements C++17, GNU make
NeedsCompilation yes
Depends R (>=4.1)

Imports stats, methods, utils, data.table, BiocGenerics,
GenomicRanges, Rcpp

LinkingTo Rcpp, BH, Rhtslib

Suggests GenomelnfoDb, SummarizedExperiment, VariantAnnotation, RUnit,
knitr, rmarkdown, ggplot2

License Artistic-2.0
URL https://github.com/BBCG/epialleleR

BugReports https://github.com/BBCG/epialleleR/issues
Encoding UTF-8

biocViews DNAMethylation, Epigenetics, MethylSeq, LongRead
RoxygenNote 7.3.2

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/epialleleR
git_branch devel

git_last_commit a330d04

git_last commit_date 2025-07-06

Repository Bioconductor 3.23

https://github.com/BBCG/epialleleR
https://github.com/BBCG/epialleleR/issues

callMethylation

Date/Publication 2025-10-24

Author Oleksii Nikolaienko [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5910-4934>)

Maintainer Oleksii Nikolaienko <oleksii.nikolaienko@gmail.com>

Contents
callMethylation 2
extractPatterns 4
generateBedEcdf L 6
generateBedReport L L 9
generateCytosineReporto oL 14
generateMhlReport Lo 17
generateVcfReport oL Lo 21
plotPatterns L e e e e e e e e e e 24
preprocessBam L. L e 28
preprocessGenomMe Lo e e 32
simulateBam L. 33

Index 36

callMethylation callMethylation
Description

This function calls cytosine methylation and stores calls in BAM files.

Usage
callMethylation(
input.bam.file,
output.bam.file,
genome,
nthreads = 1,
verbose = TRUE
)
Arguments

input.bam.file
output.bam.file

genome
nthreads

verbose

input BAM file location string.

output BAM file location string.
reference (genomic) sequences file location string or an output of preprocessGenome.

non-negative integer for the number of additional HTSIib threads to be used
during file decompression (default: 1).

boolean to report progress and timings (default: TRUE).

https://orcid.org/0000-0002-5910-4934

callMethylation 3

Details

The function makes cytosine methylation calls for short-read methylation (bisulfite/enzymatic) se-
quencing alignments from input BAM file and writes them in the XM tag of the output BAM file.
Calls are made on the basis of reference (e.g., genomic) sequence and observed sequence and cyto-
sine context of reads. Data reading/processing is done by means of HTSIib, therefore it is possible
to significantly (>5x) speed up the calling using several (4-8) HTSlib decompression threads.

Methylation calling with this function is only possible for sequencing data obtained using either
bisulfite or other similar sequencing method (enzymatic methylation sequencing). Cytosine methy-
lation in long-read, native DNA sequencing alignments should be called using other, appropriate
tools.

It is a requirement that the genomic strand the read was aligned to is known. This information is
typically stored in XG tag of Bismark/Illumina BAM files, or in YD tag of BWA-meth alignment
files, or in ZS tag of BSMAP alignment files. ‘epialleleR‘ is aware of that and will use the whichever
tag is available.

The sequence context of cytosines (h/H for "CHH", x/X for "CHG", z/Z for "CG") is determined
based on the actual (observed) sequence of the read. E.g., if read "ACGT" was aligned to the for-
ward strand of reference sequence "ACaaGT" with the CIGAR string "2M2D2M" (2 bases match,
2 reference bases are deleted, 2 bases match), then methylation call string will be ".Z.." (in con-
trast to the reference’s one of ".H...."). This makes cytosine calls nearly identical to ones produced
by Bismark Bisulfite Read Mapper and Methylation Caller or Illumina DRAGEN Bio IT Platform,
however with one important distinction: ‘epialleleR‘ reports sequence context of cytosines followed
by unknown bases ("CNN") as "H.." instead of "U.." (unknown; as for example Illumina DRAGEN
Bio IT Platform does). Similarly, forward strand context of "CNG" is reported as "X..", forward
strand context of "CGN" -> "Z..", reverse strand context of "NNG" -> "..H", reverse strand con-
text of "CNG" -> "..X", reverse strand context of "NCG" -> "..Z". Both lowercase and uppercase
ACGTN symbols in reference sequence are allowed and correctly recognised, however all the other
symbols (e.g., extended IUPAC symbols, MRSVWYHKDB) within sequences are converted to N.

As a reference sequence, the function expects either location of (preferably ‘bgzip‘ped) FASTA file
or an object obtained by preprocessGenome. The latter is recommended if methylation calling is
to be performed on multiple BAM files.

The alignment records of the output BAM file will contain additional XM tag with the methylation
call string for every mapped read which did not have XM tag available. Besides that, XG tag with
reference sequence strand ("CT" or "GA") is added to such reads in case it wasn’t present.

Please note that for the purpose of methylation calling, the very same reference genome must be
used for both alignment (when BAM is produced) and calling cytosine methylation by callMethylation
method. Exception is thrown if reference sequence header of BAM file doesn’t match reference se-
quence data provided (this matching is performed on the basis of names and lengths of reference
sequences).

Value

list object with simple statistics of processed ("nrecs") records and calls made ("ncalled"). Even
though "ncalled" can be less than "nrecs" (e.g., because not all reads are mapped), all records from
the input BAM are written to the output BAM.

4 extractPatterns

See Also

preprocessGenome for preloading reference sequences and ‘epialleleR* vignettes for the descrip-
tion of usage and sample data.

Bismark Bisulfite Read Mapper and Methylation Caller, bwa-meth for fast and accurate alignment
of long bisulfite-seq reads, BSMAP: whole genome bisulfite sequence MAPping program, or info
on [llumina DRAGEN Bio IT Platform.

Examples

callMethylation(
input.bam.file=system.file("extdata”, "test”, "dragen-se-unsort-xg.bam"”, package="epialleleR"),
output.bam.file=tempfile(pattern="output-", fileext=".bam"),

genome=system.file("extdata”, "test”, "reference.fasta.gz", package="epialleleR")
)
extractPatterns extractPatterns
Description

This function extracts methylation patterns (epialleles) for a given genomic region of interest.

Usage

extractPatterns(
bam,
bed,
bed.row = 1,
zero.based.bed = FALSE,
match.min.overlap = 1,
extract.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.freq = 0.01,
clip.patterns = FALSE,
strand.offset = ¢(CG =1, CHG = 2, CHH = @, CxG = @, CX = @)[extract.context],
highlight.positions = c(),

L

verbose = TRUE

)
Arguments
bam BAM file location string OR preprocessed output of preprocessBam function.
Read more about BAM file requirements and BAM preprocessing at preprocessBam.
bed Browser Extensible Data (BED) file location string OR object of class GRanges

holding genomic coordinates for regions of interest. It is used to match sequenc-
ing reads to the genomic regions for pattern extraction. The style of seqlevels of
BED file/object must match the style of seqlevels of the BAM file/object used.

https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://arxiv.org/abs/1401.1129
https://doi.org/10.1186/1471-2105-10-232
https://support-docs.illumina.com/SW/dragen_v42/Content/SW/DRAGEN/MPipelineMeth_fDG.htm

extractPatterns 5

The BED/GRanges rows are not sorted internally. As of now, the strand infor-
mation is ignored and patterns matching both strands are extracted.
bed. row single non-negative integer specifying what ‘bed* region should be included in
the output (default: 1).
zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).
match.min.overlap
integer for the smallest overlap between read’s and BED/GRanges start or end
positions during matching of capture-based NGS reads (default: 1).
extract.context
string defining cytosine methylation context used to report:

* "CG" (the default) — CpG cytosines (called as zZ)

* "CHG" — CHG cytosines (xX)

* "CHH" — CHH cytosines (hH)

* "CxG" — CG and CHG cytosines (zZxX)

e "CX" —all cytosines

min.context.freq

real number in the range [0;1] (default: 0.01). Genomic positions that are cov-
ered by smaller fraction of patterns (e.g., with erroneous context) won’t be in-
cluded in the report.

clip.patterns boolean if patterns should not extend over the edge of ‘bed‘ region (default:
FALSE).

strand.offset single non-negative integer specifying the offset of bases at the reverse (-) strand
compared to the forward (+) strand. Allows to "merge" genomic positions when
methylation is symmetric (in CG and CHG contexts). By default, equals 1 for
‘extract.context‘=="CG", 2 for "CHG", or 0 otherwise.

highlight.positions
integer vector with genomic positions of bases to include in every overlap-
ping pattern. Allows to visualize the distribution of single-nucleotide variations
(SNVs) among methylation patterns. ‘highlight.positions* takes precedence if
any of these positions overlap with within-the-context positions of methylation
pattern.

other parameters to pass to the preprocessBam function. Options have no effect
if preprocessed BAM data was supplied as an input.

verbose boolean to report progress and timings (default: TRUE).

Details

The function matches reads (for paired-end sequencing alignment files - read pairs as a single entity)
to the genomic region provided in a BED file/GRanges object, extracts methylation statuses of bases
within those reads, and returns a data frame which can be used for further analysis and/or plotting
of DNA methylation patterns by plotPatterns function.

Value

data. table object containing per-read (pair) base methylation information for the genomic region
of interest. The report columns are:

6 generateBedEcdf

* seqnames — read (pair) reference sequence name

* strand — read (pair) strand

* start — start of the read (pair)

* end — end of the read (pair)

* nbase — number of within-the-context bases for this read (pair)

* beta — beta value of this read (pair), calculated as a ratio of the number of methylated within-
the-context bases to the total number of within-the-context bases

* pattern — hex representation of 64-bit FN'V-1a hash calculated for all reported base positions
and bases in this read (pair). This hash value depends only on included genomic positions
and their methylation call string chars (hHxXzZ) or nucleotides (ACGT, for highlighted bases
only), thus it is expected to be unique for every methylation pattern, although equal for iden-
tical methylation patterns independently on read (pair) start, end, or strand (when correct
‘strand.offset is given)

* ... —columns for each genomic position that hold corresponding methylation call string char,
or NA if position is not present in the read (pair)

See Also

plotPatterns for pretty plotting of the output, preprocessBam for preloading BAM data, generateCytosineReport
for methylation statistics at the level of individual cytosines, generateBedReport for genomic

region-based statistics, generateVcfReport for evaluating epiallele-SNV associations, generateBedEcdf

for analysing the distribution of per-read beta values, and ‘epialleleR‘ vignettes for the description

of usage and sample data.

Examples
amplicon data
amplicon.bam <- system.file("extdata”, "amplicon@1@meth.bam”,
package="epialleleR")
amplicon.bed <- system.file("extdata”, "amplicon.bed”,

package="epialleleR")

extract patterns
patterns <- extractPatterns(bam=amplicon.bam, bed=amplicon.bed, bed.row=3)

and then plot them
plotPatterns(patterns)

generateBedEcdf generateBedEcdf

Description

This function computes empirical cumulative distribution functions (eCDF) for per-read beta values
of the sequencing reads.

generateBedEcdf 7

Usage

generateBedEcdf (
bam,
bed,
bed.type = c("amplicon”, "capture"),
bed.rows = c(1),
zero.based.bed = FALSE,
match.tolerance = 1,
match.min.overlap = 1,
ecdf.context = c("CG", "CHG", "CHH", "CxG", "CX"),

verbose = TRUE

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
Read more about BAM file requirements and BAM preprocessing at preprocessBam.

bed Browser Extensible Data (BED) file location string OR object of class GRanges
holding genomic coordinates for regions of interest. It is used to match se-
quencing reads to the genomic regions prior to eCDF computation. The style
of seqlevels of BED file/object must match the style of seqlevels of the BAM
file/object used.

bed. type character string for the type of assay that was used to produce sequencing reads:

* "amplicon" (the default) — used for amplicon-based next-generation se-
quencing when exact coordinates of sequenced fragments are known. Match-
ing of reads to genomic ranges are then performed by the read’s start or
end positions, either of which should be no further than ‘match.tolerance’
bases away from the start or end position of genomic ranges given in BED
file/GRanges object

 "capture" — used for capture-based next-generation sequencing when reads
partially overlap with the capture target regions. Read is considered to
match the genomic range when their overlap is more or equal to ‘match.min.overlap‘.
If read matches two or more BED genomic regions, only the first match is
taken (input GRanges are not sorted internally)

bed.rows integer vector specifying what ‘bed‘ regions should be included in the output. If
‘c(1)‘ (the default), then function returns eCDFs for the first region of ‘bed‘, if
NULL - eCDF functions for all ‘bed* genomic regions as well as for the reads
that didn’t match any of the regions (last element of the return value; only if
there are such reads).
zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).
match.tolerance
integer for the largest difference between read’s and BED GRanges start or end
positions during matching of amplicon-based NGS reads (default: 1).
match.min.overlap
integer for the smallest overlap between read’s and BED GRanges start or end
positions during matching of capture-based NGS reads (default: 1). If read

8 generateBedEcdf

matches two or more BED genomic regions, only the first match is taken (input
GRanges are not sorted internally).

ecdf.context string defining cytosine methylation context used for computing within-the-
context and out-of-context eCDFs:

* "CG" (the default) — within-the-context: CpG cytosines (called as zZ), out-
of-context: all the other cytosines (hHxX)

* "CHG" — within-the-context: CHG cytosines (xX), out-of-context: hHzZ

e "CHH" - within-the-context: CHH cytosines (hH), out-of-context: xXzZ

* "CxG" — within-the-context: CG and CHG cytosines (zZxX), out-of-context:
CHH cytosines (hH)

* "CX" - all cytosines are considered within-the-context

other parameters to pass to the preprocessBam function. Options have no effect
if preprocessed BAM data was supplied as an input.

verbose boolean to report progress and timings (default: TRUE).

Details

The function matches reads (for paired-end sequencing alignment files - read pairs as a single entity)
to the genomic regions provided in a BED file/GRanges object, computes average per-read beta
values according to the cytosine context parameter ‘ecdf.context‘, and returns a list of eCDFs for
within- and out-of-context average per-read beta values, which can be used for plotting.

The resulting eCDFs and their plots can be used to characterise the methylation pattern of a partic-
ular genomic region, e.g. if reads that match to that region are methylated in an "all-CpGs-or-none"
manner or if some intermediate methylation levels are more frequent.

Value

list with a number of elements equal to the length of ‘bed.rows® (if not NULL), or to the number of
genomic regions within ‘bed* (if ‘bed.rows==NULL*) plus one item for all reads not matching ‘bed*
genomic regions (if any). Every list item is a list on it’s own, consisting of two eCDF functions for
within- and out-of-context per-read beta values.

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at

the level of individual cytosines, generateBedReport for genomic region-based statistics, generateVcfReport
for evaluating epiallele-SNV associations, extractPatterns for exploring methylation patterns

and plotPatterns for pretty plotting of its output, and ‘epialleleR‘ vignettes for the description of

usage and sample data.

Examples

amplicon data

amplicon.bam <- system.file("extdata”, "amplicon@1@meth.bam”,
package="epialleleR")
amplicon.bed <- system.file("extdata”, "amplicon.bed”,

package="epialleleR")

generateBedReport 9

let's compute eCDF
amplicon.ecdfs <- generateBedEcdf (bam=amplicon.bam, bed=amplicon.bed,
bed.rows=NULL)

there are 5 items in amplicon.ecdfs, let's plot them all
par (mfrow=c(1,length(amplicon.ecdfs)))

cycle through items
for (x in 1:length(amplicon.ecdfs)) {
four of them have names corresponding to amplicon.bed genomic regions,
fifth - NA for all the reads that don't match to any of those regions
main <- if (is.na(names(amplicon.ecdfs[x]))) "unmatched”
else names(amplicon.ecdfs[x])

plotting eCDF for within-the-context per-read beta values (in red)

plot(amplicon.ecdfs[[x]]$context, col="red"”, verticals=TRUE,
do.points=FALSE, xlim=c(@,1), xlab="per-read beta value”,
ylab="cumulative density”, main=main)

adding eCDF for out-of-context per-read beta values (in blue)
plot(amplicon.ecdfs[[x]]$out.of.context, add=TRUE, col="blue",
verticals=TRUE, do.points=FALSE)
}

recover default plotting parameters
par (mfrow=c(1,1))

generateBedReport generateBedReport

Description

‘generateBedReport‘, ‘generateAmpliconReport*, ‘generateCaptureReport‘ — these functions match
BAM reads to the set of genomic locations and return the fraction of reads with an average methy-
lation level passing an arbitrary threshold.

Usage

generateAmpliconReport(
bam,
bed,
report.file = NULL,
zero.based.bed = FALSE,
match.tolerance 1,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,

10 generateBedReport

max.outofcontext.beta = 0.1,
gzip = FALSE,
verbose = TRUE

)

generateCaptureReport(
bam,
bed,
report.file = NULL,
zero.based.bed = FALSE,
match.min.overlap = 1,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,

gzip = FALSE,
verbose = TRUE
)

generateBedReport(
bam,
bed,
report.file = NULL,
zero.based.bed = FALSE,
bed.type = c("amplicon”, "capture"”),
match.tolerance = 1,
match.min.overlap = 1,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,

gzip = FALSE,

verbose = TRUE
)
Arguments
bam BAM file location string OR preprocessed output of preprocessBam function.
Read more about BAM file requirements and BAM preprocessing at preprocessBam.
bed Browser Extensible Data (BED) file location string OR object of class GRanges

holding genomic coordinates for regions of interest. The style of seqlevels of
BED file/object must be the same as the style of seqlevels of BAM file/object
used. The BED/GRanges rows are not sorted internally. As of now, the strand in-

generateBedReport 11

formation is ignored and reads (read pairs) matching both strands are separately
counted and reported.

report.file file location string to write the BED report. If NULL (the default) then report is
returned as a data. table object.

zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).
match. tolerance
integer for the largest difference between read’s and BED GRanges start or end
positions during matching of amplicon-based NGS reads (default: 1).
threshold.reads
boolean defining if sequence reads should be thresholded before counting reads
belonging to variant epialleles (default: TRUE). Disabling thresholding is pos-
sible but makes no sense in the context of this function, because all the reads
will be assigned to the variant epiallele, which will result in VEF==1 (in such
case ‘NA‘ VEF values are returned in order to avoid confusion). As thresh-
olding is not recommended for long-read sequencing data, this function is not
recommended for such data either.
threshold. context
string defining cytosine methylation context used for thresholding the reads:
* "CG" (the default) — within-the-context: CpG cytosines (called as zZ), out-
of-context: all the other cytosines (hHxX)
¢ "CHG" — within-the-context: CHG cytosines (xX), out-of-context: hHzZ
e "CHH" — within-the-context: CHH cytosines (hH), out-of-context: xXzZ
* "CxG" — within-the-context: CG and CHG cytosines (zZxX), out-of-context:
CHH cytosines (hH)
e "CX" —all cytosines are considered within-the-context, this effectively re-
sults in no thresholding
This option has no effect when read thresholding is disabled.
min.context.sites
non-negative integer for minimum number of cytosines within the ‘threshold.context*
(default: 2). Reads containing fewer within-the-context cytosines are consid-
ered completely unmethylated (thus belonging to the reference epiallele). This
option has no effect when read thresholding is disabled.
min.context.beta
real number in the range [0;1] (default: 0.5). Reads with average beta value
for within-the-context cytosines below this threshold are considered completely
unmethylated (thus belonging to the reference epiallele). This option has no
effect when read thresholding is disabled.
max.outofcontext.beta
real number in the range [0;1] (default: 0.1). Reads with average beta value
for out-of-context cytosines above this threshold are considered completely un-
methylated (thus belonging to the reference epiallele). This option has no effect
when read thresholding is disabled.

other parameters to pass to the preprocessBam function. Options have no effect
if preprocessed BAM data was supplied as an input.

gzip boolean to compress the report (default: FALSE).

12 generateBedReport

verbose boolean to report progress and timings (default: TRUE).

match.min.overlap
integer for the smallest overlap between read’s and BED GRanges start or end
positions during matching of capture-based NGS reads (default: 1). If read
matches two or more BED genomic regions, only the first match is taken (input
GRanges are not sorted internally).

bed. type character string for the type of assay that was used to produce sequencing reads:

* "amplicon" (the default) — used for amplicon-based next-generation se-
quencing when exact coordinates of sequenced fragments are known. Match-
ing of reads to genomic ranges are then performed by the read’s start or
end positions, either of which should be no further than ‘match.tolerance’
bases away from the start or end position of genomic ranges given in BED
file/GRanges object

* "capture" — used for capture-based next-generation sequencing when reads
partially overlap with the capture target regions. Read is considered to
match the genomic range when their overlap is more or equal to ‘match.min.overlap‘.
If read matches two or more BED genomic regions, only the first match is
taken (input GRanges are not sorted internally)

Details

Functions report hypermethylated variant epiallele frequencies (VEF) per genomic region of interest
using BAM and BED files as input. Reads (for paired-end sequencing alignment files - read pairs as
a single entity) are matched to genomic locations by exact coordinates (‘generateAmpliconReport
or ‘generateBedReport‘ with an option bed.type="amplicon") or minimum overlap (‘generateCap-
tureReport* or ‘generateBedReport* with an option bed.type="capture") — the former to be used for
amplicon-based NGS data, while the latter — for the capture-based NGS data. The function’s logic
is explained below.

Let’s suppose we have a BAM file with four reads, all mapped to the "+" strand of chromosome 1,
positions 1-16. The genomic range is supplied as a parameter ‘bed = as("chr1:1-100", "GRanges")‘.
Assuming the default values for the thresholding parameters (threshold.reads = TRUE, thresh-
old.context = "CG", min.context.sites = 2, min.context.beta = 0.5, max.outofcontext.beta = 0.1),
the input and results will look as following:

methylation string threshold explained

..Z.x+.h.x.h below min.context.sites < 2 (only one zZ base)
..Z.z.h.x.h. above pass all criteria

..Z..z.h. X. h. below max.outofcontext.beta > 0.1 (1XH /3xXhH = 0.33)
..Z..z.h..z- h. below min.context.beta < 0.5 (12 / 3zZ = 0.33)

Only the second read will satisfy all of the thresholding criteria, leading to the following BED report
(given that all reads map to chrl:+:1-16):

seqnames start end width strand nreads+ nreads- VEF
chrl 1 100 100 * 4 0 0.25

Please note, that read thresholding by an average methylation level (as explained above) makes
little sense for long-read sequencing alignments, as such reads can cover multiple regions with

generateBedReport 13

very different DNA methylation properties. Instead, please use extractPatterns, limiting pattern
output to the region of interest only.

Value

data. table object containing VEF report for BED GRanges or NULL if report.file was specified.
If BAM file contains reads that would not match to any of BED GRanges, the last row in the report
will contain information on such reads (with seqnames, start and end equal to NA). The report
columns are:

* seqnames — reference sequence name

* start — start of genomic region

* end — end of genomic region

* width — width of genomic region

* strand — strand

e ... —other columns that were present in BED or metadata columns of GRanges object

* nreads+ — number of reads (pairs) mapped to the forward ("+") strand

non

* nreads- — number of reads (pairs) mapped to the reverse ("-") strand

* VEF - frequency of reads passing the threshold

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at
the level of individual cytosines, generateVcfReport for evaluating epiallele-SNV associations,
extractPatterns for exploring methylation patterns and plotPatterns for pretty plotting of its
output, generateBedEcdf for analysing the distribution of per-read beta values, and ‘epialleleR*
vignettes for the description of usage and sample data.

GRanges class for working with genomic ranges, seqlevelsStyle function for getting or setting
the seqlevels style.

Examples

amplicon data

amplicon.bam <- system.file("extdata"”, "amplicon@1@meth.bam",
package="epialleleR")
amplicon.bed <- system.file("extdata”, "amplicon.bed"”,

package="epialleleR")
amplicon.report <- generateAmpliconReport(bam=amplicon.bam,
bed=amplicon.bed)

capture NGS

capture.bam <- system.file("extdata”, "capture.bam”,
package="epialleleR")

capture.bed <- system.file("extdata”, "capture.bed"”,
package="epialleleR")

capture.report <- generateCaptureReport(bam=capture.bam, bed=capture.bed)

generateAmpliconReport and generateCaptureReport are just aliases

14 generateCytosineReport

of the generateBedReport

bed.report <- generateBedReport(bam=capture.bam, bed=capture.bed,
bed. type="capture”)

identical(capture.report, bed.report)

generateCytosineReport
generateCytosineReport

Description

This function counts methylated and unmethylated DNA bases taking into the account average
methylation level of the entire sequence read.

Usage

generateCytosineReport(
bam,
report.file = NULL,
threshold.reads = TRUE,
threshold.context = c(”CG", "CHG”, "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
report.context = threshold.context,

gzip = FALSE,

verbose = TRUE
)
Arguments
bam BAM file location string OR preprocessed output of preprocessBam function.

Read more about BAM file requirements and BAM preprocessing at preprocessBam.

report.file file location string to write the cytosine report. If NULL (the default) then report
is returned as a data. table object.

threshold.reads
boolean defining if sequence reads (read pairs) should be thresholded before
counting methylated cytosines (default: TRUE). Disabling thresholding makes
the report virtually indistinguishable from the ones generated by other software,
such as Bismark or Illumina DRAGEN Bio IT Platform. Thresholding is not
recommended for long-read sequencing data.

threshold.context
string defining cytosine methylation context used for thresholding the reads:

e "CG" (the default) — within-the-context: CpG cytosines (called as zZ),
out-of-context: all the other cytosines (hHxX)

generateCytosineReport 15

¢ "CHG" — within-the-context: CHG cytosines (xX), out-of-context: hHzZ

* "CHH" — within-the-context: CHH cytosines (hH), out-of-context: xXzZ

* "CxG" — within-the-context: CG and CHG cytosines (zZxX), out-of-context:
CHH cytosines (hH)

* "CX" — all cytosines are considered within-the-context, this effectively
results in no thresholding

This option has no effect when read thresholding is disabled.

min.context.sites
non-negative integer for minimum number of cytosines within the ‘threshold.context*
(default: 2). Reads containing fewer within-the-context cytosines are consid-
ered completely unmethylated (all C are counted as T). This option has no effect
when read thresholding is disabled.

min.context.beta
real number in the range [0;1] (default: 0.5). Reads with average beta value
for within-the-context cytosines below this threshold are considered completely

unmethylated (all C are counted as T). This option has no effect when read
thresholding is disabled.

max.outofcontext.beta
real number in the range [0;1] (default: 0.1). Reads with average beta value
for out-of-context cytosines above this threshold are considered completely un-
methylated (all C are counted as T). This option has no effect when read thresh-
olding is disabled.

report.context string defining cytosine methylation context to report (default: value of ‘thresh-
old.context*).

other parameters to pass to the preprocessBam function. Options have no effect
if preprocessed BAM data was supplied as an input.

gzip boolean to compress the report (default: FALSE).
verbose boolean to report progress and timings (default: TRUE).
Details

The function reports cytosine methylation information using BAM file or data as an input. In
contrast to the other currently available software, reads (for paired-end sequencing alignment files -
read pairs as a single entity) can be thresholded by their average methylation level before counting
methylated bases, effectively resulting in hypermethylated variant epiallele frequency (VEF) being
reported instead of beta value. The function’s logic is explained below.

Let’s suppose we have a BAM file with four reads, all mapped to the "+" strand of chromosome
1, positions 1-16. Assuming the default values for the thresholding parameters (threshold.reads =
TRUE, threshold.context = "CG", min.context.sites = 2, min.context.beta = 0.5, max.outofcontext.beta
= (.1), the input and results will look as following:

methylation string threshold explained methylation reported
L. x+.h.x..h. below min.context.sites < 2 (only one zZ base) all cytosines unmethylated
...Z..z.h.x..h. above pass all criteria only C4 (Z at position 4) is methylated

..Z..zh. X h. below max.outofcontext.beta > 0.1 (1XH /3xXhH = 0.33) all cytosines unmethylated

16 generateCytosineReport

...Z..z.h..z- h. below min.context.beta < 0.5 (1Z / 3zZ = 0.33) all cytosines unmethylated

Only the second read will satisfy all of the thresholding criteria, leading to the following CX report
(given that all reads map to chrl:+:1-16):

rname strand pos context meth unmeth

chrl + 4 CG 1 3
chrl + 7 CG 0 3
chrl + 9 CHH 0 4
chrl + 12 CHG 0 3
chrl + 15 CHH 0 4

With the thresholding disabled (threshold.reads = FALSE) all methylated bases will retain their
status, so the CX report will be similar to the reports produced by other methylation callers (such
as Bismark or Illumina DRAGEN Bio IT Platform):

rname strand pos context meth unmeth

chrl + 4 CG 4 0
chrl + 7 CG 0 3
chrl + 9 CHH 0 4
chrl + 12 CHG 1 2
chrl + 15 CHH 0 4

Other notes:

To produce conventional cytosine reports without thresholding by within-context methylation level

though minimally affected by incomplete cytosine conversion, run this method with the following
parameters: ‘threshold.reads=TRUE®, ‘threshold.context="CG"*, ‘min.context.sites=0°, ‘min.context.beta=0°,
‘max.outofcontext.beta=0.1°. All cytosines within reads (read pairs) having more than 10 cytosines
methylated, will be effectively treated as unmethylated ones.

Methylation string bases in unknown context ("uU") are simply ignored, which, to the best of our
knowledge, is consistent with the behaviour of other tools.

In order to mitigate the effect of sequencing errors (leading to rare variations in the methylation
context, as in reads 1 and 4 above), the context present in more than 50% of the reads is assumed
to be correct, while all bases at the same position but having other methylation context are simply
ignored. This allows reports to be prepared without using the reference genome sequence.

The downside of not using the reference genome sequence is the inability to determine the actual
sequence of triplet for every base in the cytosine report. Therefore this sequence is not reported,
and this won’t change until such information will be considered as worth adding.

Please also note, that read thresholding by an average methylation level (as explained above) makes
little sense for long-read sequencing alignments, as such reads can cover multiple regions with very
different DNA methylation properties.

Value

data.table object containing cytosine report in Bismark-like format or NULL if report.file was
specified. The report columns are:

generateMhIReport 17

* rname — reference sequence name (as in BAM)
* strand — strand

* pos — cytosine position

* context — methylation context

* meth — number of methylated cytosines

* unmeth — number of unmethylated cytosines

See Also

‘values® vignette for a comparison and visualisation of epialleleR output values for various input
files. ‘epialleleR‘ vignette for the description of usage and sample data.

preprocessBam for preloading BAM data, generateBedReport for genomic region-based statis-
tics, generateVcfReport for evaluating epiallele-SNV associations, extractPatterns for explor-
ing methylation patterns and plotPatterns for pretty plotting of its output, generateBedEcdf for
analysing the distribution of per-read beta values.

Examples

capture.bam <- system.file("extdata”, "capture.bam”, package="epialleleR")

CpG report with thresholding
cg.report <- generateCytosineReport(capture.bam)

CX report without thresholding
cx.report <- generateCytosineReport(capture.bam, threshold.reads=FALSE,
report.context="CX")

generateMhlReport generateMhlReport

Description

This function computes Linearised Methylated Haplotype Load (IM H L) per genomic position.

Usage

generateMhlReport(
bam,
report.file = NULL,
haplotype.context = c("CG", "CHG", "CHH", "CxG", "CX"),
max.haplotype.window = 9,
min.haplotype.length = 0,
max.outofcontext.beta = 0.1,
gzip = FALSE,
verbose = TRUE

18 generateMhIReport

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
Read more about BAM file requirements and BAM preprocessing at preprocessBam.

report.file file location string to write the [M H L report. If NULL (the default) then report
is returned as a data. table object.

haplotype.context
string for a cytosine context that defines a haplotype:

* "CG" (the default) — CpG cytosines only (called as zZ)
¢ "CHG" — CHG cytosines only (xX)

e "CHH" — CHH cytosines only (hH)

* "CxG" — CG and CHG cytosines (zZxX)

* "CX" - all cytosines; this, as well as the other non-CG contexts, may have
little sense but still included for consistency

If IMHL calculations are needed for all three possible cytosine contexts in-
dependently, one has to run this function for each required ‘haplotype.context*
separately, because ‘haplotype.context‘=="CX" assumes that any cytosine con-
text is allowed within the same haplotype. This behaviour may change in the
future.

max.haplotype.window
non-negative integer for maximum value of L' in {M H L formula. When O (the
default), calculations are performed for the full haplotype length (I’ = L, al-
though the maximum value is currently limited to 65535). Having no length
restrictions make sense for short-read sequencing when the length of the read is
comparable to the length of a typical methylated block, the depth of coverage
is high, and the lengths of all reads are roughly equal. However, calculations
using non-restricted haplotype length are meaningless for long-read sequenc-
ing — when the same read may cover a number of regions with very different
methylation properties, and reads themselves can be of a very different length.
In the latter case it is advised to limit the ‘max.haplotype.window* to a number
of cytosines in a typical hypermethylated region. For thorough explanation and
more examples, see Details section and vignette.

min.haplotype.length
non-negative integer for minimum length of a haplotype (default: 0 will include
haplotypes of any length). When ‘min.haplotype.length‘>0, reads (read pairs)
with fewer than ‘min.haplotype.length® cytosines within the ‘haplotype.context
are skipped.

max.outofcontext.beta
real number in the range [0;1] (default: 0.1). Reads (read pairs) with average
beta value for out-of-context cytosines above this threshold are skipped. Set to
1 to disable filtering.

other parameters to pass to the preprocessBam function. Options have no effect
if preprocessed BAM data was supplied as an input.

gzip boolean to compress the report (default: FALSE).

verbose boolean to report progress and timings (default: TRUE).

generateMhIReport 19

Details

The function reports Linearised Methylated Haplotype Load (IM H L) at the level of individual
cytosines using BAM file location or preprocessed data as an input. Function uses the following
formula:

L/
. i X M Hi
IMHL = iz W< M
Zi:l w; X Hi
where L’ is the length of a calculation window (e.g., number of CpGs; L’ < L, where L is the
length of a haplotype covering current genomic position), M H; is a number of fully successive
methylated stretches with 7 loci within a methylated stretch that overlaps current genomic position,

H; is anumber of fully successive stretches with ¢ loci, w; is a weight for ¢-locus haplotype (w; = 7).

This formula is a modification of the original Methylated Haplotype Load (MHL) formula that was
first described by Guo et al., 2017 (doi: 10.1038/ng.3805):

where L is the length of a longest haplotype covering current genomic position, NI[J—H = P(MH;)is
the fraction of fully successive methylated stretches with 7 loci, w; is a weight for ¢-locus haplotype
(w; = 1).

The modifications to original formula are made in order to:

* provide granularity of values — the original MHL formula gives the same MHL value for
every cytosine of a partially methylated haplotype (e.g., MHL=0.358 for each cytosine within
a read with methylation call string "zZZZ"). In contrast, [M H L==0 for the non-methylated
cytosines (e.g., IM H L==c(0, 0.5, 0.5, 0.5) for cytosines within a read with methylation call
string "zZZZ7").

enable calculations for long-read sequencing alignments — /M H L calculation window
can be limited to a particular number of cytosines. This allows to use the formula for very
long haplotypes as well as to compare values for sequencing data of varying read length.

reduce the complexity of MHL calculation for data of high breadth and depth — [IM HL
values for all genomic positions can be calculated using a single pass (cycling through reads
just once) as the linearised calculations of numerator and denominator for /M H L do not
require prior knowledge on how many reads cover a particular position. This is achieved by
moving H; multiplier to the denominator of the [M H L formula.

These modifications make M H L calculation similar though non-equivalent to the original MHL.
However, the most important property of MHL — emphasis on hypermethylated blocks — is re-
tained. And in return, [M H L gets better applicability for analysis of sequencing data of varying
depth and read length.

Other notes on function’s behaviour:

Methylation string bases in unknown context ("uU") are simply ignored, which, to the best of our
knowledge, is consistent with the behaviour of other tools.

Cytosine context present in more than 50% of the reads is assumed to be correct, while all bases at
the same position but having other methylation context are simply ignored. This allows reports to
be prepared without using the reference genome sequence.

https://doi.org/10.1038/ng.3805

20 generateMhIReport

Value

data.table object containing {M H L report or NULL if report.file was specified. The report
columns are:

* rname — reference sequence name (as in BAM)

* strand — strand

* pos — cytosine position

* context — methylation context

* coverage — number of reads (read pairs) that include this position

* length — average length of a haplotype, i.e., average number of cytosines within ‘haplo-
type.context for reads (read pairs) that include this position

e Imhl — [M H L value

See Also

‘values‘ vignette for a comparison and visualisation of epialleleR output values for various input
files. ‘epialleleR‘ vignette for the description of usage and sample data.

preprocessBam for preloading BAM data, generateCytosineReport for other methylation statis-
tics at the level of individual cytosines, generateBedReport for genomic region-based statistics,
generateVcfReport for evaluating epiallele-SNV associations, extractPatterns for exploring
methylation patterns and plotPatterns for pretty plotting of its output, generateBedEcdf for
analysing the distribution of per-read beta values.

Examples
capture.bam <- system.file("extdata”, "capture.bam”, package="epialleleR")

IMHL report
mhl.report <- generateMhlReport(capture.bam)

IMHL report with a “max.haplotype.window™ of 1 is identical to a

conventional cytosine report (or nearly identical when sequencing errors
are present)

mhl.report <- generateMhlReport(capture.bam, max.haplotype.window=1)
cg.report <- generateCytosineReport(capture.bam, threshold.reads=FALSE)

identical(
mhl.report[, .(rname, strand, pos, context, value=1lmhl)],
cg.report[, .(rname, strand, pos, context, value=meth/(meth+unmeth))]

)

generate VctfReport 21

generateVcfReport generateVcfReport

Description

This function reports base frequencies at particular genomic positions and tests their association
with the methylation status of the sequencing reads.

Usage
generateVcfReport(
bam,
vef,
vcf.style = NULL,
bed = NULL,
report.file = NULL,
zero.based.bed = FALSE,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
gzip = FALSE,
verbose = TRUE
)
Arguments
bam BAM file location string OR preprocessed output of preprocessBam function.
Read more about BAM file requirements and BAM preprocessing at preprocessBam.
vef Variant Call Format (VCF) file location string OR a VCF object returned by
readVcf function. If VCF object is supplied, the style of its seqlevels must
match the style of seqlevels of the BAM file/object used.
vcf.style string for the seqlevels style of the VCF file, if different from BED file/object.
Only has effect when ‘vef® parameter points to the VCF file location and ‘bed*
is not NULL. Possible values:
* NULL (the default) — seqlevels in BED file/object and VCF file are the
same
* "NCBI", "UCSC", ... — valid parameters of seqlevelsStyle function
bed Browser Extensible Data (BED) file location string OR object of class GRanges

holding genomic coordinates for regions of interest. It is used to include only
the specific genomic ranges when the VCF file is loaded. This option has no
effect when VCF object is supplied as a ‘vcf* parameter. The style of seqlevels
of BED file/object must match the style of seqlevels of the BAM file/object used.

22 generate VcfReport

report.file file location string to write the VCF report. If NULL (the default) then report is
returned as a data. table object.

zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).

threshold.reads
boolean defining if sequence reads should be thresholded before counting bases
in reference and variant epialleles (default: TRUE). Disabling thresholding is
possible but makes no sense in the context of this function, because all the reads
will be assigned to the variant epiallele, which will result in Fisher’s Exact test
p-value of 1 (in columns ‘FEp+‘ and ‘FEP-‘). As thresholding is not recom-
mended for long-read sequencing data, this function is not recommended for
such data either.

threshold. context
string defining cytosine methylation context used for thresholding the reads:

e "CG" (the default) — within-the-context: CpG cytosines (called as zZ), out-
of-context: all the other cytosines (hHxX)

* "CHG" — within-the-context: CHG cytosines (xX), out-of-context: hHzZ

e "CHH" - within-the-context: CHH cytosines (hH), out-of-context: xXzZ

* "CxG" — within-the-context: CG and CHG cytosines (zZxX), out-of-context:
CHH cytosines (hH)

» "CX" — all cytosines are considered within-the-context, this effectively re-
sults in no thresholding

This option has no effect when read thresholding is disabled.

min.context.sites
non-negative integer for minimum number of cytosines within the ‘threshold.context*
(default: 2). Reads containing fewer within-the-context cytosines are consid-
ered completely unmethylated (thus belonging to the reference epiallele). This
option has no effect when read thresholding is disabled.

min.context.beta
real number in the range [0;1] (default: 0.5). Reads with average beta value
for within-the-context cytosines below this threshold are considered completely
unmethylated (thus belonging to the reference epiallele). This option has no
effect when read thresholding is disabled.

max.outofcontext.beta
real number in the range [0;1] (default: 0.1). Reads with average beta value
for out-of-context cytosines above this threshold are considered completely un-
methylated (thus belonging to the reference epiallele). This option has no effect
when read thresholding is disabled.

other parameters to pass to the preprocessBam function. Options have no effect
if preprocessed BAM data was supplied as an input.

gzip boolean to compress the report (default: FALSE).
verbose boolean to report progress and timings (default: TRUE).
Details

Using BAM reads and sequence variation information as an input, ‘generateVcfReport® function
thresholds the reads (for paired-end sequencing alignment files - read pairs as a single entity) ac-
cording to supplied parameters and calculates the occurrence of Reference and Alternative bases

generate VctfReport 23

within reads, taking into the account DNA strand the read mapped to and average methylation level
(epiallele status) of the read.

The information on sequence variation can be supplied as a Variant Call Format (VCF) file location
or an object of class VCEF, returned by the readVcf function call. As whole-genome VCF files can
be extremely large, it is strongly advised to use only relevant subset of their data, prefiltering the
VCEF object manually before calling ‘generateVcfReport* or specifying ‘bed* parameter when ‘vef*
points to the location of such large VCF file. Please note that all the BAM, BED and VCF files must
use the same style for seqlevels (i.e. chromosome names).

After counting, function checks if certain bases occur more often within reads belonging to certain
epialleles using Fisher Exact test (HTSlib’s own implementation) and reports separate p-values for
reads mapped to ""+'"" (forward) and "-"" (reverse) DNA strands.

Please note that the final report currently includes only the VCF entries with single-base REF and
ALT alleles. Also, the default (‘min.baseq=0°) output of ‘generateVcfReport® is equivalent to the
one of ‘samtools mplieup -Q 0 ...¢, and therefore may result in false SNVs caused by misalignments.
Remember to increase ‘min.baseq‘ (‘samtools mplieup -Q° default value is 13) to obtain higher-
quality results.

Read thresholding by an average methylation level used in this function makes little sense for long-
read sequencing alignments, as such reads can cover multiple regions with very different DNA
methylation properties. Instead, please use extractPatterns, limiting pattern output to the region
of interest only.

Value

data. table object containing VCF report or NULL if report.file was specified. The report columns
are:

* name — variation identifier (e.g. "rs123456789")

* seqnames — reference sequence name

* range — genomic coordinates of the variation

* REF - base at the reference allele

* ALT - base at the alternative allele

o [MIU][+I-][ReflAlt] — number of Reference or Alternative bases that were found at this par-
ticular position within Methylated (above threshold) or Unmethylated (below threshold) reads
that were mapped to ''+'" (forward) or "'-"" (reverse) DNA strand. NA values mean that it is not
possible to determine the number of bases due to the bisulfite conversion-related limitations
(C->T variants on "+" and G->A on "-" strands)

e SumRef — sum of all Reference base counts
¢ SumAlt — sum of all Alternative base counts

* FEp+ — Fisher Exact test p-value for association of a variation with methylation status of the
reads that map to the "+" (forward) DNA strand. Calculated using following contingency
table:

M+Ref M+AIt
U+Ref U+Alt

24 plotPatterns

» FEp- — Fisher Exact test p-value for association of a variation with methylation status of the
reads that map to the "'-"" (reverse) DNA strand. Calculated using following contingency table:

M-Ref M-Alt
U-Ref U-Alt

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at

the level of individual cytosines, generateBedReport for genomic region-based statistics, extractPatterns
for exploring methylation patterns and plotPatterns for pretty plotting of its output, generateBedEcdf

for analysing the distribution of per-read beta values, and ‘epialleleR‘ vignettes for the description

of usage and sample data.

GRanges class for working with genomic ranges, readVcf function for loading VCF data, seqlevelsStyle
function for getting or setting the seqlevels style.

Examples
capture.bam <- system.file("extdata”, "capture.bam”, package="epialleleR")
capture.bed <- system.file("extdata”, "capture.bed”, package="epialleleR")
capture.vcf <- system.file("extdata”, "capture.vcf.gz",

package="epialleleR")

VCF report
vcf.report <- generateVcfReport(bam=capture.bam, bed=capture.bed,
vcf=capture.vcf)

plotPatterns plotPatterns

Description

This convenience function plots methylation patterns (epialleles) previously extracted by extractPatterns.

Usage

plotPatterns(
patterns,
order.by = c("beta”, "count”),
beta.range = c(0, 1),
bin.context = c("CG", "CHG", "CHH", "CxG", "CX"),
nbins = 10,
npatterns.per.bin = 2,
plot.context = c("CG", "CHG", "CHH", "CxG", "CX"),

genomic.scale = c("continuous”, "discrete”),
breaks = "auto”,
marginal = c("density”, "count"),

marginal.position = c("left”, "right"),

plotPatterns

25

marginal.transform = c("identity”, "logl@"),
marginal.limits = NULL,

marginal.size

’

= 9.25,

tag = c("none”, "count”, "beta"”, "pattern”),

tag.size =

2.5,

tag.colour = "#87654c",
tag.fill = "lemonchiffon”,

title = TRUE,
subtitle = TRUE,
context.size = c(1, 2, 3),
base.size = 3,
methylation.fill = c("grey97", "greylo"),
plot = TRUE,
verbose = TRUE
)
Arguments
patterns output of preprocessBam function (methylation patterns as a data. table ob-
ject).
order.by string defining order of patterns on the plot (default order by: "beta").
beta.range numeric vector of length 2 for the range of average pattern beta values repre-

bin.context

nbins

sented on the plot (default: [0;1]).

string defining cytosine methylation context used to calculate average beta value
of a pattern that is further used to assign patterns to bins:

* "CG" (the default) — CpG cytosines (called as zZ)

* "CHG" — CHG cytosines (xX)

e "CHH" — CHH cytosines (hH)

¢ "CxG" — CG and CHG cytosines (zZxX)

e "CX" - all cytosines

a single integer defining the number of bins (i.e., intervals within ‘beta.range®).
Default: 10.

npatterns.per.bin

plot.context

genomic.scale

breaks

integer vector for the number of the most abundant patterns selected from each
bin (default: 2). When of length 1, the same number of patterns will be taken.
When of length ‘nbins‘, allows to fine-tune the number of selected patterns from
each bin. Setting to ‘Inf* effectively results in plotting all patterns.

string defining methylation context of cytosines included in the plot (default:
"CG"; for the range of available values, see ‘bin.context‘ above).

string for the type of genomic position scale of the plot: either "continuous" (the
default) or "discrete".

a vector of breaks for the genomic position scale of the plot. If "auto" (the
default), breaks for continuous scale are computed by the default ggplot2 rou-
tines, while breaks for discrete scale are a subset of plotted positions selected

26

plotPatterns

using pretty. Possible values: ggplot2::waiver() for ggplot2 defaults, in-
teger vector of breaks for continuous scale, or character vector of breaks for
discrete scale.

marginal string for the type of marginal plot: either "density" (probability density of av-
erage beta values of all patterns; the default) or "count" (counts of plotted pat-
terns). "none" is not implemented yet; create an issue if interested.

marginal.position
string for the position of marginal plot: either "left" (the default) or "right" (not
implemented yet; create an issue if interested).

marginal.transform
string for the transformation of marginal scale (default: "identity"). Check
ggplot2: :scale_x_continuous() for more details.

marginal.limits
limits of marginal scale (default: NULL). Check ggplot2: :scale_x_continuous()
for more details.

marginal.size numeric in range (0;1) for the relative width of the marginal plot (default: 0.25).

additional arguments passed to stats: :density() call used in marginal density
plot. Possible value: adjust=0.25.

tag string for optional tagging of patterns with their count ("count"), average beta
value ("beta"), or pattern ID ("pattern"). Default: "none".

tag.size numeric for the font size of the tag text (in millimetres; default: 2.5).

tag.colour string for the colour of of the tag text. Default: "#87654c".

tag.fill string for the colour of of the tag background. Default: "lemonchiffon".

title the title of the plot. When ‘“TRUE (the default), a genomic region from which

patterns were extracted. Other possible values: anything that can be converted
to string, or ‘NULL' for no title.

subtitle the subtitle of the plot. When ‘TRUE® (the default), a number of patterns plotted.
Other possible values: anything that can be converted to string, or ‘NULL* for
no subtitle.

context.size anumeric vector with sizes of circles representing cytosines within each of three
contexts: CHH, CHG, and CG (default: c(1, 2, 3)).

base.size numeric for the font size of the text for highlighted bases (in millimetres; default:
3).

methylation.fill
a vector of length 2 for colours representing unmethylated and methylated cy-
tosines, respectively. These colours are also mapped to the lowest (0) and high-
est (1) possible beta values to represent average beta values of methylation pat-
terns and create a gradient fill of a marginal density plot. Default: c("grey97",
"greyl10").

plot boolean. If “TRUE (the default), patterns are plotted, and the selected ones are
silently returned as a data. table object. If ‘FALSE", the grob table object is
returned instead.

verbose boolean to report basic info on input and output.

plotPatterns 27

Details

As the number of methylation patterns can be quite large, by default, the function plots the most
abundant unique patterns only. The complete logic is as follows:

* from the input methylation patterns, all unique patterns are extracted and counted
* unique patterns are split in bins by their average beta value

* most abundant unique methylation patterns from each bin are plotted and silently returned

On the resulting plot, each cytosine is shown as a circle, where the size of that circle represents
cytosine context and the fill encodes methylation status. If available, highlighted bases are shown
as labels of different colours.

Value
the plot and (silently) the data. table object containing plotted methylation patterns (if ‘plot==TRUE®),
or grob table object (if ‘plot==FALSE®).

See Also

extractPatterns for extracting methylation patterns, preprocessBam for preloading BAM data,

generateCytosineReport for methylation statistics at the level of individual cytosines, generateBedReport

for genomic region-based statistics, generateVcfReport for evaluating epiallele-SNV associa-
tions, generateBedEcdf for analysing the distribution of per-read beta values, and ‘epialleleR*
vignettes for the description of usage and sample data.

Examples

amplicon data

amplicon.bam <- system.file("extdata”, "amplicon@1@meth.bam",
package="epialleleR")

custom.range <- as("chr17:43124861-43125150", "GRanges")

let's get our patterns
patterns <- extractPatterns(bam=amplicon.bam, bed=custom.range)

default plot + silently returned plotted patterns
selected.patterns <- plotPatterns(patterns)

all unique patterns with their counts as a margin, categorical positions,

tagged with pattern IDs, returned as a “gtable™ object

tbl <- plotPatterns(patterns, npatterns.per.bin=Inf, marginal="count”,
genomic.scale="discrete"”, tag="pattern”, plot=FALSE)

which can be plotted later
grid::grid.newpage()
grid::grid.draw(tbl)

28

preprocessBam

preprocessBam

preprocessBam

Description

This function reads and preprocesses BAM file.

Usage

preprocessBam(
bam.file,

paired = NULL,
override.check = FALSE,

min.mapq = 0,

min.baseq = 0,
min.prob = -1,

highest.prob

= TRUE,

skip.duplicates = FALSE,
skip.secondary = TRUE,
skip.gcfail = TRUE,
skip.supplementary = TRUE,

trim = 0,

nthreads = 1,

verbose = TRUE

Arguments

bam.file

paired

override.check

min.mapq
min.baseq

min.prob

highest.prob

BAM file location string.

boolean for expected alignment endness: ‘“TRUE‘ for paired-end, ‘FALSE® for
single-end, or ‘NULL* for auto detect (the default).

boolean to use supplied endness (‘paired‘ parameter) even if it is different from
the autodetected one (default: FALSE).

non-negative integer threshold for minimum read mapping quality (default: 0).
non-negative integer threshold for minimum nucleotide base quality (default: 0).

integer threshold for minimum scaled probability of modification (methylation)
to consider. Affects processing long-read sequencing alignments only. Accord-
ing to SAM/BAM specification, the continuous base modification probability
range 0.0 to 1.0 is remapped in equal sized portions to the discrete integers 0
to 255 inclusively. If default (-1), then all C+m and G-m cytosine methylation
modifications recorded in MM/Mm tag will be included, even if ML/MI tag with
probabilities is absent (in such case, probability of modification equals -1).

boolean defining if methylation modification must have the highest probability
among all modifications at a particular base to be considered in the analyses
(default: TRUE). Affects processing long-read sequencing alignments only. If

preprocessBam 29

default (TRUE) and ML/MI tag with probability scores is absent, then cytosines
with more than one modification will be omitted (as the probability of all modi-
fications will be equal).

skip.duplicates
boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if duplicate reads were not marked by alignment software.

skip.secondary boolean defining if secondary alignments should be skipped (default: TRUE).
Do not change.

skip.qgcfail boolean defining if alignments failing QC should be skipped (default: TRUE).
Do not change.

skip.supplementary
boolean defining if supplementary alignments should be skipped (default: TRUE).
Do not change.

trim non-negative integer or vector of length 2 for the number of nucleotide bases
to be trimmed from 5’ and 3’ ends of a template (i.e., read pair for paired-end
BAM or read for single-end BAM). Default: 0 for no trimming. Specifying
‘trim=1° will result in removing of a single base from both ends, while speci-
fying ‘trim=c(1,2)‘ will result in removing of a single base from 5’ end and 2
bases from 3’ end.

nthreads non-negative integer for the number of additional HTSIib threads to be used
during BAM file decompression (default: 1). Two threads (and usually no more
than two) make sense for the files larger than 100 MB.

verbose boolean to report progress and timings (default: TRUE).

Details

The function loads and preprocesses BAM file, saving time when multiple analyses are to be per-
formed on large input files. Currently, HTSIib is used to read the data, therefore it is possible to
speed up the loading by means of HTSlib decompression threads.

This function is also called internally when BAM file location is supplied as an input for other
‘epialleleR‘* methods.

‘preprocessBam‘ currently allows to load both short-read (e.g., bisulfite) and long-read (native)
sequencing alignments. Specific requirements for these types of data are given below.

Value

data.table object containing preprocessed BAM data.

Short-read sequencing

For preprocessing of short reads (and therefore for all reporting methods), ‘epialleleR* requires ge-
nomic strand (XG tag) and a methylation call string (XM tag) to be present in a BAM file - i.e.,
methylation calling must be performed after read mapping/alignment by your software of choice. It
is the case for BAM files produced by Bismark Bisulfite Read Mapper and Methylation Caller, I1-
lumina DRAGEN, Illumina Cloud analysis solutions, as well as contemporary Illumina sequencing
instruments with on-board read mapping/alignment (NextSeq 1000/2000, NovaSeq X), therefore
such files can be analysed without additional steps. For alignments produced by other tools, e.g.,

30 preprocessBam

BWA-meth or BSMAP, methylation calling must be performed prior to BAM loading / reporting,
by means of callMethylation.

Long-read sequencing

For preprocessing of long reads, ‘epialleleR‘ requires presence of MM (Mm) and ML (MI) tags
that hold information on base modifications and related probabilities, respectively. These are stan-
dard tags described in SAM/BAM format specification, therefore relevant tools for analysis and
alignment of long sequencing reads should be able to produce them.

Other details

‘preprocessBam* always tests if BAM file is paired- or single-ended and has all the necessary tags
available. It is recommended to use ‘verbose* processing and check messages for correct identifica-
tion of alignment endness. Otherwise, if the ‘paired* parameter is set explicitly, exception is thrown
when expected endness differs from the autodetected one. It is nevertheless possible to override
the autodetected endness and load BAM as specified in ‘paired‘ by setting the ‘override.check® to
TRUE.

During preprocessing of paired-end alignments, paired reads are merged according to their base
quality: nucleotide base with the highest value in the QUAL string is taken, unless its quality is
less than ‘min.baseq‘, which results in no information for that particular position ("-"/"N"). These
merged reads are then processed as a single entity in all ‘epialleleR‘ methods. Due to merging,
overlapping bases in read pairs are counted only once, and the base with the highest quality is
taken.

During preprocessing of single-end alignments, no read merging is performed. Only bases with
quality of at least ‘min.baseq‘ are considered. Lower base quality results in no information for that
particular position ("-"/"N").

For RRBS-like protocols, it is possible to trim alignments from one or both ends. Trimming is
performed during BAM loading and will therefore influence results of all downstream ‘epialleleR°
methods. Internally, trimming is performed at the level of a template (i.e., read pair for paired-end
BAM or individual read for single-end BAM). This ensures that only necessary parts (real ends of
sequenced fragment) are removed for paired-end sequencing reads.

It is also a requirement currently that paired-end BAM file must be sorted by QNAME instead of
genomic location (i.e., "unsorted") to perform merging of paired-end reads. Error message is shown
if it is sorted by genomic location, in this case please sort it by QNAME using ’samtools sort -n -0
out.bam in.bam’.

Specific considerations for long-read sequencing data

Any location not reported is implicitly assumed to contain no modification.

According to SAM format specification, MM base modification tags are allowed to list modifica-
tions observed not only on the original sequenced strand (e.g., ‘C+m‘) but also on the opposite
strand (e.g., ‘G-m*). The logic of their processing is as follows (with the examples given below):

* if an alignment record has no methylation modifications (neither ‘C+m°*, nor ‘G-m* are present),
this record is, naturally, considered to be a single read with no cytosines methylated

preprocessBam 31

* if an alignment record has ‘C+m‘ modification (base modifications on the original sequenced
strand), then this record is, naturally, considered to be a single read with cytosine modifications
on the sequenced strand

* if an alignment record has ‘G-m‘ modification (base modifications on the strand opposite to
sequenced), then this record is treated as two reads, with the original sequenced strand having
no modifications, while the opposite strand having cytosine modifications

¢ if both ‘C+m* and ‘G-m° are present, then this record is treated as two reads, with both strands
having cytosine modifications

See Also

preprocessGenome for preloading reference sequences and callMethylation for methylation
calling.

generateCytosineReport for methylation statistics at the level of individual cytosines, generateBedReport
for genomic region-based statistics, generateVcfReport for evaluating epiallele-SNV associa-

tions, extractPatterns for exploring methylation patterns and plotPatterns for pretty plotting

of its output, generateBedEcdf for analysing the distribution of per-read beta values, and ‘epial-

leleR* vignettes for the description of usage and sample data.

Sequence Alignment/Map format specifications, specifications for optional SAM tags, duplicate
alignments marking by Samtools and Illumina DRAGEN Bio IT Platform.

Examples
capture.bam <- system.file("extdata”, "capture.bam”, package="epialleleR")
bam.data <- preprocessBam(capture.bam)

Specifics of long-read alignment processing
out.bam <- tempfile(pattern="out-", fileext=".bam")

simulateBam(
seq=c("ACGCCATYCGCGCCA"),
Mm=c("C+m,0,2,0;"),
Ml=list(as.integer(c(102,128,153))),
output.bam.file=out.bam
)
generateCytosineReport(out.bam, threshold.reads=FALSE, report.context="CX")

simulateBam(
seq=c("ACGCCATYCGCGCCA"),
Mm=c("G-m,0,0,0;"),
Ml=list(as.integer(c(138,101,96))),
output.bam.file=out.bam

)
generateCytosineReport(out.bam, threshold.reads=FALSE, report.context="CX")

simulateBam(
seq=c("ACGCCATYCGCGCCA"),
Mm=c("C+m,0,2,0;G-m,0,0,0;"),
Ml=list(as.integer(c(102,128,153,138,101,96))),
output.bam.file=out.bam

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMtags.pdf
http://www.htslib.org/doc/samtools-markdup.html
https://support.illumina.com/content/dam/illumina-support/help/Illumina_DRAGEN_Bio_IT_Platform_v3_7_1000000141465/Content/SW/Informatics/Dragen/DuplicateMarking_fDG.htm

32

preprocessGenome

)
generateCytosineReport(out.bam, threshold.reads=FALSE, report.context="CX")

preprocessGenome preprocessGenome

Description

This function reads and preprocesses (optionally ‘bgzip‘ped) FASTA file with reference sequences.

Usage

preprocessGenome(genome.file, nthreads = 1, verbose = TRUE)

Arguments
genome.file reference (genomic) sequences file location string.
nthreads non-negative integer for the number of additional HTSIib threads to be used
during file decompression (default: 1).
verbose boolean to report progress and timings (default: TRUE).
Details

The function loads and preprocesses reference (genomic) sequences, saving time when methylation
calling needs to be performed on multiple BAM files. Currently, reading the data is done by means
of HTSIib, therefore it is possible to speed up the loading by means of HTSlib decompression
threads when FASTA file is compressed by ‘bgzip°.

This function is also called internally when file location is supplied as an input for cal1Methylation
method.

‘preprocessGenome* checks if index file is present, and if not, creates it automatically. It is possible
and recommended to use compressed FASTA file as an input, but the file must be compressed by
‘bgzip‘ (part of samtools/HTSlib). When FASTA file is compressed, faster loading can be achieved
using (typically one) additional HTSlib decompression thread.

During loading, both lowercase and uppercase ACGTN symbols are allowed and correctly recog-
nised, however all the other symbols (e.g., extended IUPAC symbols, MRSVWYHKDB) within
sequences are converted to N.

Please also note that for the purpose of methylation calling, the very same reference genome
must be used for both alignment (when BAM is produced) and calling cytosine methylation by
callMethylation method.

Value

list object containing preprocessed reference sequence data.

simulateBam 33

See Also

callMethylation for methylation calling, and ‘epialleleR* vignettes for the description of usage
and sample data.

Block compression/decompression utility bgzip.

Examples

genome.file <- system.file("extdata”, "test”, "reference.fasta.gz", package="epialleleR")
genome.data <- preprocessGenome(genome.file)

simulateBam simulateBam

Description

This function creates sample BAM files given mandatory and optional BAM fields.

Usage

simulateBam(
output.bam.file = NULL,
gname = NULL,
flag = NULL,
rname = NULL,
pos = NULL,
mapg = NULL,
cigar = NULL,
rnext = NULL,
pnext = NULL,
tlen = NULL,
seq = NULL,
qual = NULL,

L

verbose = TRUE

Arguments

output.bam.file
output BAM file location string. If NULL (default), records are not written to
BAM but returned as a data. table object for review.

gname character vector of query names. When default (NULL), names like "q0001".."qNNNN"
will be assigned.

flag integer vector of bitwise flags (a combination of the BAM_F* constants). When
default (NULL), zero (i.e., unique, valid, single-end, aligned read) is assigned
for every record.

http://www.htslib.org/doc/bgzip.html

34

rname

pos

mapq

cigar

rnext

pnext

tlen

seq

qual

verbose

Details

simulateBam

character vector of chromosome (reference) names. When default (NULL),
"chrS" is assigned for every record.

integer vector of 1-based leftmost coordinates of the queries. When default
(NULL), 1 is assigned for every record.

integer vector of mapping qualities. When default (NULL), 60 is assigned for
every record.

character vector of CIGAR strings. When default (NULL), "IM" is assigned for
every record, where ‘1° is the length of the query (‘seq°).

character vector of chromosome (reference) names for next read in template.
When default (NULL), "chrS" is assigned for every record.

integer vector of 1-based leftmost coordinates of next read in template. When
default (NULL), 1 is assigned for every record.

integer vector of observed template lengths. When default (NULL), the length
of the corresponding query (‘seq°) is assigned for every record.

character vector of query sequences. When default (NULL), random sequence
is assigned. The lengths of these random sequences equal to the lengths of
methylation call strings from the ‘XM* optional parameter (if supplied), or to
the ‘tlen‘ parameter (if defined). If none of these parameters is supplied, length
of every ‘seq‘ will equal 10.

query sequence quality strings (ASCII of base QUALIty plus 33). When default
(NULL), quality of every base is assigned to "F" (QUALIity of 47 + 33). The
lengths of these quality strings equal to the length of the corresponding query
sequences (‘seq‘) for every record.

optional tags to add to the records, in the form ‘tag=value‘. Value can be either:

* an integer vector to create a tag with a single integer value per alignment
record (e.g., "NM" tag),
* or afloat vector to create a tag with a single float value per alignment record,

* or acharacter vector (e.g., "XM" tag for methylation call string, "XG"/"YD"/"ZS"

tag for reference strand read was aligned to)

* or a list of numeric vectors to create tags array holding arrays of numeric
values.

boolean to report progress and timings (default: TRUE).

The function creates sample alignment records and saves them in BAM file. Output can be used
to test epialleleR methods as well as other tools for methylation analysis. This method can signif-
icantly simplify calculation of methylation metrics on example data (beta, VEF, and IMHL values
of epialleleR; methylation heterogeneity metrics of other tools).

The number of records written will be equal to the largest length of any supplied (nondefault)
parameter or 1 if no parameters were supplied. If lengths of supplied parameters differ, shorter
vectors will be recycled (a whole number of times or with remainder if necessary).

Please note that function performs almost no validity checks for supplied fields. In particular, be
extra careful constructing paired-end BAM alignments, and if necessary use ‘samtools* to perform
validity check or manual editing after BAM->SAM conversion.

simulateBam 35

Value

number of BAM records written (if ‘output.bam.file‘ is not NULL) or data. table object containing
final records prepared for writing. NB: this object has 0-based coordinates and numerically encoded
reference names.

See Also

generateCytosineReport and generateMhlReport for methylation reports at the level of indi-
vidual cytosines, as well as ‘epialleleR‘ vignettes for the description of usage and sample data.

Samtools for viewing BAM files. SAMv1 file format specifications. Specifications of optional SAM
tags. metheor for ultrafast DNA methylation heterogeneity calculation from bisulfite alignments.

Examples

out.bam <- tempfile(pattern="simulated”, fileext=".bam")
simulateBam(
output.bam.file=out.bam,
pos=c(1, 2),
XM=c("Z27272zz777", "771zzzz771"),
XG=c("CT", "AG"),
xi=5:6,
xf=0.05,
ai=list(as.integer(c(1:3)), as.integer(c(4:6))),
af=list(seq(-1, 1, 0.5))
)
generateCytosineReport(out.bam, threshold.reads=FALSE)
check this BAM with ~samtools view™ or using ~output.bam.file=NULL"

https://www.htslib.org/
http://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMtags.pdf
https://samtools.github.io/hts-specs/SAMtags.pdf
https://doi.org/10.1371/journal.pcbi.1010946

Index

callMethylation, 2, 3, 30-33

data.table, 5,11, 13, 14, 16, 18, 20, 22, 23,
25-27,29, 33,35

extractPatterns, 4, 8, 13, 17, 20, 23, 24, 27,
31

generateAmpliconReport
(generateBedReport), 9
generateBedEcdf, 6, 6, 13, 17, 20, 24, 27, 31
generateBedReport, 6, 8,9, 17, 20, 24, 27, 31
generateCaptureReport
(generateBedReport), 9
generateCytosineReport, 6, 8, 13, 14, 20,
24,27,31, 35
generateMhlReport, 17, 35
generateVcfReport, 6, 8, 13, 17, 20, 21, 27,
31
ggplot2::scale_x_continuous(), 26
ggplot2: :waiver(), 26
GRanges, 4, 5,7, 8,10-13, 21, 24

plotPatterns, 5, 6, 8, 13, 17, 20, 24, 24, 31
preprocessBam, 4-8, 10, 11, 13-15, 17, 18,

20-22, 24, 25,27, 28
preprocessGenome, 24, 31, 32
pretty, 26

readVcf, 21, 23, 24

seqlevelsStyle, 13,21, 24
simulateBam, 33
stats::density(), 26

36

	callMethylation
	extractPatterns
	generateBedEcdf
	generateBedReport
	generateCytosineReport
	generateMhlReport
	generateVcfReport
	plotPatterns
	preprocessBam
	preprocessGenome
	simulateBam
	Index

