Package 'deepSNV'

October 24, 2025

Maintainer Moritz Gerstung <moritz.gerstung@ebi.ac.uk>

License GPL-3

Title Detection of subclonal SNVs in deep sequencing data.

biocViews GeneticVariability, SNP, Sequencing, Genetics, DataImport

LinkingTo Rhtslib (>= 1.13.1)

Type Package

LazyLoad yes

Description This package provides provides quantitative variant callers for detecting subclonal mutations in ultra-deep (>=100x coverage) sequencing experiments. The deepSNV algorithm is used for a comparative setup with a control experiment of the same loci and uses a beta-binomial model and a likelihood ratio test to discriminate sequencing errors and subclonal SNVs. The shearwater algorithm computes a Bayes classifier based on a beta-binomial model for variant calling with multiple samples for precisely estimating model parameters - such as local error rates and dispersion - and prior knowledge, e.g. from variation data bases such as COSMIC.

Version 1.55.0

Depends R (>= 2.13.0), methods, graphics, parallel, IRanges, GenomicRanges, SummarizedExperiment, Biostrings, VGAM, VariantAnnotation (>= 1.27.6),

Imports Rhtslib

Suggests RColorBrewer, knitr, rmarkdown

VignetteBuilder knitr

SystemRequirements GNU make

RoxygenNote 7.0.2

git_url https://git.bioconductor.org/packages/deepSNV

git branch devel

git_last_commit 108f65f

git_last_commit_date 2025-04-15

2 Contents

Contents

deepSNV-package
bam2R
bbb
betabinLRT
bf2Vcf
consensusSequence
control
coordinates
counts
dbetabinom
$deepSNV \ldots \ldots$
deepSNV-class
estimateDirichlet
estimateDispersion
estimateRho
Extract
loadAllData
makePrior
manhattanPlot
mcChunk
normalize
p.combine
p.val
pbetabinom
phiX
pi
plot.deepSNV
qvals2Vcf
RCC
repeatMask
RF
show,deepSNV-method
summary
test
true SNV c

deepSNV-package 3

Index 35

deepSNV-package Detection of subclonal SNVs in deep sequencing experiments

Description

Detection of subclonal SNVs in deep sequencing experiments

Details

This packages provides algorithms for detecting subclonal single nucleotide variants (SNVs) and their frequencies from ultra-deep sequencing data. It retrieves the nucleotide counts at each position and each strand from two .bam files and tests for differences between the two experiments with a likelihood ratio test using either a binomial or and overdispersed beta-binomial model. The statistic can be tuned across genomic sites by a shared Dirichlet prior and there package provides procedures for normalizing sequencing data from different runs.

Author(s)

Moritz Gerstung, Wellcome Trust Sanger Institute, <moritz.gerstung@sanger.ac.uk>

References

Gerstung M, Beisel C, Rechsteiner M, Wild P, Schraml P, Moch H, and Beerenwinkel N. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat Commun 3:811 (2012). DOI:10.1038/ncomms1814.

See Also

deepSNV

```
## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "con-
show(ex) # show method
          # scatter plot
plot(ex)
summary(ex) # summary with significant SNVs
          # subsetting the first three genomic positions
                             # retrieve the test counts on both strands
tail(test(ex, total=TRUE))
tail(control(ex, total=TRUE))
## Not run: Full example with ^{\sim} 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)</pre>
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bs
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
```

4 bam2R

```
head(summary(HIVmix))
```

bam2R

Read nucleotide counts from a .bam file

Description

This function uses a C interface to read the nucleotide counts on each position of a .bam alignment. The counts of both strands are reported separately and nucleotides below a quality cutoff are masked. It is called by deepSNV to parse the alignments of the test and control experiments, respectively.

Usage

```
bam2R(
   file,
   chr,
   start,
   stop,
   q = 25,
   mq = 0,
   s = 2,
   head.clip = 0,
   max.depth = 1e+06,
   verbose = FALSE,
   mask = 0,
   keepflag = 0,
   max.mismatches = NULL
)
```

Arguments

file	The name of the .bam file as a string.
chr	The chromosome as a string.
start	The start position (1-indexed).
stop	The end position (1-indexed).
q	An optional cutoff for the nucleotide Phred quality. Default q = 25. Nucleotides with Q < q will be masked by 'N'.
mq	An optional cutoff for the read mapping quality. Default mq = 0 (no filter). reads with MQ < mq will be discarded.
S	Optional choice of the strand. Defaults to $s = 2$ (both).
head.clip	Should n nucleotides from the head of reads be clipped? Default 0.
max.depth	The maximal depth for the pileup command. Default 1,000,000.

bbb 5

verbose Boolean. Set to TRUE if you want to get additional output.

mask Integer indicating which flags to filter. Default 0 (no mask). Try 3844 (UN-

MAPISECONDARYIQCFAILIDUPISUPPLEMENTARY).

keepflag Integer indicating which flags to keep. Default 0 (no mask). Try 3 (PAIREDIPROPERLY_PAIRED).

max.mismatches Integer indicating maximum NM value to allow in a read. Default NULL (no

filter).

Value

A named matrix with rows corresponding to genomic positions and columns for the nucleotide counts (A, T, C, G, -), masked nucleotides (N), (INS)ertions, (DEL)etions, (HEAD)s and (TAIL)s that count how often a read begins and ends at the given position, respectively, and the sum of alignment (QUAL)ities, which can be indicative of alignment problems. Counts from matches on the reference strand (s=0) are uppercase, counts on the complement (s=1) are lowercase. The returned matrix has 11 * 2 (strands) = 22 columns and (stop - start + 1) rows.

Author(s)

Moritz Gerstung

Examples

```
## Simple example:
counts <- bam2R(file = system.file("extdata", "test.bam", package="deepSNV"), chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034
show(counts)
## Not run: Requires an internet connection, but try yourself.
# bam <- bam2R(file = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", chr="B.FR.83.HXB2_LAI_IIIB_B
# head(bam)</pre>
```

bbb

Bayesian beta-binomal test, codename shearwater

Description

This is the workhorse of the shearwater test. It computes the Bayes factor for each sample, nucleotide and position of the null-model vs. the alternative of a real variant.

Usage

```
bbb(
  counts,
  rho = NULL,
  alternative = "greater",
  truncate = 0.1,
  rho.min = 1e-04,
  rho.max = 0.1,
  pseudo = .Machine$double.eps,
```

6 bbb

```
return.value = c("BF", "P0", "err"),
model = c("OR", "AND", "adaptive"),
min.cov = NULL,
max.odds = 10,
mu.min = 1e-06,
mu.max = 1 - mu.min
)
```

Arguments

counts An array of nucleotide counts (samples x positions x 10 nucleotides in forward

and reverse orientation), typically from loadAllData

rho Disperision factor. If NULL, estimated from the data.

alternative The alternative. Currently only "greater" is implemented.

truncate

The model uses a compound control sample which is the sum of all samples

with a relative nucleotide frequency below truncate at this locus. Default = 0.1.

rho.min Lower bound for the method of moment estimate of the dispersion factor rho.

rho.max Upper bound for the method of moment estimate of the dispersion factor rho.

pseudo A pseudo count to be added to the counts to avoid problems with zeros.

return.value Return value. Either "BF" for Bayes Factor of "P0" for the posterior probability

(assuming a prior of 0.5).

model The null model to use. For "OR" it requires the alternative model to be violated

on either of the strands, for "AND" the null is specified such that the error rates of the sample of interest and the compound control sample are identical on both strands. "AND" typically yield many more calls. The most recent addition is "adaptive", which switches from "OR" to "AND", if the coverage is less than min.cov, or if the odds of forward and reverse coverage is greater than max.odds.

Default = "OR".

min.cov Minimal coverage to swith from OR to AND, if model is "adaptive"

max.odds Maximal odds before switching from OR to AND if model is "adaptive" and

min.cov=NULL.

mu.min Minimum of the error rate mu.

mu.max Maximal error rate mu.

Value

An array of Bayes factors

Note

Experimental code, subject to changes

Author(s)

mg14

betabinLRT 7

Examples

```
## Load data from deepSNV example
regions <- GRanges("B.FR.83.HXB2_LAI_IIIB_BRU_K034", IRanges(start = 3120, end=3140))
files <- c(system.file("extdata", "test.bam", package="deepSNV"), system.file("extdata", "control.bam", package="counts <- loadAllData(files, regions, q=10)

## Run (bbb) computes the Bayes factor
bf <- bbb(counts, model = "OR", rho=1e-4)
vcf <- bf2Vcf(bf, counts, regions, samples = files, prior = 0.5, mvcf = TRUE)

## Compare to deepSNV
bf <- bbb(counts, model = "AND", rho=1e-4)
dpSNV <- deepSNV(test = files[1], control = files[2], regions=regions, q=10)
plot(p.val(dpSNV), bf[1,,]/(1+bf[1,,]), log="xy")</pre>
```

betabinLRT

ShearwaterML

Description

Maximum likelihood version of Shearwater producing p-values instead of Bayes factors.

Usage

```
betabinLRT(
  counts,
  rho = NULL,
  truncate = 0.05,
  rho.min = 1e-04,
  rho.max = 0.8,
  maxvaf = 0.3,
  mindepth = 10,
  maxtruncate = 0.5)
```

Arguments

counts	The array of counts typically generated by loadAllData.
rho	Use this variable to fix the dispersion parameter to a value of interest. Default: NULL, rho will be estimated from the data.
truncate	Samples with variant allele frequencies higher than "truncate" will be excluded from the background error model.
rho.min	If rho=NULL, rho will be estimated from the data in the interval [rho.min,rho.max].
rho.max	If rho=NULL, rho will be estimated from the data in the interval [rho.min,rho.max].
maxvaf	Sites with an average rate of mimatches higher than maxvaf will not be considered (e.g. SNPs or reference sites).

8 bf2Vcf

mindepth Minimum coverage required to test a site.

maxtruncate Maximum number of samples that can be excluded from the background error

model by truncate for a site to be tested.

Value

A list with two arrays for P- and Q-values.

Author(s)

Inigo Martincorena and Moritz Gerstung

References

Martincorena I, Roshan A, Gerstung M, et al. (2015). High burden and pervasive positive selection of somatic mutations in normal human skin. _Science_ (Under consideration).

Examples

```
# code to be added
```

bf2Vcf

Function to create a VCF object with variant calls from an array of Bayes factors.

Description

This function thresholds the Bayes factors computed by the shearwater algorithm and creates a VCF object as output.

Usage

```
bf2Vcf(
   BF,
   counts,
   regions,
   samples = 1:nrow(counts),
   err = NULL,
   mu = NULL,
   cutoff = 0.05,
   prior = 0.5,
   mvcf = TRUE
)
```

consensusSequence 9

Arguments

BF array of Bayes factors from bbb. counts array of counts from loadAllData.

regions GRanges with the regions corresponding to counts and BF.

samples vector of samples names.

err Optional matrix of error rates, otherwise recomputed from counts.

mu Optional matrix of relative frequencies, otherwise recomputed from counts.

cutoff Cutoff for the posterior artifact probability below which a variant is considered

to be true (default = 0.05)

prior matrix of prior probabilities for finding a true call, typically from makePrior.

Alternatively a single fixed number.

mvcf boolean flag, if TRUE compute a large VCF with as many genotype columns as

samples. Default TRUE. Otherwise use duplicate rows and only one genotype column. The sample is then provided by the info:PD field. Can be inefficient for

large sample sizes.

Value

A VCF object

Note

Experimental code, subject to changes

Author(s)

mg14

consensusSequence

Calculate the consensus sequence.

Description

This function computes the consensus sequence from a matrix of nucleotide counts, or the control slot of a deepSNV object.

Usage

```
consensusSequence(x, ...)
## S4 method for signature 'matrix'
consensusSequence(x, vector=FALSE, haploid=TRUE, het.cut = .333)
## S4 method for signature 'deepSNV'
consensusSequence(x, vector=FALSE, haploid=TRUE, het.cut = .333)
```

10 control

Arguments

X	An object. Either an deepSNV-class object, or a named matrix with nucleotide counts.
	Additional arguments passed to methods.
vector	Boolean where TRUE indicates that a character vector should be returned.
haploid	Should the consensus be called for a haploid control? Otherwise, also all bases larger than het.cut are rerported. Default haploid = TRUE.
het.cut	Heterozygous cutoff. If haploid = FALSE, report all nucleotides with relative frequency larger than het.cut. Default = 0.333 .

Value

A DNAString with the consensus sequence, or if vector = TRUE, a character vector.

Author(s)

Moritz Gerstung

Examples

```
data(HIVmix)
seq = consensusSequence(HIVmix)
consensusSequence(HIVmix, vector=TRUE)[1:10]
```

control

Get control counts

Description

Convenience function to obtain the control counts from a deepSNV object.

Usage

```
control(deepSNV, ...)
## S4 method for signature 'deepSNV'
control(deepSNV, total = FALSE)
```

Arguments

deepSNV a deepSNV-class object

... Additional param passed to specific methodstotal Logical. If true the sum of both strands is returned

Value

A matrix with the absolute frequencies summed over both strands.

coordinates 11

Examples

```
data(HIVmix)
control(HIVmix)[1:10,]
control(HIVmix, total=TRUE)[1:10,]
```

coordinates

Get coordinates

Description

Convenience function to get the coordinates from a deepSNV object.

Usage

```
coordinates(deepSNV, ...)
## S4 method for signature 'deepSNV'
coordinates(deepSNV)
```

Arguments

deepSNV a deepSNV-class object

... Additional param passed to specific methods

Value

A data.frame with columns "chrom(osome)" and "pos(ition)".

Examples

```
data(HIVmix)
coordinates(HIVmix)[1:10,]
```

counts

Example count table

Description

A table with counts of the HIVmix data set. Used for minimal unit testing.

```
data("counts", package="deepSNV")
countsFromBam <- bam2R(file = system.file("extdata", "test.bam", package="deepSNV"), chr="B.FR.83.HXB2_LAI_IIIB_L
all(counts == countsFromBam)</pre>
```

12 deepSNV

- 11					
db	Δt	ำวห	١٦	nc	١m
uu	てし	.a.	, _	·Π	7111

Beta-binomial probability distribution

Description

Beta-binomial probability distribution

Usage

```
dbetabinom(x, n, mu, rho, log = FALSE)
```

Arguments

Χ	Counts
n	Size

mu Probability

rho Dispersion. rho in (0,1)
log Return logarithmic values

Value

d

Author(s)

mg14

dee	pSNV
acc	00111

Test two matched deep sequencing experiments for low-frequency SNVs.

Description

This generic function can handle different types of inputs for the test and control experiments. It either reads from two .bam files, uses two matrices of nucleotide counts, or re-evaluates the test results from a deepSNV-class object. The actual test is a likelihood ratio test of a (beta-)binomial model for the individual nucleotide counts on each position under the hypothesis that both experiments share the same parameter, and the alternative that the parameters differ. Because the difference in degrees of freedom is 1, the test statistic $D=-2\log\max L_0/\max L_1$ is asymptotically distributed as χ_1^2 . The statistic may be tuned by a nucleotide specific Dirichlet prior that is learned across all genomic sites, see <code>estimateDirichlet</code>. If the model is beta-binomial, a global dispersion parameter is used for all sites. It can be learned with <code>estimateDispersion</code>.

deepSNV 13

Usage

```
deepSNV(test, control, ...)
## S4 method for signature 'matrix,matrix'
deepSNV(test,control, alternative = c('greater', 'less', 'two.sided'), dirichlet.prior = NULL, pseudo.
## S4 method for signature 'deepSNV,missing'
deepSNV(test, control, ...)
## S4 method for signature 'character,character'
deepSNV(test, control, regions, q=25, s=2, head.clip=0, ...)
## S4 method for signature 'matrix,character'
deepSNV(test, control, regions, q=25, s=2, ...)
## S4 method for signature 'character,matrix'
deepSNV(test, control, regions, q=25, s=2, ...)
```

Arguments

test The test experiment. Either a .bam file, or a matrix with nucleotide counts, or a

deepSNV-class object.

control The control experiment. Must be of the same type as test, or missing if test is a

deepSNV-class object.

... Additional arguments.

alternative The alternative to be tested. One of greater, less, or two.sided.

dirichlet.prior

A base-sepecific Dirichlet prior specified as a matrix. Default NULL.

pseudo.count If dirichlet.prior=NULL, a pseudocount can be used to define a flat prior.

combine.method The method to combine p-values. One of "fisher" (default), "max", or "average".

See p. combine for details.

over.dispersion

A numeric factor for the over.dispersion, if the model is beta-binomial. Default

100.

which model to use. Either "bin", or "betabin". Default "bin".

regions The regions to be parsed if test and control are .bam files. Either a data.frame

with columns "chr" (chromosome), "start", "stop", or a GRanges object. If multiple regions are specified, the appropriate slots of the returned object are con-

catenated by row.

q The quality argument passed to bam2R if the experiments are .bam files.

s The strand argument passed to bam2R if the experiments are .bam files.

head.clip The head.clip argument passed to bam2R if the experiments are .bam files.

Value

A deepSNV object

14 deepSNV-class

Author(s)

Moritz Gerstung

Examples

```
## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "con-
show(ex) # show method
plot(ex) # scatter plot
summary(ex) # summary with significant SNVs
ex[1:3,] # subsetting the first three genomic positions
tail(test(ex, total=TRUE)) # retrieve the test counts on both strands
tail(control(ex, total=TRUE))
## Not run: Full example with ~ 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)</pre>
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bs
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
head(summary(HIVmix))
```

deepSNV-class

deepSNV class.

Description

This class stores the contents of the deepSNV test. It is typically initialized with deepSNV. This class has the following slots:

p.val The P-values of the test.

test A matrix with the nucleotide counts in the test experiment. The column names of the nucleotide counts are A, T, C, G, - for the positivie strand and a, t, c, g, _ for the reverse.

control A matrix with the nucleotide counts in the control experiment. The column names must be the same as for the test.

coordinates A data.frame with the genomic coordinates chr and pos, and other columns, if desired.

dirichlet.prior A matrix with the nucleotide-specific Dirichlet prior

pseudo.count The pseudo count if used)

alternative A string with the alternative used in the test.

nucleotides A character vector with the nucleotides tested.

regions A data. frame with columns chr, start, and stop.

files A list with two entries test and control storing the filenames (if the object was initialized from two bam-files).

estimateDirichlet 15

combine.method The method for combining p-values as a character string.

model The statistical model, either bin for binomial, or betabin for beta-binomial

over.dispersion If the model is beta-binomial, the first parameter for the beta-binomial model, which is shared across sites.

call The last function call to deepSNV.

log.lik The log likelihood of the data under the null hypothesis. (Excluding zeros on the opposite site under a one-sided test.)

Author(s)

Moritz Gerstung

See Also

deepSNV

Examples

```
## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "con-
show(ex) # show method
          # scatter plot
plot(ex)
summary(ex) # summary with significant SNVs
ex[1:3,] # subsetting the first three genomic positions
tail(test(ex, total=TRUE)) # retrieve the test counts on both strands
tail(control(ex, total=TRUE))
## Not run: Full example with ~ 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)</pre>
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bs
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
head(summary(HIVmix))
```

estimateDirichlet

Learn a base-specific Dirichlet prior.

Description

The prior learns the parameters of a Dirichlet distribution seperately for each consensus base. The expected value of the Dirichlet distributions is the base-substitution matrix, where rows correspond to the initial nucleotide and columns to the substituted nucleotide. The absolute values determine the higher moments of the Dirichlet distributions. After having learned the prior the deepSNV-class test is recomputed.

16 estimateDispersion

Usage

```
estimateDirichlet(control)
## S4 method for signature 'matrix'
estimateDirichlet(control)
## S4 method for signature 'deepSNV'
estimateDirichlet(control)
```

Arguments

control

Either a matrix with nucleotide counts or a deepSNV-class object.

Value

```
An deepSNV-class object.
```

Author(s)

Moritz Gerstung

Examples

```
data(phiX)
estimateDirichlet(phiX)
```

estimateDispersion

Estimate the Dispersion factor in a beta-binomial model.

Description

This function estimates the dispersion factor in a beta-binomial model of the nucleotide counts. This model assumes that the count for nucleotide j at position i is distributed after a beta-binomial $X_{i,j} \sim \mathrm{BB}(n_i; \alpha, \beta_{ij})$, where n_i is the coverage. The base and nucleotide specific parameter β_{ij} is estimated from the local mean by the method-of-moments estimate, α is a shared overdispersion parameter. It is estimated via a numerical optimization of the likelihood under the null-hypothesis.

Usage

```
estimateDispersion(test, control, ...)
## S4 method for signature 'deepSNV,missing'
estimateDispersion(test, control, alternative = NULL, interval = c(0,1000))
## S4 method for signature 'matrix,matrix'
estimateDispersion(test, control, alternative = NULL, interval = c(0,1000))
```

estimateRho 17

Arguments

test Either a deepSNV object, or a matrix with the test counts. control Missing if test is a deepSNV object, otherwise missing.

... Additional param passed to specific methods

alternative The alternative to be tested. One of "greater", "less", "two-sided" (default). If

test is a deepSNV object, automatically taken from the corresponding slot if

unspecified.

interval The interval to be screened for the overdispersion factor. Default (0,1000).

Value

A deepSNV-class object if the input was a deepSNV object. Otherwise the loglikelihood and the estimated parameter.

Author(s)

Moritz Gerstung

Examples

```
data("RCC", package="deepSNV")
plot(RCC)
summary(RCC)[,1:6]
RCC.bb = estimateDispersion(RCC, alternative = "two.sided")
summary(RCC.bb)
```

estimateRho

Helper function for estimating the dispersion factor rho

Description

It uses a method of moments approximation to estimate rho from the variances of the relative frequencies nu across samples

Usage

```
estimateRho(x, mu, ix, pseudo.rho = .Machine$double.eps)
```

Arguments

Χ	counts

mu relative frequency across all samples

ix index indicating the set of samples to use (typically indicating those with relative

frequency smaller than 0.1).

pseudo.rho a pseudo count added to each sample to avoid problems with zeros. Default =

.Machine\$double.eps

18 Extract

Value

rho

Note

Experimental code, subject to changes

Author(s)

mg14

Extract

Subsetting for deepSNV objects.

Description

Subsetting for deepSNV objects.

Usage

```
## S4 method for signature 'deepSNV,ANY,ANY,ANY' x[i, j]
```

Arguments

- x A deepSNV-class object.
- i Row indeces.
- j Column (nucleotide) indeces.

Value

A deepSNV-class object.

Author(s)

Moritz Gerstung

```
data(HIVmix)
HIVmix[1:10,]
```

loadAllData 19

loadAllData Function to load all data from a list of bam files
--

Description

This function uses the parallel package and the bam2R interface to load all nucleotide counts from a list of bam files and a set of regions into a large array.

Usage

```
loadAllData(files, regions, ..., mc.cores = 1)
```

Arguments

files A character vector with the paths to all bam files

regions Either a GRanges or data.frame with the coordinates of interest

... Arguments passed to bam2R

mc.cores Number of cores used for loading, default = 1

Value

counts

Note

Experimental code, subject to changes

Author(s)

mg14

ma	keP	'ni	or

Compute a prior from a COSMIC VCF object

Description

This function computes the prior probability of detecting a true variant from a variation data base. It assumes a VCF file with a CNT slot for the count of a given base substitution. Such a VCF file can be downloaded at ftp://ngs.sanger.ac.uk/production/cosmic/. The prior probability is simply defined as pi.mut * CNT[i]/sum(CNT). On sites with no count, a background probability of pi0 is used.

Usage

```
makePrior(COSMIC, regions, pi.gene = 0.1, pi.backgr = 1e-04)
```

20 manhattanPlot

Arguments

COSMIC A VCF object from COSMIC VCF export.

regions A GRanges object with the regions (gene) of interest.

pi.gene Probability that a gene is mutated

pi.backgr Background probability of a locus being mutated. Default 1e-4, corresponding

to an expected value of 1 SNV per 1e4 bases.

Value

A vector of prior values with length given by the length of the regions GRanges object.

Note

Experimental code, subject to changes

Author(s)

mg14

Examples

```
## Make prior (not run)
#COSMIC <- readVcf("PATHTO/CosmicCodingMuts_v64_02042013_noLimit.vcf.gz", genome="GChr37")
#prior <- makePrior(COSMIC[info(COSMIC)$GENE=="TP53"], regions=GRanges(17, IRanges(7571720,7578811)))
#plot(prior[,1], type="h")</pre>
```

manhattanPlot

Manhattan plot.

Description

This functions performs a Manhattan plot of the p-values of a deepSNV test against the position

Usage

```
manhattanPlot(x, col = nt.col)
```

Arguments

x An deepSNV object.

col An optional vector of colors for the nucleotides.

Value

NULL.

mcChunk 21

Author(s)

Moritz Gerstung

Examples

```
data(HIVmix)
manhattanPlot(HIVmix)
```

mcChunk

Little helper function to split the count objects into a smaller digestible chunks and run function FUN on each subset

Description

Little helper function to split the count objects into a smaller digestible chunks and run function FUN on each subset

Usage

```
mcChunk(FUN, X, split = 250, mc.cores = 1, ...)
```

Arguments

FUN The function to call on each chunk

X The object to be subsetted using [,i,]

split The size of each chunk

mc.cores The number of cores to use

... Additional arguments passed to FUN

Value

The value of FUN

Note

Experimental code, subject to changes

Author(s)

mg14

22 normalize

normalize

Normalize nucleotide counts.

Description

This functions performs a loess normalization of the nucleotide. This experimental feature can be used to compare experiments from different libraries or sequencing runs that may have differing noise characteristics.

Usage

```
normalize(test, control, ...)
## S4 method for signature 'matrix,matrix'
normalize(test, control, round=TRUE, ...)
## S4 method for signature 'deepSNV,missing'
normalize(test, control, ...)
```

Arguments

test Either an deepSNV-class object or a named matrix with nucleotide counts.

control Missing if test is an link{deepSNV-class} object, otherwise a matrix with nucleotide counts.

Parameters passed to loess.

round Logical. Should normalized counts be rounded to integers? Default=TRUE

Value

A deepSNV-class object.

Note

This feature is somewhat experimental and the results should be treated with care. Sometimes it can be better to leave the data unnormalized and use a model with greater dispersion instead.

Author(s)

Moritz Gerstung

```
data(phiX, package = "deepSNV")
plot(phiX)
phiN <- normalize(phiX, round = TRUE)
plot(phiN)</pre>
```

p.combine 23

p.combine

Combine two p-values

Description

This function combines two P-values into a single one using a statistic defined by method. "fisher" uses the product of the two, in this case the logarithm of the product is χ_4^2 distributed. If the method = "max", the resulting P-value is $\max\{P_1,P_2\}^2$. For method = "average" the mean is used, yielding a P-value of $2x^2$ if $x=(P_1+P_2)/2<.5$ and $1-2x^2$ otherwise. "negfisher" is the negative of Fisher's method using \$1-F(1-P_1, 1-P_2)\$, where \$F\$ is the combination function of Fisher's method; for small \$P_1,P_2\$, the result is very similar to method="average". Fisher's method behaves a bit like a logical AND of the joint null-hypothesis, whereas negative Fisher is like an OR.

Usage

```
p.combine(p1, p2, method = c("fisher", "max", "average", "prod", "negfisher"))
```

Arguments

p1 P-value 1 p2 P-value 2

method One of "fisher" (default), "max" or "average"

Value

p-values

Author(s)

Moritz Gerstung

```
p1 <- runif(1000)
p2 <- runif(1000)
hist(p1)
p.avg = p.combine(p1,p2, method="average")
hist(p.avg)
p.fish = p.combine(p1,p2, method="fisher")
hist(p.fish)
p.max = p.combine(p1,p2, method="max")
hist(p.max)
pairs(data.frame(p1,p2,p.fish,p.max,p.avg))</pre>
```

24 pbetabinom

p.val

Get p-values

Description

Convenience function to get the p-values from a deepSNV object.

Usage

```
p.val(deepSNV, ...)
## S4 method for signature 'deepSNV'
p.val(deepSNV)
```

Arguments

```
deepSNV—class object
```

... Additional param passed to specific methods

Value

A matrix with the p-values.

Examples

```
data(HIVmix)
p.val(HIVmix)[1:10,]
```

pbetabinom

Cumulative beta-binomial probability distribution

Description

Cumulative beta-binomial probability distribution

Usage

```
pbetabinom(x, n, mu, rho, log = FALSE)
```

Arguments

X	Counts
n	Sample size
mu	Probability

rho Dispersion. rho in (0,1)log Return logarithmic values phiX 25

Value

Probability

Author(s)

mg14

phiX

Example phiX data

Description

Data from two phiX experiments sequenced on a GAIIx.

Examples

```
data(phiX, package="deepSNV")
plot(phiX)
phiN <- normalize(phiX, round=TRUE)
plot(phiN)</pre>
```

рi

Example prior

Description

Prior from COSMIC v63 for the TP53 gene

```
data("pi", package="deepSNV")
plot(pi[,1], type="h")
```

26 plot.deepSNV

plot.deepSNV

Scatter plot of relative nucleotide frequencies.

Description

This function plots the relative nucleotide frequencies of the test against the control experiment on a logarithmit scale. The color of the symbols denotes the nucleotide, and the area of the circle is proportional to the $-\log$ of the p-value.

Usage

```
## $3 method for class 'deepSNV'
plot(
    x,
    sig.level = NULL,
    col = NULL,
    col.null = "grey",
    cex.min = 0.2,
    ylab = "Relative Frequency in Test",
    xlab = "Relative Frequency in Control",
    pch = 16,
    ...
)
```

Arguments

x	A deep SNV object.	
sig.level	By default, p-values below sig.level are drawn as filled circles	
col	Color of the nucleotides.	
col.null	Color of insignificant nucleotides.	
cex.min	The minimal size of the points.	
ylab	The y-axis label.	
xlab	The x-axis label.	
pch	The plotting symbol. Default = 16 (filled circle)	
	Additional arguments passed to plot.	

Author(s)

Moritz Gerstung

qvals2Vcf 27

Examples

```
## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "con-
show(ex)
          # show method
plot(ex) # scatter plot
summary(ex) # summary with significant SNVs
ex[1:3,] # subsetting the first three genomic positions
tail(test(ex, total=TRUE)) # retrieve the test counts on both strands
tail(control(ex, total=TRUE))
## Not run: Full example with ~ 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)</pre>
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bs
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
head(summary(HIVmix))
```

qvals2Vcf

Function to create a VCF object with variant calls from an array of q-values.

Description

This function thresholds the q-values computed by the shearwater algorithm and creates a VCF object as output.

Usage

```
qvals2Vcf(
  qvals,
  counts,
  regions,
  samples = 1:nrow(counts),
  err = NULL,
  mu = NULL,
  cutoff = 0.05,
  mvcf = TRUE
)
```

Arguments

```
qvals array of q-values from betabinLRT.

counts array of counts from loadAllData.

regions GRanges with the regions corresponding to counts and qvals.
```

28 RCC

samples vector of samples names.

err Optional matrix of error rates, otherwise recomputed from counts.

mu Optional matrix of relative frequencies, otherwise recomputed from counts.

cutoff Cutoff for the q-values below which a variant is considered to be true (default =

0.05)

mvcf boolean flag, if TRUE compute a large VCF with as many genotype columns as

samples. Default TRUE. Otherwise use duplicate rows and only one genotype column. The sample is then provided by the info:PD field. Can be inefficient for

large sample sizes.

Value

A VCF object

Note

Experimental code, subject to changes

Author(s)

mg14

RCC

Example RCC data

Description

Deep sequencing experiments of a renal cell carcinoma and healthy control tissue.

```
data("RCC", package="deepSNV")
summary(RCC, adjust.method="bonferroni")[,1:6]
plot(RCC)
RCC.bb <- estimateDispersion(RCC, alternative="two.sided")
summary(RCC.bb, adjust.method="bonferroni")[,1:6]
plot(RCC.bb)</pre>
```

repeatMask 29

olymeric repeats.

Description

This function masks homopolymeric repeats longer than a given width. These are hot-spots of sequencing error and can confound the analysis.

Usage

```
repeatMask(x, ...)
## S4 method for signature 'DNAString'
repeatMask(x, w=5, flank=TRUE)
## S4 method for signature 'deepSNV'
repeatMask(x, w=5, flank=TRUE)
```

Arguments

X	An object. Either a deepSNV-class object or a DNAString with the nucleotide sequence.
	Additional param passed to specific methods
w	Integer. The minimal length at which repeats should be masked. Default w=0.
flank	Boolean. Indicates whether the sites adjacent to the repeat should also be masked.

Value

A boolean vector where TRUE indicates a non-homopolymeric region.

Author(s)

Moritz Gerstung

```
data(HIVmix)
which(repeatMask(HIVmix))
```

RF

Relative frequencies.

Description

Convenience function to compute the relative frequencies from a matrix with absolute counts.

Usage

```
RF(freq, total = FALSE)
```

Arguments

freq A matrix with nucleotide counts.

total If the nucleotide counts have columns for forward and reverse direction, return

each strand sepratatelu (FALSE), or add the two (TRUE).

Value

A matrix with the relative frequencies.

Author(s)

Moritz Gerstung

Examples

```
data(HIVmix)
RF(test(HIVmix))[1:10,]
RF(test(HIVmix), total=TRUE)[1:10,]
```

show, deepSNV-method

Show method for deepSNV objects

Description

Show method for deepSNV objects

Usage

```
## S4 method for signature 'deepSNV'
show(object)
```

Arguments

object

A deepSNV-class object.

summary 31

Author(s)

Moritz Gerstung

Examples

```
## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "con-
show(ex)
          # show method
plot(ex)
         # scatter plot
summary(ex) # summary with significant SNVs
ex[1:3,] # subsetting the first three genomic positions
tail(test(ex, total=TRUE)) # retrieve the test counts on both strands
tail(control(ex, total=TRUE))
## Not run: Full example with ~ 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)</pre>
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bs
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
head(summary(HIVmix))
```

summary

Summary of a deepSNV object

Description

Tabularize significant SNVs by evalutating the p-values of the deepSNV test.

Usage

```
## S4 method for signature 'deepSNV'
summary(
   object,
   sig.level = 0.05,
   adjust.method = "bonferroni",
   fold.change = 1,
   value = c("data.frame", "VCF")
)
```

Arguments

object A deepSNV-class object.
sig.level The desired significance level.
adjust.method The adjustment method for multiple testing corrections. See p.adjust for de-

tails. Set to NULL, for no adjustment. Default "bonferroni".

32 summary

fold change The minimal fold change required of the relative frequency. Default 1.

value String. The type of the returned object. Either "data.frame" for a data.frame

(default) or "VCF" for an ExtendedVCF-class object.

Value

If value="data.frame", a data.frame with the following columns:

chr The chromosome

pos The position (1-based)

ref The reference (consensus) nucleotide

var The variant nucleotide p.val The (corrected) p-value

freq.var The relative frequency of the SNV

sigma2.freq.var

The estimated variance of the frequency

n.tst.fw The variant counts in the test experiment, forward strand cov.tst.fw The coverage in the test experiment, forward strand

n.tst.bw The variant counts in the test experiment, backward strand cov.tst.bw The coverage in the test experiment, backward strand

n.ctrl.fw The variant counts in the control experiment, forward strand cov.ctrl.fw The coverage in the control experiment, forward strand

n.ctrl.bw The variant counts in the control experiment, backward strand cov.ctrl.bw The coverage in the control experiment, backward strand

raw.p.val The raw p-value

If value = "VCF", this functions returns a VCF-class object with the following entries: FIXED:

REF Reference allele in control sample. Note that deletions in the control sample will

be reported like insertions, e.g. if the consensus of the control is A,- at positions 1 and 2 (relative to the reference) and the test was A,A, then this would be denoted as REF="A" and VAR="AA" with coordinate IRanges(1,2). This may cause ambiguities when the VCF object is written to text with writeVcf(), which discards the width of the coordinate, and this variant remains indistinguishable

from an insertion to the _reference_ genome.

VAR Variant allele in test sample

QUAL -10*log10(raw.p.val)

INFO:

VF Variant frequency. Variant allele frequency in the test minus variant allele fre-

quency in the control.

VFV Variant frequency variance. Variance of the variant frequency; can be thought

of as confidence interval.

test 33

GENO (one column for test and one column for control):

FW Forward allele count
BW Backward allele count
DFW Forward read depth
DBW Backward read depth

Author(s)

Moritz Gerstung

Examples

```
## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "con-
show(ex) # show method
plot(ex) # scatter plot
summary(ex) # summary with significant SNVs
ex[1:3,] # subsetting the first three genomic positions
tail(test(ex, total=TRUE)) # retrieve the test counts on both strands
tail(control(ex, total=TRUE))
## Not run: Full example with ~ 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)</pre>
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bs
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
head(summary(HIVmix))
```

test Get test counts

Description

Convenience function to obtain the test counts from a deepSNV object.

Usage

```
test(deepSNV, ...)
## S4 method for signature 'deepSNV'
test(deepSNV, total = FALSE)
```

34 trueSNVs

Arguments

deepSNV a deepSNV-class object

... Additional param passed to specific methods

total Logical. If true the sum of both strands is returned

Value

A matrix with the absolute frequencies summed over both strands.

Examples

```
data(HIVmix)
test(HIVmix)[1:10,]
test(HIVmix, total=TRUE)[1:10,]
```

trueSNVs

Example .bam data and true SNVs.

Description

Two .bam alignments as example data sets are downloaded remotely via http. Sequenced were a 1,512 nt fragment of the HIV genome and a mixture (90% + 10%) with another variants. The two sequences were confirmed by Sanger sequencing and stored in the table trueSNVs.

```
data(HIVmix)
data(trueSNVs)
table(p.adjust(p.val(HIVmix), method="BH") < 0.05, trueSNVs)</pre>
```

Index

* package	estimateDirichlet, <i>12</i> , 15
deepSNV-package, 3	estimateDirichlet,deepSNV-method
[,deepSNV,ANY,ANY,ANY-method(Extract),	(estimateDirichlet), 15
18	estimateDirichlet,matrix-method
	(estimateDirichlet), 15
array, 6	estimateDispersion, 12, 16
	estimateDispersion,deepSNV,missing-method
bam2R, 4, <i>13</i>	(estimateDispersion), 16
bbb, 5, 9	estimateDispersion,matrix,matrix-method
betabinLRT, 7, 27	(estimateDispersion), 16
bf2Vcf, 8	estimateRho, 17
	Extract, 18
consensusSequence, 9	
consensusSequence, deepSNV-method	GRanges, 9, 13, 27
(consensusSequence), 9	HTV : (4 CNV) 24
consensusSequence,matrix-method	HIVmix (trueSNVs), 34
(consensusSequence), 9	loadAllData, 6, 9, 19, 27
control, 10	loess, 22
control, deepSNV-method (control), 10	10633, 22
coordinates, 11	makePrior, 9, 19
coordinates,deepSNV-method	manhattanPlot, 20
(coordinates), 11	matrix, 5
counts, 11	mcChunk, 21
1	,
data.frame, 11, 13, 14, 32	normalize, 22
dbetabinom, 12	normalize,deepSNV,missing-method
deepSNV, 3, 4, 12, 13–15, 20, 31	(normalize), 22
deepSNV, character, character-method	normalize, matrix, matrix-method
(deepSNV), 12	(normalize), 22
deepSNV,character,matrix-method	
(deepSNV), 12	p.adjust, <i>31</i>
deepSNV, deepSNV, missing-method	p.combine, <i>13</i> , 23
(deepSNV), 12	p.val, 24
deepSNV, matrix, character-method	p.val,deepSNV-method(p.val),24
(deepSNV), 12	pbetabinom, 24
deepSNV, matrix, matrix-method (deepSNV),	phiX, 25
12	pi, 25
deepSNV-class, 14	plot.deepSNV, 26
deepSNV-package, 3	1 04 6 07
DNAString, <i>10</i> , <i>29</i>	qvals2Vcf, 27

36 INDEX

```
RCC, 28
repeatMask, 29
repeatMask, deepSNV-method (repeatMask), 29
repeatMask, DNAString-method (repeatMask), 29
RF, 30
shearwater (bbb), 5
show, deepSNV-method, 30
summary, 31
summary, deepSNV-method (summary), 31
test, 33
test, deepSNV-method (test), 33
trueSNVs, 34
VCF, 8, 9, 27, 28
```