Package ‘bamsignals’

October 24, 2025
Type Package

Title Extract read count signals from bam files

Version 1.41.2

Date 2025-06-21

Author Alessandro Mammana [aut, cre], Johannes Helmuth [aut]
Maintainer Johannes Helmuth <johannes.helmuth@laborberlin.com>

Description This package allows to efficiently obtain count vectors
from indexed bam files. It counts the number of reads in given
genomic ranges and it computes reads profiles and coverage
profiles. It also handles paired-end data.

License GPL-2
Depends R (>=3.5.0)

Imports methods, BiocGenerics, Repp (>= 0.10.6), IRanges,
GenomicRanges

Suggests testthat (>= 0.9), Rsamtools, BiocStyle, knitr, rmarkdown
LinkingTo Rcpp, Rhtslib (>=1.13.1)

SystemRequirements GNU make

biocViews Datalmport, Sequencing, Coverage, Alignment
VignetteBuilder knitr

NeedsCompilation yes

RoxygenNote 5.0.1

URL https://github.com/lamortenera/bamsignals

BugReports https://github.com/lamortenera/bamsignals/issues
git_url https://git.bioconductor.org/packages/bamsignals

git_branch devel

git_last_commit 887fb29

git_last_commit_date 2025-06-22

Repository Bioconductor 3.23

Date/Publication 2025-10-24

https://github.com/lamortenera/bamsignals
https://github.com/lamortenera/bamsignals/issues

2 bamsignals

Contents
as.list.CountSignals L. 2
bamsignals L e 2
bamsignals-methods L 3
CountSignals-class e 6
Index 9

as.list.CountSignals Converts the container to a list 1 such that 1[[i]1] is the i-th signal.

Description

Converts the container to a list 1 such that 1[[1]1] is the i-th signal.

Usage
S3 method for class 'CountSignals'
as.list(x, ...)
Arguments
X A CountSignals object
not used
Value

alist 1 suchthat 1[[i]]is x[i].

bamsignals Efficient counting of reads in a bam file

Description

Functions and classes for extracting signals from a bam file. Differently than the other packages,
this package is not supposed to import reads in R. All the read-processing is done in C/C++ and the
only output are read counts.

Author(s)

Alessandro Mammana <mammana@molgen.mpg.de>

Johannes Helmuth <helmuth@molgen.mpg.de>

See Also

bamsignals-methods for the functions and CountSignals for the class.

bamsignals-methods 3

bamsignals-methods Functions for extracting count signals from a bam file.

Description

Functions for extracting count signals from a bam file.
bamCount: for each range, count the reads whose 5’ end map in it.

bamProfile: for each base pair in the ranges, compute the number of reads whose 5° end maps
there.

bamCoverage: for each base pair in the ranges, compute the number of reads covering it.

Usage

S4 method for signature 'character,GenomicRanges'

bamCount (bampath, gr, mapqual = 0,
shift = @, ss = FALSE, paired.end = c("ignore”, "filter"”, "midpoint"),
tlenFilter = NULL, filteredFlag = -1, verbose = TRUE)

S4 method for signature 'character,GenomicRanges'

bamProfile(bampath, gr, binsize = 1,
mapqual = @, shift = @, ss = FALSE, paired.end = c("ignore"”, "filter",
"midpoint”), tlenFilter = NULL, filteredFlag = -1, verbose = TRUE)

S4 method for signature 'character,GenomicRanges'
bamCoverage(bampath, gr, mapqual = 0,
paired.end = c("ignore", "extend"), tlenFilter = NULL,
filteredFlag = -1, verbose = TRUE)

Arguments

bampath path to the bam file storing the read. The file must be indexed.

gr GenomicRanges object used to specify the regions. If a range is on the negative
strand the profile will be reverse-complemented.

mapqual discard reads with mapping quality strictly lower than this parameter. The value
0 ensures that no read will be discarded, the value 254 that only reads with the
highest possible mapping quality will be considered.

shift shift the read position by a user-defined number of basepairs. This can be handy
in the analysis of chip-seq data.

Ss produce a strand-specific profile or ignore the strand of the read. This option
does not have any effect on the strand of the region. Strand-specific profiles are
twice as long then strand-independent profiles.

paired.end a character string indicating how to handle paired-end reads. If paired.end!="ignore"

then only first reads in proper mapped pairs will be considered (SAMFLAG 66,
i.e. in the flag of the read, the bits in the mask 66 must be all ones).

tlenFilter

filteredFlag

verbose

binsize

Details

bamsignals-methods

If paired.end=="midpoint"” then the midpoint of a filtered fragment is con-
sidered, where mid = fragment_start + int(abs(tlen)/2), and where tlen is
the template length stored in the bam file. For even tlen, the given midpoint will
be moved of 0.5 basepairs in the 3’ direction (bamCount, bamProfile).

If paired.end=="extend" then the whole fragment is treated as a single read
(bamCoverage).

A filter on fragment length as estimated from alignment in paired end exper-
iments (TLEN). If set to c(min,max) only reads are considered where min <=
TLEN <= max. If paired.end=="ignore", this argument is set to NULL and no fil-
tering is done. If paired.end!="ignore", this argument defaults to c (@, 1000).

Filter out reads with a certain flag set, e.g. "1024" to filter out PCR or optical
duplicates.

a logical value indicating whether verbose output is desired

If the value is set to 1, the method will return basepair-resolution read densities,
for bigger values the density profiles will be binned (and the memory require-
ments will scale accordingly).

A read position is always specified by its 5’ end, so a read mapping to the reference strand is
positioned at its leftmost coordinate, a read mapping to the alternative strand is positioned at its
rightmost coordinate. This can be changed using the shift parameter.

Value

* bamProfile and bamCoverage: a CountSignals object with a signal per region

* bamCount: a vector with one element per region or, if ss==TRUE, a matrix with one column
per region and two rows (sense and antisense).

See Also

CountSignals for handling the return value of bamProfile and bamCoverage

Examples

TOY DATA

library(GenomicRanges)

bampath <-

system.file("extdata”, "randomBam.bam", package="bamsignals")

genes <-

get(load(system.file("extdata”, "randomAnnot.Rdata”, package="bamsignals")))

THE FUNCTION

'count' ##

#count how many reads map in each region (according to 5' end)
v <- bamCount(bampath, genes)

#plot it

labs <- paste@(seqnames(genes),

n,.n n_n

, start(genes), , end(genes))

bamsignals-methods

par(mar=c(5, 6, 4, 2))
barplot(v, names.arg=labs, main="read counts per region”, las=2,
horiz=TRUE, cex.names=.6)

#distinguish between strands

v2 <- bamCount(bampath, genes, ss=TRUE)

#plot it

par(mar=c(5, 6, 4, 2))

barplot(v2, names.arg=labs, main="read counts per region”, las=2,
horiz=TRUE, cex.names=.6, col=c("blue”, "red"”), legend=TRUE)

THE FUNCTIONS 'bamProfile' and 'bamCoverage'

#count how many reads map to each base pair (according to 5' end)
pu <- bamProfile(bampath, genes)

#count how many reads cover each base pair

du <- bamCoverage(bampath, genes)

#plot it

xlab <- "offset from start of the region”

ylab <- "reads per base pair”

main <- paste@("read coverage and profile of the region ", labs[1])
plot(dul1], ylim=c(@, max(du[1])), ylab=ylab, xlab=xlab, main=main, type="1")
lines(pul1], 1lty=2)

1llab <- c("covering the base pair”, "5' end maps to the base pair")
legend("topright”, 1lab, lty=c(1,2), bg="white")

REGIONS OF THE SAME SIZE AND OPTIONS FOR 'bamProfile'
proms <- promoters(genes, upstream=150, downstream=150)
#pileup according to strand

pu_ss <- bamProfile(bampath, proms, ss=TRUE)

#compute average over regions

avg_ss <- apply(alignSignals(pu_ss), 2, rowMeans)

#profile using a strand-specific shift

pu_shift <- bamProfile(bampath, proms, shift=75)
#compute average over regions

avg_shift <- rowMeans(alignSignals(pu_shift))

#profile using a strand-specific shift and a binning scheme

binsize <- 20

pu_shift_bin <- bamProfile(bampath, proms, shift=75, binsize=binsize)
#compute average over regions

avg_shift_bin <- rowMeans(alignSignals(pu_shift_bin))

#plot it

xs <- -149:150

main <- paste@("average read profile over
xlab <- "distance from TSS"

ylab <- "average reads per base pair”
plot(xs, avg_shift, xlab=xlab, ylab=ylab, main=main, type="1",

”

, length(proms), " promoters”)

6 CountSignals-class

ylim=c(@, max(avg_shift)))
lines(xs, avg_ss["sense"”,], col="blue")
lines(xs, avg_ss["antisense”,], col="red")
lines(xs, rep(avg_shift_bin/binsize, each=binsize), 1lty=2)
llabs <-
c("sense reads”, "antisense reads”, "with shift”, "binned and with shift")
legend("topright”, llabs, col=c("blue"”, "red”, "black"”, "black"),
1ty=c(1,1,1,2), bg="white")

CountSignals-class Container for count signals

Description

This s4 class is a tiny wrapper around a normal list (stored in the signals slot) and it is the out-
put of the methods in the bamsignals package. Among other things the container provides an
accessor method, that returns single signals as vectors and matrices, and the methods as.list and
alignSignals, that convert the container to a list or an array/matrix respectively. A CountSignals
object is read-only, i.e. it cannot be modified.

Usage

S4 method for signature 'CountSignals'
length(x)

S4 method for signature 'CountSignals'
width(x)

S4 method for signature 'CountSignals,ANY'
x[i, drop = TRUE]

S4 method for signature 'CountSignals'
as.list(x)

S4 method for signature 'CountSignals'

alignSignals(x)
Arguments
X A CountSignals object
i Index for subsetting. It can be a single index as well as a vector of indices.
drop In case i is a vector of length 1, after subsetting, collapse the CountSignal object

to a single signal or not.

Value

return values are described in the Methods section.

CountSignals-class 7

Methods (by generic)

* length: Number of contained signals

» width: Width of each signal. If the CountSignals object csig is strand-specific then width(csig)[i]
==ncol(csig[il), otherwise width(csig)[i] = length(csigl[il).

* [: Access single signals or subset the CountSignals object. If i is a single index and drop==TRUE
then the accessor returns a single signal. If x is strand-specific then a single signal is a matrix
with two rows, the first for the sense, the second for the antisense strand. Otherwise a signle
signal is simply a vector of integers. If i is a vector of length different than 1, then the acessor
returns a subset of the CountSignals object. Invalid indices result into errors.

* as.list: Converts the container to a list 1 such that 1[[i]] is the i-th signal.

* alignSignals: Convert to a matrix or to an array. This is only possible if all signals have
the same width w. If the CountSignals object csig is strand-specific, the result is an ar-
ray of dimensions [2, w, length(csig)], otherwise it will be a matrix of dimensions [w,
length(csig)].

Slots

ss A single boolean value indicating whether all signals are strand-specific or not

signals A list of integer vectors (if ss==TRUE) or of integer matrices, representing each signal

See Also

bamsignals-methods for the functions that produce this object

Examples

#get a CountSignals object

library(GenomicRanges)

bampath <-

system.file("extdata”, "randomBam.bam", package="bamsignals")

genes <-

get(load(system.file("extdata”, "randomAnnot.Rdata”, package="bamsignals")))
csig <- bamProfile(bampath, genes, ss=TRUE)

#show it
show(csig)

#number of contained signals
len <- length(csig)

#width of each signal
w <- width(csig)

#get one element as a vector (or matrix)
v <- csig[1]

#use as if it was a list
tot_per_sig <- sapply(csig, sum)

CountSignals-class

#convert to a list
siglist <- as.list(csig)

#get regions and signals of the same width
proms <- promoters(genes, upstream=150, downstream=150)
csig <- bamCoverage(bampath, proms)

#convert to matrix
mat <- alignSignals(csig)

Index

[,CountSignals, ANY-method
(CountSignals-class), 6

alignSignals (CountSignals-class), 6
alignSignals,CountSignals-method
(CountSignals-class), 6
as.list (CountSignals-class), 6
as.list,CountSignals-method
(CountSignals-class), 6
as.list.CountSignals, 2

bamCount (bamsignals-methods), 3

bamCount,character,GenomicRanges-method
(bamsignals-methods), 3

bamCoverage (bamsignals-methods), 3

bamCoverage, character,GenomicRanges-method
(bamsignals-methods), 3

bamProfile (bamsignals-methods), 3

bamProfile, character,GenomicRanges-method
(bamsignals-methods), 3

bamsignals, 2

bamsignals-methods, 3

bamsignals-package (bamsignals), 2

CountSignals, 2, 4
CountSignals (CountSignals-class), 6
CountSignals-class, 6

length (CountSignals-class), 6
length,CountSignals-method
(CountSignals-class), 6

width (CountSignals-class), 6
width,CountSignals-method
(CountSignals-class), 6

	as.list.CountSignals
	bamsignals
	bamsignals-methods
	CountSignals-class
	Index

