
Package ‘SuperCellCyto’
October 24, 2025

Title SuperCell For Cytometry Data

Version 0.99.3

Description SuperCellCyto provides the ability to summarise cytometry data into supercells
by merging together cells that are similar in their marker expressions
using the SuperCell package.

biocViews CellBiology, FlowCytometry, Software, SingleCell

License GPL-3 + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Imports SuperCell, data.table, Matrix, BiocParallel

Suggests flowCore, knitr, rmarkdown, usethis, testthat (>= 3.0.0),
BiocSingular, bluster, scater, scran, Seurat,
SingleCellExperiment, BiocStyle, magick, qs2

VignetteBuilder knitr

Config/testthat/edition 3

URL https://phipsonlab.github.io/SuperCellCyto/

BugReports https://github.com/phipsonlab/SuperCellCyto/issues

git_url https://git.bioconductor.org/packages/SuperCellCyto

git_branch devel

git_last_commit 906cc13

git_last_commit_date 2025-10-13

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Author Givanna Putri [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7399-8014>),

George Howitt [aut],
Felix Marsh-Wakefield [aut],
Thomas Ashhurst [aut],
Belinda Phipson [aut]

Maintainer Givanna Putri <givanna.h@gmail.com>

1

https://phipsonlab.github.io/SuperCellCyto/
https://github.com/phipsonlab/SuperCellCyto/issues
https://orcid.org/0000-0002-7399-8014


2 recomputeSupercells

Contents
recomputeSupercells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
runSuperCellCyto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
simCytoData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 8

recomputeSupercells Recompute supercells

Description

Given a supercell object, recreate the supercells using a different gamma value.

Gamma value controls the number of supercells generated. The smaller the value, the more super-
cells you get, and vice versa.

For this function to run, you need to have at least run runSuperCellCyto() function once!

Usage

recomputeSupercells(
dt,
sc_objects,
markers,
sample_colname,
cell_id_colname,
aggregation_method = c("mean", "median"),
gam = 20

)

Arguments

dt A data.table object containing cytometry data where rows represent cells and
columns represent markers.

sc_objects The supercell_object returned by runSuperCellCyto() function.
markers A character vector identifying the markers to create supercells with.
sample_colname A character string identifying the column in dt that denotes the sample of a cell.
cell_id_colname

A character string identifying the column in dt representing each cell’s unique
ID.

aggregation_method

A character string indicating how to aggregate the cells in supercells to get
expression matrix. Options are "mean" or "median". Defaults to "mean". If
"mean", the mean of the marker expressions across all cells within each individ-
ual supercell is computed. If "median", the median of the marker expressions
across all cells within each individual supercell is computed.

gam A numeric value specifying the gamma value which regulates the number of
supercells generated. Defaults to 20.



runSuperCellCyto 3

Value

A list with the following components:

• supercell_expression_matrix: A data.table object that contains the marker expression
for each supercell. These marker expressions are computed by calculating the mean of the
marker expressions across all cells within each individual supercell.

• supercell_cell_map: A data.table that maps each cell to its corresponding supercell. This
table is essential for identifying the specific supercell each cell has been allocated to. It proves
particularly useful for analyses that require one to expand the supercells to the individual cell
level.

Author(s)

Givanna Putri

Examples

set.seed(42)
cyto_dat <- simCytoData(10, rep(1000, 3))
markers <- paste0("Marker_", seq_len(10))
out_gam20 <- runSuperCellCyto(

dt = cyto_dat,
markers = markers,
sample_colname = "Sample",
cell_id_colname = "Cell_Id",
gam = 20

)
recomputed_sc <- recomputeSupercells(

dt = cyto_dat,
sc_objects = out_gam20$supercell_object,
markers = markers,
sample_colname = "Sample",
cell_id_colname = "Cell_Id",
gam = 50

)

runSuperCellCyto Run SuperCellCyto on Cytometry Data

Description

This function creates supercells for a cytometry data formatted as a data.table object using the
SuperCellCyto algorithm.

Please make sure you read additional details below to better understand what the function does and
how it works.



4 runSuperCellCyto

Usage

runSuperCellCyto(
dt,
markers,
sample_colname,
cell_id_colname,
n_pc = 10,
aggregation_method = c("mean", "median"),
gam = 20,
k_knn = 5,
BPPARAM = SerialParam(),
load_balancing = FALSE

)

Arguments

dt A data.table object containing cytometry data where rows represent cells and
columns represent markers. If this is a data.frame object, the function will try
to convert it to a data.table object. A warning message will be displayed when
this happens. Otherwise, it will terminate.

markers A character vector identifying the markers to create supercells with.
sample_colname A character string identifying the column in dt that denotes the sample of a cell.
cell_id_colname

A character string identifying the column in dt representing each cell’s unique
ID.

n_pc A numeric value specifying the number of principal components (PCs) to com-
pute from the marker expression matrix. Defaults to 10. If there are less than
10 markers in the markers parameter, then the number of PCs is set to however
many markers there are in the markers parameter.

aggregation_method

A character string specifying the method to be used for calculating the marker
expression of the supercells. Accepted values are "mean" and "median". Based
on the choice, the supercells’ marker expression are computed by computing
either the mean or median of the marker expression of the cells therein. The
default value is "mean". If any other value is provided, the function will return
an error.

gam A numeric value specifying the gamma value which regulates the number of
supercells generated. Defaults to 20.

k_knn A numeric value specifying the k value (number of neighbours) used to build
the kNN network. Defaults to 5.

BPPARAM A BiocParallelParam-class object specifying the parallel processing settings.
Defaults to SerialParam-class, meaning the samples will be processed sequen-
tially one after the other. Refer to additional details section below on parallel
processing for more details.

load_balancing A logical value indicating whether to use a custom load balancing scheme when
processing multiple samples in parallel. Defaults to FALSE. Refer to additional
details section below on parallel processing for more details.



runSuperCellCyto 5

Value

A list with the following components:

• supercell_object: A list containing the object returned by SCimplify function. One object
per sample. This object is critical for recomputing supercells in the future. Hence do not
discard it.

• supercell_expression_matrix: A data.table object that contains the marker expression
for each supercell. These marker expressions are computed by calculating the mean of the
marker expressions across all cells within each individual supercell.

• supercell_cell_map: A data.table that maps each cell to its corresponding supercell. This
table is essential for identifying the specific supercell each cell has been allocated to. It proves
particularly useful for analyses that require one to expand the supercells to the individual cell
level.

Parallel Processing

SuperCellCyto can process multiple samples simultaneously in parallel. This can drastically bring
down processing time for dataset with a large number of samples. To enable this feature, set the
BPPARAM parameter to either a MulticoreParam-class object or a SnowParam-class object. Im-
portantly, it is also recommended to set the number of tasks (i.e., the task parameter in either
MulticoreParam-class or SnowParam-class object) to the number of samples in the dataset.

Furthermore, we also recommend setting load_balancing parameter to TRUE. This ensures opti-
mal distribution of samples across multiple cores, and is particularly important if your samples are
of varying sizes (number of cells).

Cell ID and Sample Definitions

The cell_id_colname parameter specifies the column in dt that denotes the unique identifier for
each cell. It is perfectly normal to not have this column in your dataset by default. The good news
is that it is trivial to create one. You can create a new vector containing a sequence of numbers
from 1 to however many cells you have, and append this vector as a new column in your dataset.
Refer to our vignette on how to do this.

The sample_colname parameter specifies the column in dt that denotes the sample a cell came
from. By default, SuperCellCyto creates supercells for each sample independent of other samples.
This ensures each supercell to only contain cells from exactly one sample.

What constitute a sample? For most purposes, a sample represents a biological sample in your
experiment. You may be thinking, is it then possible to use this in a different context, say creating
supercells for each population or cluster rather than a biological sample? The short answer is yes,
and we address this in our vignette.

Computing PCA

The function will start by computing PCA from all the markers specified in markers parameter.
By default, the number of PCs calculated is set to 10. If there is less than 10 markers in the
markers parameter, then the number of PCs is set to however many markers there are in the markers
parameter.



6 runSuperCellCyto

Notably, no scaling or transformation were done on the markers’ expressions prior to computing
the PCs.

The function does not use irlba to calculate PCA. There is very little gain to use it for cytometry
data because of the relatively tiny number of features (markers) in the data.

Setting Supercell’s Resolution

The gam parameter influences the number of supercells created per sample. A lower gam value
results in more, and thus generally smaller supercells, and vice versa.

To estimate how many supercells we will get for our dataset, it is important to understand how the
gam value is interpreted in the context of number of cells in a sample.

gam=n_cells/n_supercells where n_cells denotes the number of cells and n_supercells de-
notes the number of supercells to be created.

By resolving the formula above, we can roughly estimate how many supercells we will get per
sample. For example, say we have 2 samples, sample A and B. Sample A has 10,000 cells, while
sample B has 5,000 cells:

• If gam is set to 10, we will end up with 1,000 supercells for sample A and 500 supercells for
sample B, a total of 1,500 supercells.

• If gam is set to 50, we will end up with 200 supercells for sample A and 100 supercells for
sample B, a total of 300 supercells.

Importantly, one cannot expect all the supercells to be of the same size. Some will capture more/less
cells than others. It is not trivial to estimate how many cells will be captured in each supercell
beforehand.

Computing kNN network

To create supercells, a kNN (k-Nearest Neighbors) network is constructed based on the k_knn
parameter which dictates the number of neighbours (for each cell) used to create the network. An
actual (not approximate) kNN network is created.

A walktrap algorithm then uses this network to group cells into supercells.

Author(s)

Givanna Putri

Examples

# Simulate some data
set.seed(42)
cyto_dat <- simCytoData(nmarkers = 10, ncells = rep(2000,2))

# Setup the columns designating the markers, samples, and cell IDs
marker_col <- paste0("Marker_", seq_len(10))
sample_col <- "Sample"
cell_id_col <- "Cell_Id"

supercell_dat <- runSuperCellCyto(



simCytoData 7

cyto_dat, marker_col,
sample_col, cell_id_col

)

simCytoData Simulate cytometry data

Description

Simulate some cytometry data for use in testing or documenting functions which require some cy-
tometry data. Please run set.seed before running the function if you want to ensure reproducibility.

Usage

simCytoData(nmarkers = 10, ncells = rep(10000, 2))

Arguments

nmarkers A numeric value specifying number of markers to simulate.

ncells A numeric vector specifying the number of cells to simulate per sample. 1 vector
element per sample.

Value

A data.table object containing the simulated cytometry data where rows represent cells and columns
represent markers.

Author(s)

Givanna Putri

Examples

set.seed(42)
cyto_dat <- simCytoData()
head(cyto_dat)
dim(cyto_dat)



Index

BiocParallelParam-class, 4

MulticoreParam-class, 5

recomputeSupercells, 2
runSuperCellCyto, 3
runSuperCellCyto(), 2

SerialParam-class, 4
simCytoData, 7
SnowParam-class, 5

8


	recomputeSupercells
	runSuperCellCyto
	simCytoData
	Index

