Package ‘QUBIC’

October 24, 2025

Type Package

Title An R package for qualitative biclustering in support of gene
co-expression analyses

Description The core function of this R package is to provide the
implementation of the well-cited and well-reviewed QUBIC algorithm, aiming to
deliver an effective and efficient biclustering capability. This package also
includes the following related functions: (i) a qualitative representation
of the input gene expression data, through a well-designed discretization way
considering the underlying data property, which can be directly used in other
biclustering programs; (ii) visualization of identified biclusters using heatmap
in support of overall expression pattern analysis; (iii) bicluster-based
co-expression network elucidation and visualization, where different correlation
coefficient scores between a pair of genes are provided; and (iv) a generalize
output format of biclusters and corresponding network can be freely downloaded
so that a user can easily do following comprehensive functional enrichment
analysis (e.g. DAVID) and advanced network visualization (e.g. Cytoscape).

VignetteBuilder knitr

biocViews StatisticalMethod, Microarray, DifferentialExpression,
MultipleComparison, Clustering, Visualization, GeneExpression,
Network

Version 1.37.0

License CC BY-NC-ND 4.0 + file LICENSE
Depends R (>=3.1), biclust

Imports Rcpp (>=0.11.0), methods, Matrix
LinkingTo Rcpp, ReppArmadillo

Suggests QUBICdata, qgraph, fields, knitr, rmarkdown
SystemRequirements C++11, Rtools (>=3.1)

Enhances RColorBrewer

URL http://github.com/zy26/QUBIC

BugReports http://github.com/zy26/QUBIC/issues
git_url https://git.bioconductor.org/packages/QUBIC

1

http://github.com/zy26/QUBIC
http://github.com/zy26/QUBIC/issues

2 QUBIC

git_branch devel
git_last_commit d7c63f3
git_last_commit_date 2025-04-15
Repository Bioconductor 3.23
Date/Publication 2025-10-24

Author Yu Zhang [aut, cre],
Qin Ma [aut]

Maintainer Yu Zhang <zy26@jlu.edu.cn>

Contents
BCQU-class e e e e 2
QUBIC . . e 2
qudisCretize L e e e e e e 7
quheatmap e e e e e e 8
qunet2xmlo e 9
qunetworko e 10
showinfo. L e 11

Index 13

BCQU-class Class BCQU.
Description

Class BCQU define a QUalitative BIClustering calcuator.

See Also

BCQU qudiscretize qunetwork qunet2xml biclust

QUBIC QUBIC: A Qualitative Biclustering Algorithm for Analyses of Gene
Expression Data

Description

QUBIC is a biclustering package, with source code upgrading from C code to C++ code. The updated
source code can avoid memory allocation error and is much efficient than the original one. Based
on our preliminary analysis, it can save 40% running time on a plant microarray data. Whenever
using this package, please cite as Yu Zhang, Juan Xie, Jinyu Yang, Anne Fennell, Chi Zhang, Qin
Ma; QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression
data. Bioinformatics, 2017; 33 (3): 450-452. doi: 10.1093/bioinformatics/btw635

BCQUD performs a QUalitative BIClustering for a discret matrix.

QUBIC

Usage

S4 method for signature 'matrix,BCQU'
biclust(x, method = BCQU(),

r=1, q=0.06,
c=20.95 o=100, f =1,
k = max(ncol(x) %/% 20, 2),

biclust(x, method = BCQUD(),

type = 'default', P = FALSE, C = FALSE, verbose = TRUE,
weight = NULL, seedbicluster = NULL)
S4 method for signature 'matrix,BCQUD'
c=20.95 o=100, f =1,
k = max(ncol(x) %/% 20, 2),
type = 'default', P = FALSE, C = FALSE, verbose = TRUE,
weight = NULL, seedbicluster = NULL)
qubiclust_d(x, ¢ = ©0.95, o = 100, f =1,
k = max(ncol(x) %/% 20, 2),
type = 'default', P = FALSE, C = FALSE, verbose = TRUE,

weight = NULL, seedbicluster = NULL)

qubiclust(x, r

=1L, q=10.06, c = 0.95, 0 = 100, f = 1,

k = max(ncol(x) %/% 20, 2),

type =
weight

Arguments

X

'default', P = FALSE, C = FALSE, verbose = TRUE,

= NULL, seedbicluster = NULL)

the input data matrix, which could be the normalized gene expression matrix or
its qualitative representation from Qdiscretization or other discretization ways.
(for example: a qualitative representation of gene expression data)

For BCQU(), the data matrix should be real

For BCQUD(), the data matrix should be discretized as integer. Zeros in the
matrix will be treated as non-relevant value.

Affect the granularity of the biclusters. The range of possible ranks. A user can
start with a small value of r (the default value is 1 so the corresponding data
matrix consists of values *1°, =1’ and ’@’), evaluate the results, and then use
larger values (should not be larger than half of the number of the columns) to
look for fine structures within the identified biclusters.

Affect the granularity of the biclusters. The percentage of the regulating condi-
tions for each gene. The choice of g’s value depends on the specific application
goals; that is if the goal is to find genes that are responsive to local regulators,
we should use a relatively small g-value; otherwise we may want to consider
larger g-values. The default value of q is @.06 in QUBIC (this value is selected
based on the optimal biclustering results on simulated data).

The required consistency level of a bicluster. The default value of ¢ is @.95

The number of output biclusters. o’s default value is 100.

4 QUBIC

f Control parameter, to control the level of overlaps between to-be-identified bi-
clusters. The filter cut-off for data post-processing. For overlaps among to-be-
identified biclusters. Its default value is set to 1 to ensure that no two reported
biclusters overlap more than f.

k The minimum column width of the block, minimum max (ncol(x) %/% 20, 2)
columns.
type The constrain type.

If type is omitted or type="default', the original objective function in QUBIC
will be used, which is to maximize the minimal value of numbers of rows and
columns. If type="area', the program tries to identify the bicluster with the
maximal value of number of rows multiplied by number of columns. Other
types are reserved for future use.

P The flag to enlarge current bicluster using a p-value contrain, which is defined
based on its significance of expression consistency comparing to some simulated
submatrix. Default: FALSE.

C The flag to set the lower bound of the condition number in a bicluster as 5% of
the total condition number in the input data. Only suggested to use when the
input data has a few conditions (e.g. less than 20). Default: FALSE.

verbose If "TRUE’, prints extra information on progress.

weight Alternative weight matrix provided by user, will append to default weight. o, f,
k, P, type, C will be ignored if using this parameter.

seedbicluster Seed provided by user, normally should be a result of function biclust.
method BCQU() or BCQUD(), to perform QUBIC algorithm

Details

For a given representing matrix of a microarray data set, we construct a weighted graph G with genes
represented as vertices, edges connecting every pair of genes, and the weight of each edge being
the similarity level between the two corresponding (entire) rows. Clearly, the higher a weight, the
more similar two corresponding rows are. Intuitively, genes in a bicluster should induce a heavier
subgraph of G because under a subset of the conditions, these genes have highly similar expression
patterns that should make the weight of each involved edge heavier, comparing to the edges in the
background. But it should be noted that some heavy subgraph may not necessarily correspond to
a bicluster, i.e. genes from a heavy subgraph may not necessarily have similar expression patterns
because different edges in a subgraph may have heavier weights under completely different subsets
of conditions. It should also be noted that recognizing all heavy subgraphs in a weighted graph itself
is computationally intractable because identification of maximum cliques in a graph is a special case
of this, and the maximum clique problem is a well known intractable problem (NP-hard). So in our
solution, we do not directly solve the problem of finding heavy subgraphs in a graph. Instead, we
built our biclustering algorithm based on this graph representation of a microarray gene expression
data, and tackle the biclustering problem as follows. We find all feasible biclusters (I,J) in the
given data set such that min{lIl, JI} is as large as possible, where I and J are subsets of genes and
conditions, respectively.

Value

Returns an Biclust object, which contains bicluster candidates

QUBIC 5

Functions

* BCQU: Performs a QUalitative BIClustering.
* BCQUD: Performs a QUalitative BIClustering for a discret matrix.
e qubiclust_d: Performs a QUalitative BIClustering for a discret matrix.

* qubiclust: Performs a QUalitative BIClustering.

References

Yu Zhang, Juan Xie, Jinyu Yang, Anne Fennell, Chi Zhang, Qin Ma; QUBIC: a bioconductor
package for qualitative biclustering analysis of gene co-expression data. Bioinformatics, 2017; 33
(3): 450-452.

See Also

BCQU-class qudiscretize qunetwork qunet2xml biclust

Examples

Random matrix with one embedded bicluster
test <- matrix(rnorm(5000), 100, 50)
test[11:20, 11:20] <- rnorm(100, 3, 0.3)

res <- biclust::biclust(test, method = BCQU())
summary(res)

show(res)

names(attributes(res))

Not run:
Load microarray matrix
data(BicatYeast)

Display number of column and row of BicatYeast

ncol (BicatYeast)

nrow(BicatYeast)

Bicluster on microarray matrix

system.time(res <- biclust::biclust(BicatYeast, method = BCQU()))

Show bicluster info

res

Show the first bicluster
biclust::bicluster(BicatYeast, res, 1)

Get the 4th bicluster

bic4 <- biclust::bicluster(BicatYeast, res, 4)[[1]]

or

bic4 <- biclust::bicluster(BicatYeast, res)[[4]]
Show rownames of the 4th bicluster
rownames(bic4)

Show colnames of the 4th bicluster
colnames(bic4)

QUBIC

End(Not run)

Not run:

Bicluster on selected of genes

data(EisenYeast)

genes <- c("YHRO5TW", "YKL18TW", "YHR124W", "YHLQ2QC", "YGRO72W", "YGR145W",
"YGR218W", "YGLQO41C", "YOR202W", "YCRQQO5C")

same result as res <- biclust::biclust(EisenYeast[1:10,], method=BCQU())

res <- biclust::biclust(EisenYeast[genes, 1, method = BCQU())

res

End(Not run)

Not run:

Get bicluster by row name = 249364_at

biclust::bicluster(BicatYeast, res, which(res@RowxNumber[which(rownames(BicatYeast) ==
"249364_at"), 1))

End(Not run)

Not run:

Get bicluster by col name = cold_roots_6h

biclust::bicluster(BicatYeast, res, which(res@NumberxCol[, which(colnames(BicatYeast) ==
"cold_roots_6h")1))

End(Not run)

Not run:

Draw a single bicluster using drawHeatmap {bicust}
data(BicatYeast)

res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE)
Draw heatmap of the first cluster
biclust::drawHeatmap(BicatYeast, res, 1)

End(Not run)

Not run:

Draw a single bicluster using heatmap {stats}
data(BicatYeast)

res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE)
bic1@ <- biclust::bicluster(BicatYeast, res, 10)[[1]]

Draw heatmap of the 10th cluster using heatmap {stats}
heatmap(as.matrix(t(bic10)), Rowv = NA, Colv = NA, scale = 'none')

Draw heatmap of the 10th cluster using plot_heatmap {phyloseq}
if (requireNamespace('phyloseq'))
phyloseq: :plot_heatmap(otu_table(bic10, taxa_are_rows = TRUE))

End(Not run)
Not run:
Draw a single bicluster with original data background and color options

qudiscretize 7

data(BicatYeast)

res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE)

palette <- colorRampPalette(c('red', 'yellow', 'green'))(n = 100)

Draw heatmap of the first cluster with color

biclust::drawHeatmap(BicatYeast, res, 1, FALSE, beamercolor = TRUE, paleta = palette)

End(Not run)

Not run:

Draw some overlapped biclusters

data(BicatYeast)

res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE)

biclusternumber(res, 1)

biclusternumber(res, 3)

Draw overlapping heatmap

biclust::heatmapBC(x = BicatYeast, bicResult = res, number = c(1, 3), local = TRUE)

End(Not run)

Not run:

Draw all the biclusters

data(BicatYeast)

res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE)

Draw the first bicluster on heatmap

biclust::heatmapBC(x = BicatYeast, bicResult = res, number = 1)

Draw all the biclusters, not working well.

Overlap plotting only works for two neighbor bicluster defined by the order in the number slot.
biclust::heatmapBC(x = BicatYeast, bicResult = res, number = Q)

End(Not run)

Biclustering of discretized yeast microarray data
data(BicatYeast)
disc<-qudiscretize(BicatYeast[1:10,1:10])
biclust::biclust(disc, method=BCQUD())

qudiscretize Create a qualitative discrete matrix for a given gene expression matrix

Description

qudiscretize delivers a discrete matrix. It is useful if we just want to get a discretized matrix.

Usage

qudiscretize(x, r = 1L, g = 0.06)

Arguments

X

Details

quheatmap

the input data matrix, which could be the normalized gene expression matrix or
its qualitative representation from Qdiscretization or other discretization ways.
(for example: a qualitative representation of gene expression data)

For BCQU(), the data matrix should be real

For BCQUD(), the data matrix should be discretized as integer. Zeros in the
matrix will be treated as non-relevant value.

Affect the granularity of the biclusters. The range of possible ranks. A user can
start with a small value of r (the default value is 1 so the corresponding data
matrix consists of values *1°, =1’ and ’@’), evaluate the results, and then use
larger values (should not be larger than half of the number of the columns) to
look for fine structures within the identified biclusters.

Affect the granularity of the biclusters. The percentage of the regulating condi-
tions for each gene. The choice of q’s value depends on the specific application
goals; that is if the goal is to find genes that are responsive to local regulators,
we should use a relatively small g-value; otherwise we may want to consider
larger g-values. The default value of g is 0. 06 in QUBIC (this value is selected
based on the optimal biclustering results on simulated data).

qudiscretize convert a given gene expression matrix to a discrete matrix. It’s implimented in
C++, providing a increase in speed over the C equivalent.

Value

A qualitative discrete matrix

See Also

QUBIC discretize

Examples

Qualitative discretize yeast microarray data

data(BicatYeast)

qudiscretize(BicatYeast[1:7, 1:5])

quheatmap

Visualization of identified biclusters

Description

This function can visualize the identifed biclusters using heatmap in support of overall expression
pattern analysis,either for a single bicluster or two biclusters.

qunet2xml 9

Usage

quheatmap(x, bicResult, number = 1, showlabel = FALSE, col = c("#313695",
"#4575B4", "#74ADD1", "#ABDOE9", "#EOF3F8", "#FFFFBF", "#FEEQ90", "#FDAE61",

"#F46D43", "#D73027", "#A50026"), ...)
Arguments
X The data matrix
bicResult biclust::BiclustResult object
number which bicluster to be plotted
showlabel If TRUE, show the xlabel and ylabel
col default: c("#313695", "#4575B4", "#74ADD1", "#ABD9E9", "#EOF3F8", "#FFFFBF",

"#FEE090", "#FDAEG61", "#F46D43", "#D73027", "#A50026")
Additional options in fields: :image.plot

See Also

gunet2xml QUBIC heatmapBC

Examples

Load microarray matrix

data(BicatYeast)

res <- biclust::biclust(BicatYeast, method=BCQU(), verbose = FALSE)

Draw heatmap for the 2th identified bicluster

par(mar = c(5, 4, 3, 5) +0.1, mgp =c(@, 1, @), cex.lab=1.1, cex.axis = 0.5, cex.main=1.1)
quheatmap(x = BicatYeast, res, number = 2, showlabel = TRUE)

Draw heatmap for the 2th and 3th identified biclusters.

par(mar = c(5, 5, 5, 5), cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1)

quheatmap(x = BicatYeast, res, number = c(2, 3), showlabel = TRUE)

qunet2xml Convert newwork to XGMML

Description

This function can convert the constructed co-expression networks into XGMML format, which can
be used to do further network analysis in Cytoscape, Biomax and JNets.

Usage

gunet2xml(net, minimum = 0.6,
color = cbind(grDevices::rainbow(length(net[[2]1]) - 1), "gray"))

10 qunetwork

Arguments

net Result of qunetwork
minimum cutoff, default: 0.6
color default: cbind(grDevices::rainbow(length(net[[2]]) - 1), ’gray’)

Value

Text of XGMML

See Also

gunetwork QUBIC

Examples

Load microarray matrix

data(BicatYeast)

res <- biclust::biclust(BicatYeast[1:50,], method=BCQU(), verbose
Get all biclusters

net <- qgunetwork(BicatYeast[1:50,], res, group = c(4, 13), method = 'spearman')

Save the network to a XGMML file

sink('tempnetworkresult.gr')

qunet2xml(net, minimum = @.6, color = cbind(grDevices: :rainbow(length(net[[2]]) - 1), 'gray'))
sink()

You can use Cytoscape, Biomax or JNets open file named tempnetworkresult.gr

FALSE)

qunetwork Construction and visualization of co-expression network

Description

This function can automatically create co-expression networks along with their visualization based
on identified biclusters in QUBIC. Three correlation methods, Pearson, Kendall and Spearman, are
available for a user, facilitating different preferences in practical usage.

Usage
qunetwork(x, BicRes, number = 1:BicRes@Number, groups = c(number[[1]11),
method = c("pearson”, "kendall”, "spearman"))
Arguments
X The data matrix
BicRes biclust::BiclustResult object
number Which bicluster to be plotted
groups An object that indicates which nodes belong together.
method A character string indicating which correlation coefficient (or covariance) is to

be computed. One of ’pearson’ (default), ’kendall’, or ’spearman’, can be ab-
breviated.

showinfo 11

Value

a list contains a weights matrix and groupinfo

See Also

qunet2xml QUBIC cor

Examples

Load microarray matrix
data(BicatYeast)
res <- biclust::biclust(BicatYeast[1:50,], method=BCQU(), verbose = FALSE)
Constructing the networks for the 4th and 13th identified biclusters.
net <- qunetwork(BicatYeast[1:50@, 1, res, number = c(4, 13), group = c(4, 13), method = 'spearman')
Not run:
if (requireNamespace('qgraph'))

qggraph: :qgraph(net[[1]1], groups = net[[2]], layout = 'spring', minimum = 0.6,

color = cbind(rainbow(length(net[[2]]) - 1), 'gray'), edge.label = FALSE)

End(Not run)
Not run:
#lLoad microarray matrix
data(BicatYeast)
res <- biclust::biclust(BicatYeast[1:50,], method=BCQU(), verbose = FALSE)
Constructing the networks for the 4th and 13th identified biclusters,
using the whole network as a background.
net <- qunetwork(BicatYeast[1:50,], res, group = c(4, 13), method = 'spearman')
if (requireNamespace('qggraph'))
ggraph: :qgraph(net[[1]], groups = net[[2]], layout = 'spring', minimum = 0.6,
color = cbind(rainbow(length(net[[2]]) - 1), 'gray'), edge.label = FALSE)

End(Not run)

showinfo Show report of biclusters

Description

This function can make a report for biclusters.

Usage

showinfo(matrix, bic)

Arguments

matrix microarray matrix

bic array of biclusters

12 showinfo

Value

Text of report

See Also
QUBIC

Examples

Load microarray matrix

data(BicatYeast)

matrix <- BicatYeast[1:50, 1;

resl <- biclust::biclust(matrix, method=BCQU(), verbose = FALSE)
res2 <- biclust::biclust(matrix, method=BCCC())

res3 <- biclust::biclust(matrix, method=BCBimax())

Show the report

showinfo(matrix, c(resl, res2, res3))

Index

* bi-clustering
QUBIC, 2
* bi-cluster
QUBIC, 2
* biclustering
QUBIC, 2
* bicluster
QUBIC, 2
* biclust
QUBIC, 2
* qubic
QUBIC, 2

BCQU, 2

BCQU (QUBIC), 2

bcqu (QUBIC), 2

BCQU-class, 2

BCQUD (QUBIC), 2

BCQUD-class (QUBIC), 2

biclust, 2,5
biclust,matrix,BCQU-method (QUBIC), 2
biclust,matrix,BCQUD-method (QUBIC), 2

cor, 11

discretize, 8
heatmapBC, 9

network (qunetwork), 10

gdiscretize (qudiscretize), 7
Qnetwork (qunetwork), 10
QUBIC, 2, 8-12

qubic (QUBIC), 2

qubic_d (QUBIC), 2

QUBICD (QUBIC), 2

qubiclust (QUBIC), 2
qubiclust_d (QUBIC), 2

QUD (QUBIC), 2
qudiscretize, 2, 5,7

13

quheatmap, 8
qunet2xml, 2, 5,9,9, 11
Qunetwork (qunetwork), 10
qunetwork, 2, 5, 10, 10

showinfo, 11

	BCQU-class
	QUBIC
	qudiscretize
	quheatmap
	qunet2xml
	qunetwork
	showinfo
	Index

