
Package ‘PSMatch’
October 24, 2025

Title Handling and Managing Peptide Spectrum Matches

Version 1.13.2

Description The PSMatch package helps proteomics practitioners to
load, handle and manage Peptide Spectrum Matches. It provides
functions to model peptide-protein relations as adjacency matrices
and connected components, visualise these as graphs and make
informed decision about shared peptide filtering. The package also
provides functions to calculate and visualise MS2 fragment ions.

Depends S4Vectors, R (>= 4.1.0)

Imports utils, stats, igraph, methods, Spectra (>= 1.17.10), Matrix,
BiocParallel, BiocGenerics, ProtGenerics (>= 1.27.1),
QFeatures, MsCoreUtils, IRanges

Suggests msdata, rpx, mzID, mzR, SummarizedExperiment, BiocStyle,
rmarkdown, knitr, factoextra, vdiffr (>= 1.0.0), testthat

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/PSM/issues

URL https://github.com/RforMassSpectrometry/PSM

biocViews Infrastructure, Proteomics, MassSpectrometry

git_url https://git.bioconductor.org/packages/PSMatch

git_branch devel

git_last_commit 1542556

git_last_commit_date 2025-08-01

Repository Bioconductor 3.23

Date/Publication 2025-10-24

1

https://github.com/RforMassSpectrometry/PSM/issues
https://github.com/RforMassSpectrometry/PSM

2 adjacencyMatrix

Author Laurent Gatto [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1520-2268>),

Johannes Rainer [aut] (ORCID: <https://orcid.org/0000-0002-6977-7147>),
Sebastian Gibb [aut] (ORCID: <https://orcid.org/0000-0001-7406-4443>),
Samuel Wieczorek [ctb],
Thomas Burger [ctb],
Guillaume Deflandre [ctb] (ORCID:

<https://orcid.org/0009-0008-1257-2416>)

Maintainer Laurent Gatto <laurent.gatto@uclouvain.be>

Contents
adjacencyMatrix . 2
calculateFragments . 7
ConnectedComponents . 10
describeProteins . 13
filterPSMs . 14
getAminoAcids . 16
getAtomicMass . 17
labelFragments . 17
plotSpectraPTM . 19
PSM . 22
PSMatch . 26

Index 29

adjacencyMatrix Convert to/from an adjacency matrix.

Description

There are two ways that peptide/protein matches are commonly stored: either as a vector or an
adjacency matrix. The functions described below convert between these two format.

Usage

makeAdjacencyMatrix(
x,
split = ";",
peptide = psmVariables(x)["peptide"],
protein = psmVariables(x)["protein"],
score = psmVariables(x)["score"],
binary = FALSE

)

makePeptideProteinVector(m, collapse = ";")

https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0001-7406-4443
https://orcid.org/0009-0008-1257-2416

adjacencyMatrix 3

plotAdjacencyMatrix(
m,
protColors = 0,
pepColors = NULL,
layout = igraph::layout_nicely

)

Arguments

x Either an instance of class PSM or a character. See example below for details.

split character(1) defining how to split the string of protein identifiers (using strsplit()).
Default is ";". If NULL, splitting is ignored.

peptide character(1) indicating the name of the variable that defines peptides in the
PSM object. Default is the peptide PSM variable as defined in psmVariables().

protein character(1) indicating the name of the variable that defines proteins in the
PSM object. Default is the peptide PSM variable as defined in psmVariables().

score character(1) indicating the name of the variable that defines PSM scores in the
PSM object. Default is the score PSM variable as defined in psmVariables().
Ignored when NA (which is the default value unless set by the user when con-
structing the PSM object).

binary logical(1) indicates if the adjacency matrix should be strictly binary. In such a
case, PSMs matching the same peptide but from different precursors (for exam-
ple charge 2 and 3) or carrying different PTMs, are counted only once. Default
if FALSE. This also overrides any score that would be set.

m A peptide-by-protein adjacency matrix.

collapse character(1) indicating how to collapse protein names for shared peptides.
Default is ";".

protColors Either a numeric(1) or a named character() of colour names. The numeric
value indicates the protein colouring level to use. If 0 (default), all protein
nodes are labelled in steelblue. For values > 0, approximate string distances
(see adist()) between protein names are calculated and nodes of proteins that
have names that differ will be coloured differently, with higher values leading
to more colours. While no maximum to this value is defined in the code, it
shouldn’t be higher than the number of proteins. If a character is used, it should
be a character of colour names named by protein identifiers. That vector should
provide colours for at least all proteins in the adjacency matrix m, but more pro-
tein could be named. The latter is useful when generating a colour vector for all
proteins in a dataset and use it for different adjacency matrix visualisations.

pepColors Either NULL (default) for no peptide colouring (white nodes) or a named character()
of colour names. It should be a character of colour names named by peptide
identifiers. That vector should provide colours for at least all peptides in the ad-
jacency matrix m, but more peptides could be named. The latter is useful when
generating a colour vector for all peptides in a dataset and use it for different
adjacency matrix visualisations.

layout A graph layout, as defined in the ipgraph package. Default is igraph::layout_as_bipartite().

4 adjacencyMatrix

Details

The makeAdjacencyMatrix() function creates a peptide-by-protein adjacency matrix from a character
or an instance of class PSM().

The character is formatted as x <- c("ProtA", "ProtB", "ProtA;ProtB", ...), as commonly
encountered in proteomics data spreadsheets. It defines that the first peptide is mapped to protein
"ProtA", the second one to protein "ProtB", the third one to "ProtA" and "ProtB", and so on. The
resulting matrix contains as many rows as there are unique peptides and as many columns as there
are unique protein identifiers in x. The columns are named after the protein identifiers and the
peptide/protein vector names are used to name the matrix rows (retaining only the unique names).

The makePeptideProteinVector() function does the opposite operation, taking an adjacency ma-
trix as input and returning a peptide/protein vector. The matrix colnames are used to populate the
vector and the matrix rownames are used to name the vector elements.

Note that when creating an adjacency matrix from a PSM object, the matrix is not necessarily
binary, as multiple PSMs can match the same peptide (sequence), such as for example precursors
with different charge states. A binary matrix can either be generated with the binary argument
(setting all non-0 values to 1) or by reducing the PSM object accordingly (see example below).

It is also possible to generate adjacency matrices populated with identification scores or probabilites
by setting the "score" PSM variable upon construction of the PSM object (see PSM() for details). In
case multiple PSMs occur, their respective scores get summed.

The plotAdjacencyMatrix() function is useful to visualise small adjacency matrices, such as
those representing protein groups modelled as connected components, as described and illustrated in
ConnectedComponents(). The function generates a graph modelling the relation between proteins
(represented as squares) and peptides (represented as circes), which can further be coloured (see the
protColors and pepColors arguments). The function invisibly returns the graph igraph object
for additional tuning and/or interactive visualisation using, for example igraph::tkplot().

Such as illustrated in the examples below, each row/peptide is expected to refer to protein groups or
individual proteins (groups of size 1). These have to be split accordingly.

Value

A peptide-by-protein sparce adjacency matrix (or class dgCMatrix as defined in the Matrix pack-
age) or peptide/protein vector.

Author(s)

Laurent Gatto

Examples

From a character

Protein vector without names
prots <- c("ProtA", "ProtB", "ProtA;ProtB")
makeAdjacencyMatrix(prots)

adjacencyMatrix 5

Named protein vector
names(prots) <- c("pep1", "pep2", "pep3")
prots
m <- makeAdjacencyMatrix(prots)
m

Back to vector
vec <- makePeptideProteinVector(m)
vec
identical(prots, vec)

PSM object from a data.frame

Case 1: Duplicate identifications

psmdf <- data.frame(psm = paste0("psm", 1:10),
peptide = paste0("pep", c(1, 1, 2, 2, 3, 4, 6, 7, 8, 8)),
protein = paste0("Prot", LETTERS[c(1, 1, 2, 2, 3, 4, 3, 5, 6, 6)]))

psmdf
psm <- PSM(psmdf, peptide = "peptide", protein = "protein")
psm
makeAdjacencyMatrix(psm)

Reduce PSM object to peptides
rpsm <- reducePSMs(psm, k = psm$peptide)
rpsm
makeAdjacencyMatrix(rpsm)

Or set binary to TRUE
makeAdjacencyMatrix(psm, binary = TRUE)

Case 2: Protein groups are separated by a semicolon
psmdf <- data.frame(psm = paste0("psm", 1:5),

peptide = paste0("pep", c(1, 2, 3, 4, 5)),
protein = c("ProtA", "ProtB;ProtD", "ProtA;ProtC",

"ProtC", "ProtA;ProtC;ProtD"))
psmdf
psm <- PSM(psmdf, peptide = "peptide", protein = "protein")
psm
makeAdjacencyMatrix(psm, split = ";")

PSM object from an mzid file

f <- msdata::ident(full.names = TRUE, pattern = "TMT")
psm <- PSM(f) |>

filterPsmDecoy() |>
filterPsmRank()

psm

6 adjacencyMatrix

adj <- makeAdjacencyMatrix(psm)
dim(adj)
adj[1:10, 1:4]

Binary adjacency matrix
adj <- makeAdjacencyMatrix(psm, binary = TRUE)
adj[1:10, 1:4]

Peptides with rowSums > 1 match multiple proteins.
Use filterPsmShared() to filter these out.
table(Matrix::rowSums(adj))

Binary, non-binary and score adjacency matrices

Case 1: no scores, 1 PSM per peptides
psmdf <- data.frame(spectrum = c("sp1", "sp2", "sp3", "sp4", "sp5",

"sp6", "sp7", "sp8", "sp9", "sp10"),
sequence = c("NKAVRTYHEQ", "IYNHSQGFCA", "YHWRLPVSEF",

"YEHNGFPLKD", "WAQFDVYNLS", "EDHINCTQWP",
"WSMKVDYEQT", "GWTSKMRYPL", "PMAYIWEKLC",
"HWAEYFNDVT"),

protein = c("ProtB", "ProtB", "ProtA", "ProtD", "ProtD",
"ProtG", "ProtF", "ProtE", "ProtC", "ProtF"),

decoy = rep(FALSE, 10),
rank = rep(1, 10),
score = c(0.082, 0.310, 0.133, 0.174, 0.944, 0.0261,

0.375, 0.741, 0.254, 0.058))
psmdf

psm <- PSM(psmdf, spectrum = "spectrum", peptide = "sequence",
protein = "protein", decoy = "decoy", rank = "rank")

binary matrix
makeAdjacencyMatrix(psm)

Case 2: sp1 and sp11 match the same peptide (NKAVRTYHEQ) as different PSMs
psmdf2 <- rbind(psmdf,

data.frame(spectrum = "sp11",
sequence = psmdf$sequence[1],
protein = psmdf$protein[1],
decoy = FALSE,
rank = 1,
score = 0.011))

psmdf2
psm2 <- PSM(psmdf2, spectrum = "spectrum", peptide = "sequence",

protein = "protein", decoy = "decoy", rank = "rank")

Now NKAVRTYHEQ/ProtB counts 2 PSMs
makeAdjacencyMatrix(psm2)

calculateFragments 7

Force a binary matrix
makeAdjacencyMatrix(psm2, binary = TRUE)

Case 3: Peptide (NKAVRTYHEQ) stems from multiple proteins (ProtB and
ProtG). They are separated by a semicolon.
psmdf3 <- psmdf
psmdf3[psmdf3$sequence == "NKAVRTYHEQ","protein"] <- "ProtB;ProtG"
psmdf3
psm3 <- PSM(psmdf3, spectrum = "spectrum", peptide = "sequence",

protein = "protein", decoy = "decoy", rank = "rank")

Now ProtB & ProtG count 2 PSMs each: NKAVRTYHEQ and IYNHSQGFCA &
EDHINCTQWP respectively
makeAdjacencyMatrix(psm3, split = ";")

Case 4: set the score PSM values
psmVariables(psm) ## no score defined
psm4 <- PSM(psm, spectrum = "spectrum", peptide = "sequence",

protein = "protein", decoy = "decoy", rank = "rank",
score = "score")

psmVariables(psm4) ## score defined

adjacency matrix with scores
makeAdjacencyMatrix(psm4)

Force a binary matrix
makeAdjacencyMatrix(psm4, binary = TRUE)

Case 5: scores with multiple PSMs

psm5 <- PSM(psm2, spectrum = "spectrum", peptide = "sequence",
protein = "protein", decoy = "decoy", rank = "rank",
score = "score")

Now NKAVRTYHEQ/ProtB has a summed score of 0.093 computed as
0.082 (from sp1) + 0.011 (from sp11)
makeAdjacencyMatrix(psm5)

calculateFragments Calculate ions produced by fragmentation with variable modifications

Description

This method calculates a-, b-, c-, x-, y- and z-ions produced by fragmentation.

Available methods

• The default method with signature sequence = "character" and object = "missing" cal-
culates the theoretical fragments for a peptide sequence. It returns a data.frame with the
columns mz, ion, type, pos, z, seq and peptide.

8 calculateFragments

• Additional method can be defined that will adapt their behaviour based on spectra defined in
object. See for example the MSnbase package that implements a method for objects of class
Spectrum2.

Usage

S4 method for signature 'character,missing'
calculateFragments(
sequence,
type = c("b", "y"),
z = 1,
fixed_modifications = c(C = 57.02146),
variable_modifications = numeric(),
max_mods = Inf,
neutralLoss = defaultNeutralLoss(),
verbose = TRUE,
modifications = NULL

)

Arguments

sequence character() providing a peptide sequence.

type character vector of target ions; possible values: c("a", "b", "c", "x", "y",
"z"). Default is type = c("b", "y").

z numeric with a desired charge state; default is 1.
fixed_modifications

A named numeric vector of used fixed modifications. The name must corre-
spond to the one-letter-code of the modified amino acid and the numeric value
must represent the mass that should be added to the original amino accid mass,
default: Carbamidomethyl modifications = c(C = 57.02146). Use Nterm or
Cterm as names for modifications that should be added to the amino respec-
tively carboxyl-terminus.

variable_modifications

A named numeric vector of variable modifications. Depending on the maximum
number of modifications (max_mods), all possible combinations are returned.

max_mods A numeric indicating the maximum number of variable modifications allowed
on the sequence at once. Does not include fixed modifications. Default value is
positive infinity.

neutralLoss list, it has to have two named elments, namely water and ammonia that contain
a character vector which type of neutral loss should be calculated. Currently
neutral loss on the C terminal "Cterm", at the amino acids c("D", "E", "S",
"T") for "water" (shown with an _) and c("K", "N", "Q", "R") for "ammonia"
(shown with an *) are supported.

There is a helper function `defaultNeutralLoss()` that returns
the correct list. It has two arguments `disableWaterLoss` and
`disableAmmoniaLoss` to remove single neutral loss options. See
the example section for use cases.

calculateFragments 9

verbose logical(1). If TRUE (default) the used modifications are printed.

modifications Named numeric(). Deprecated modifications parameter. Will override fixed_modifications
but is set to NULL by default. Please refrain from using it, opt for fixed_modifications
instead.

Value

A data.frame showing all the ions produced by fragmentation with all possible combinations of
modifications. The used variable modifications are displayed in the peptide column through the use
of amino acids followed by the modification within brackets. Fixed modifications are not displayed.

Author(s)

Sebastian Gibb mail@sebastiangibb.de

Guillaume Deflandre guillaume.deflandre@uclouvain.be

Examples

General use
calculateFragments(sequence = "ARGSHKATC",

type = c("b", "y"), z = 1,
fixed_modifications = c(C = 57),
variable_modifications = c(S = 79, Y = 79, T = 79),
max_mods = 2)

calculate fragments for ACE with default modification
calculateFragments("ACE", fixed_modifications = c(C = 57.02146))

#' ## calculate fragments for ACE with an added variable modification
calculateFragments("ACE", variable_modifications = c(A = 43.25))

calculate fragments for ACE with an added N-terminal modification
calculateFragments("ACE", fixed_modifications = c(C = 57.02146, Nterm = 229.1629))

calculate fragments for ACE without any modifications
calculateFragments("ACE", fixed_modifications = NULL)

calculateFragments("VESITARHGEVLQLRPK",
type = c("a", "b", "c", "x", "y", "z"),
z = 1:2)

neutral loss
defaultNeutralLoss()

disable water loss on the C terminal
defaultNeutralLoss(disableWaterLoss="Cterm")

real example
calculateFragments("PQR")
calculateFragments("PQR",

neutralLoss=defaultNeutralLoss(disableWaterLoss="Cterm"))

mailto:mail@sebastiangibb.de
mailto:guillaume.deflandre@uclouvain.be

10 ConnectedComponents

calculateFragments("PQR",
neutralLoss=defaultNeutralLoss(disableAmmoniaLoss="Q"))

disable neutral loss completely
calculateFragments("PQR", neutralLoss=NULL)

ConnectedComponents Connected components

Description

Connected components are a useful representation when exploring identification data. They repre-
sent the relation between proteins (the connected components) and how they form groups of proteins
as defined by shared peptides.

Connected components are stored as ConnectedComponents objects that can be generated using
the ConnectedComponents() function.

Usage

ConnectedComponents(object, ...)

ccMatrix(x)

connectedComponents(x, i, simplify = TRUE)

S4 method for signature 'ConnectedComponents'
length(x)

S4 method for signature 'ConnectedComponents'
dims(x)

S4 method for signature 'ConnectedComponents'
ncols(x)

S4 method for signature 'ConnectedComponents'
nrows(x)

S4 method for signature 'ConnectedComponents,integer,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ConnectedComponents,logical,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ConnectedComponents,numeric,ANY,ANY'
x[i, j, ..., drop = FALSE]

ConnectedComponents 11

prioritiseConnectedComponents(x)

prioritizeConnectedComponents(x)

S4 method for signature 'ConnectedComponents'
adjacencyMatrix(object)

Arguments

object For the ConnectedComponents class constructor, either a sparse adjacency ma-
trix of class Matrix or an instance of class PSM.

... Additional arguments passed to makeAdjacencyMatrix() when object is of
class PSM().

x An object of class ConnectedComponents.

i numeric(), integer() or logical() to subset the ConnectedComponents in-
stance. If a logical(), it must be of same length as the object is subsets.

simplify logical(1) if TRUE (default), the output is simplified to sparse matrix if i was
of length 1, otherwise a List is returned. Always a List if FALSE.

j ignored

drop ignore

Value

The ConnectedComponents() constructor returns an instance of class ConnectedComponents. The
Creating and manipulating objects section describes the return values of the functions that manip-
ulate ConnectedComponents objects.

Slots

adjMatrix The sparse adjacency matrix (class Matrix) of dimension p peptides by m proteins that
was used to generate the object.

ccMatrix The sparse connected components matrix (class Matrix) of dimension m by m proteins.

adjMatrices A List containing adjacency matrices of each connected components.

Creating and manipulating objects

• Instances of the class are created with the ConnectedComponent() constructor from a PSM()
object or directly from a sparse adjacency matrix of class Matrix. Note that if using the latter,
the rows and columns must be named.

• The sparse peptide-by-protein adjacency matrix is stored in the ConnectedComponent in-
stance and can be accessed with the adjacencyMatrix() function.

• The protein-by-protein connected components sparse matrix of object x can be accessed with
the ccMatrix(x) function.

• The number of connected components of object x can be retrieved with length(x).

12 ConnectedComponents

• The size of the connected components of object x, i.e the number of proteins in each com-
ponent, can be retrieved with ncols(x). The number of peptides defining the connected
components can be retrieved with nrows(x). Both can be accessed with dims(x).

• The connectedComponents(x, i, simplify = TRUE) function returns the peptide-by-protein
sparse adjacency matrix (or List of matrices, if length(i) > 1), i.e. the subset of the adja-
cency matrix defined by the proteins in connected component(s) i. i is the numeric index
(between 1 and length(x)) of the connected connected. If simplify is TRUE (default), then a
matrix is returned instead of a List of matrices of length 1. If set to FALSE, a List is always
returned, irrespective of its length.

• To help with the exploration of individual connected Components, the prioritiseConnectedComponents()
function will take an instance of ConnectedComponents and return a data.frame where the
component indices are ordered based on their potential to clean up/flag some peptides and
split protein groups in small groups or individual proteins, or simply explore them. The pri-
oritisation is based on a set of metrics computed from the component’s adjacency matrix,
including its dimensions, row and col sums maxima and minima, its sparsity and the number
of communities and their modularity that quantifies how well the communities separate (see
igraph::modularity(). Note that trivial components, i.e. those composed of a single pep-
tide and protein are excluded from the prioritised results. This data.frame is ideally suited
for a principal component analysis (using for instance prcomp()) for further inspection for
component visualisation with plotAdjacencyMatrix().

Examples

From an adjacency matrix

library(Matrix)
adj <- sparseMatrix(i = c(1, 2, 3, 3, 4, 4, 5),

j = c(1, 2, 3, 4, 3, 4, 5),
x = 1,
dimnames = list(paste0("Pep", 1:5),

paste0("Prot", 1:5)))
adj
cc <- ConnectedComponents(adj)
cc

length(cc)
ncols(cc)

adjacencyMatrix(cc) ## same as adj above
ccMatrix(cc)

connectedComponents(cc)
connectedComponents(cc, 3) ## a singel matrix
connectedComponents(cc, 1:2) ## a List

From an PSM object

f <- msdata::ident(full.names = TRUE, pattern = "TMT")
f

describeProteins 13

psm <- PSM(f) |>
filterPsmDecoy() |>
filterPsmRank()

cc <- ConnectedComponents(psm)
cc

length(cc)
table(ncols(cc))

(i <- which(ncols(cc) == 4))
ccomp <- connectedComponents(cc, i)

A group of 4 proteins that all share peptide RTRYQAEVR
ccomp[[1]]

Visualise the adjacency matrix - here, we see how the single
peptides (white node) 'unites' the four proteins (blue nodes)
plotAdjacencyMatrix(ccomp[[1]])

A group of 4 proteins formed by 7 peptides: THPAERKPRRRKKR is
found in the two first proteins, KPTARRRKRK was found twice in
ECA3389, VVPVGLRALVWVQR was found in all 4 proteins, KLKPRRR
is specific to ECA3399, ...
ccomp[[3]]

See how VVPVGLRALVWVQR is shared by ECA3406 ECA3415 ECA3389 and
links the three other componennts, namely ECA3399, ECA3389 and
(ECA3415, ECA3406). Filtering that peptide out would split that
protein group in three.
plotAdjacencyMatrix(ccomp[[3]])

Colour protein node based on protein names similarity
plotAdjacencyMatrix(ccomp[[3]], 1)

To select non-trivial components of size > 1
cc2 <- cc[ncols(cc) > 1]
cc2

Use components features to prioritise their exploration
pri_cc <- prioritiseConnectedComponents(cc)
pri_cc

plotAdjacencyMatrix(connectedComponents(cc, 1082), 1)

describeProteins Describe protein and peptide compositions

14 filterPSMs

Description

It is important to explore PSM results prior to any further downstream analysies. Two functions,
that work on PSM() and ConnectedComponents() objects can be used for this:

• The describeProteins() function describe protein composition in terms of unique and
shared peptides.

• The describePeptides() function describe unique/shared peptide composition.

Usage

describeProteins(object, ...)

describePeptides(object, ...)

Arguments

object Either an instance of class Matrix, PSM() or ConnectedComponents().

... Additional arguments passed to makeAdjacencyMatrix().

Value

describePeptides() invisibly return the table of unique and shared peptides. describeProteins()
invisibly returns a data.frame with logicals indicating the unique/shared peptide composition of
proteins. Both functions are used for their side effects of printing a short descriptive output about
peptides and proteins.

Examples

f <- msdata::ident(full.names = TRUE, pattern = "TMT")
basename(f)
psm <- PSM(f) |>

filterPsmDecoy() |>
filterPsmRank()

describePeptides(psm)
describeProteins(psm)

filterPSMs Filter out unreliable PSMs.

Description

Functions to filter out PSMs matching. The PSMs should be stored in a PSM such as those produced
by PSM().

• filterPsmDecoy() filters out decoy PSMs, i.e. those annotated as isDecoy.

• filterPsmRank() filters out PSMs of rank > 1.

filterPSMs 15

• filterPsmShared() filters out shared PSMs, i.e. those that match multiple proteins.

• filterPsmFdr() filters out PSMs based on their FDR.

Usage

filterPSMs(
x,
decoy = psmVariables(x)["decoy"],
rank = psmVariables(x)["rank"],
protein = psmVariables(x)["protein"],
spectrum = psmVariables(x)["spectrum"],
peptide = psmVariables(x)["peptide"],
verbose = TRUE

)

filterPsmDecoy(x, decoy = psmVariables(x)["decoy"], verbose = TRUE)

filterPsmRank(x, rank = psmVariables(x)["rank"], verbose = TRUE)

filterPsmShared(
x,
protein = psmVariables(x)["protein"],
peptide = psmVariables(x)["peptide"],
verbose = TRUE

)

filterPsmFdr(x, FDR = 0.05, fdr = psmVariables(x)["fdr"], verbose = TRUE)

Arguments

x An instance of class PSM.

decoy character(1) with the column name specifying whether entries match the de-
coy database or not. Default is the decoy PSM variable as defined in psmVariables().
The column should be a logical and only PSMs holding a FALSE are retained.
Filtering is ignored if set to NULL or NA.

rank character(1) with the column name holding the rank of the PSM. Default is
the rank PSM variable as defined in psmVariables(). This column should be a
numeric and only PSMs having rank equal to 1 are retained. Filtering is ignored
if set to NULL or NA.

protein character(1) with the column name holding the protein (groups) protein. De-
fault is the protein PSM variable as defined in psmVariables(). Filtering is
ignored if set to NULL or NA.

spectrum character(1) with the name of the spectrum identifier column. Default is the
spectrum PSM variable as defined in psmVariables(). Filtering is ignored if
set to NULL or NA.

16 getAminoAcids

peptide character(1) with the name of the peptide identifier column. Default is the
peptide PSM variable as defined in psmVariables(). Filtering is ignored if
set to NULL or NA.

verbose logical(1) setting the verbosity flag.

FDR numeric(1) to be used to filter based on the fdr variable. Default is 0.05.

fdr character(1) variable name that defines that defines the spectrum FDR (or
any similar/relevant metric that can be used for filtering). This value isn’t set by
default as it depends on the search engine and application. Default is NA.

Value

A new filtered PSM object with the same columns as the input x.

Author(s)

Laurent Gatto

Examples

f <- msdata::ident(full.names = TRUE, pattern = "TMT")
basename(f)
id <- PSM(f)
filterPSMs(id)

getAminoAcids Amino acids

Description

Returns a data.frame of amino acid properties: AA, ResidueMass, Abbrev3, ImmoniumIonMass,
Name, Hydrophobicity, Hydrophilicity, SideChainMass, pK1, pK2 and pI.

Usage

getAminoAcids()

Value

data.frame

Author(s)

Laurent Gatto

Examples

getAminoAcids()

getAtomicMass 17

getAtomicMass Atomic mass.

Description

Returns a double of used atomic mass.

Usage

getAtomicMass()

Value

A named double.

Author(s)

Sebastian Gibb

Examples

getAtomicMass()

labelFragments labels MS2 Fragments

Description

Creates a list of annotations based on calculateFragments results.

Usage

labelFragments(x, tolerance = 0, ppm = 20, what = c("ion", "mz"), ...)

addFragments(x, tolerance = 0, ppm = 20, ...)

Arguments

x An instance of class Spectra of length 1, containing a spectra variable "sequence"
with a character(1) representing a valid peptide sequence.

tolerance absolute acceptable difference of m/z values for peaks to be considered matching
(see MsCoreUtils::common() for more details).

ppm m/z relative acceptable difference (in ppm) for peaks to be considered matching
(see MsCoreUtils::common() for more details).

18 labelFragments

what character(1), one of "ion" (default) or "mz", defining whether labels should
be fragment ions, , or their m/z values. If the latter, then the m/z values are
named with the ion labels.

... additional parameters (except verbose) passed to calculateFragments() to
calculate fragment m/z values to be added to the spectra in x.

Details

addFragments is deprecated and will be made defunct; use labelFragments instead.

Value

Return a list() of character() with fragment ion labels. The elements are named after the
peptide they belong to (variable modifications included).

Author(s)

Johannes Rainer, Guillaume Deflandre, Sebastian Gibb, Laurent Gatto

Examples

library("Spectra")

sp <- DataFrame(msLevel = 2L, rtime = 2345, sequence = "SIGFEGDSIGR")
sp$mz <- list(c(100.048614501953, 110.069030761719, 112.085876464844,

117.112571716309, 158.089569091797, 163.114898681641,
175.117172241211, 177.098587036133, 214.127075195312,
232.137542724609, 233.140335083008, 259.938415527344,
260.084167480469, 277.111572265625, 282.680786132812,
284.079437255859, 291.208282470703, 315.422576904297,
317.22509765625, 327.2060546875, 362.211944580078,
402.235290527344, 433.255004882812, 529.265991210938,
549.305236816406, 593.217041015625, 594.595092773438,
609.848327636719, 631.819702148438, 632.324035644531,
632.804931640625, 640.8193359375, 641.309936523438,
641.82568359375, 678.357238769531, 679.346252441406,
688.291259765625, 735.358947753906, 851.384033203125,
880.414001464844, 881.40185546875, 919.406433105469,
938.445861816406, 1022.56658935547, 1050.50415039062,
1059.82800292969, 1107.52734375, 1138.521484375,
1147.51538085938, 1226.056640625))

sp$intensity <- list(c(83143.03, 65473.8, 192735.53, 3649178.5,
379537.81, 89117.58, 922802.69, 61190.44,
281353.22, 2984798.75, 111935.03, 42512.57,
117443.59, 60773.67, 39108.15, 55350.43,
209952.97, 37001.18, 439515.53, 139584.47,
46842.71, 1015457.44, 419382.31, 63378.77,
444406.66, 58426.91, 46007.71, 58711.72,
80675.59, 312799.97, 134451.72, 151969.72,
3215457.75, 1961975, 395735.62, 71002.98,
69405.73, 136619.47, 166158.69, 682329.75,
239964.69, 242025.44, 1338597.62, 50118.02,

plotSpectraPTM 19

1708093.12, 43119.03, 97048.02, 2668231.75,
83310.2, 40705.72))

sp <- Spectra(sp)

The fragment ion labels
labelFragments(sp)

The fragment mz labels
labelFragments(sp, what = "mz")

Call additional parameters sur as variable modifications to calculateFragments
labelFragments(sp, type = c("a", "b", "x", "y"), variable_modifications = c(R = 5))

Annotate the spectum with the fragment labels
plotSpectra(sp, labels = labelFragments, labelPos = 3)

By default used in `plotSpectraPTM()`.
plotSpectraPTM(sp)

plotSpectraPTM Function to plot MS/MS spectra with PTMs

Description

plotSpectraPTM() creates annotated visualisations of MS/MS spectra, designed to explore frag-
ment identifications and post-translational modifications (PTMs).

plotSpectraPTM() plots a spectrum’s m/z values on the x-axis and corresponding intensities on
the y-axis, labeling the peaks according to theoretical fragment ions (e.g., b, y, a, c, x, z) computed
using labelFragments() and calculateFragments().

Usage

plotSpectraPTM(
x,
deltaMz = TRUE,
ppm = 20,
xlab = "m/z",
ylab = "intensity [%]",
xlim = numeric(),
ylim = numeric(),
main = character(),
col = c(y = "darkred", b = "darkblue", acxy = "darkgreen", other = "grey40"),
labelCex = 1,
labelSrt = 0,
labelAdj = NULL,
labelPos = 3,
labelOffset = 0.5,
asp = 1,

20 plotSpectraPTM

minorTicks = TRUE,
USI = TRUE,
...

)

Arguments

x a Spectra() object.

deltaMz logical(1L) If TRUE, adds an additional plot showing the difference of mass
over charge between matched oberved and theoretical fragments in parts per mil-
lion. Does not yet support modifications. The matching is based on calculateFragments()
and needs a ’sequence’ variable in spectraVariables(x). Default is set to
TRUE.

ppm integer(1L) Sets the limits of the delta m/z plot and is passed to labelFragments().

xlab character(1) with the label for the x-axis (by default xlab = "m/z").

ylab character(1) with the label for the y-axis (by default ylab = "intensity").

xlim numeric(2) defining the x-axis limits. The range of m/z values are used by
default.

ylim numeric(2) defining the y-axis limits. The range of intensity values are used
by default.

main character(1) with the title for the plot. By default the spectrum’s MS level
and retention time (in seconds) is used.

col Named character(4L). Colors for the labels, the character names need to be
"b", "y", "acxz" and "other", respectively for the b-ions, y-ions, a,c,x,z-ions and
the unidentified fragments.

labelCex numeric(1) giving the amount by which the text should be magnified relative
to the default. See parameter cex in par().

labelSrt numeric(1) defining the rotation of the label. See parameter srt in text().

labelAdj see parameter adj in text().

labelPos see parameter pos in text().

labelOffset see parameter offset in text().

asp for plotSpectraPTM(), the target ratio (columns / rows) when plotting mutliple
spectra (e.g. for 20 spectra use asp = 4/5 for 4 columns and 5 rows or asp = 5/4
for 5 columns and 4 rows; see grDevices::n2mfrow() for details). If deltaMz
is TRUE, asp is ignored.

minorTicks logical(1L). If TRUE, minor ticks are added to the plots. Default is set to TRUE.

USI logical(1L). If TRUE, the universal spectrum identifier is displayed.

... additional parameters to be passed to the labelFragments() function.

Value

Creates a plot depicting an MS/MS-MS spectrum.

plotSpectraPTM 21

Author(s)

Johannes Rainer, Sebastian Gibb, Guillaume Deflandre, Laurent Gatto

See Also

Spectra::plotSpectra()

Examples

library("Spectra")

sp <- DataFrame(msLevel = 2L, rtime = 2345, sequence = "SIGFEGDSIGR")
sp$mz <- list(c(75.048614501953, 81.069030761719, 86.085876464844,

88.039, 158.089569091797, 163.114898681641,
173.128, 177.098587036133, 214.127075195312,
232.137542724609, 233.140335083008, 259.938415527344,
260.084167480469, 277.111572265625, 282.680786132812,
284.079437255859, 291.208282470703, 315.422576904297,
317.22509765625, 327.2060546875, 362.211944580078,
402.235290527344, 433.255004882812, 534.258783,
549.305236816406, 593.217041015625, 594.595092773438,
609.848327636719, 631.819702148438, 632.324035644531,
632.804931640625, 640.8193359375, 641.309936523438,
641.82568359375, 678.357238769531, 679.346252441406,
706.309623, 735.358947753906, 851.384033203125,
880.414001464844, 881.40185546875, 906.396433105469,
938.445861816406, 1022.56658935547, 1050.50415039062,
1059.82800292969, 1107.52734375, 1138.521484375,
1147.51538085938, 1226.056640625))

sp$intensity <- list(c(83143.03, 65473.8, 192735.53, 3649178.5,
379537.81, 89117.58, 922802.69, 61190.44,
281353.22, 2984798.75, 111935.03, 42512.57,
117443.59, 60773.67, 39108.15, 55350.43,
209952.97, 37001.18, 439515.53, 139584.47,
46842.71, 1015457.44, 419382.31, 63378.77,
444406.66, 58426.91, 46007.71, 58711.72,
80675.59, 312799.97, 134451.72, 151969.72,
1961975, 69405.76, 395735.62, 71002.98,
3215457.75, 136619.47, 166158.69, 682329.75,
239964.69, 242025.44, 1338597.62, 50118.02,
1708093.12, 43119.03, 97048.02, 2668231.75,
83310.2, 40705.72))

sp <- Spectra(sp)

Annotate the spectum with the fragment labels
plotSpectraPTM(sp, main = "An example of an annotated plot")

Annotate the spectrum without the delta m/z plot
plotSpectraPTM(sp, deltaMz = FALSE)

Annotate the spectrum with different ion types
plotSpectraPTM(sp, type = c("a", "b", "x", "y"))

22 PSM

Annotate the spectrum with variable modifications
plotSpectraPTM(sp, variable_modifications = c(R = 49.469))

Annotate multiple spectra at a time
plotSpectraPTM(c(sp,sp), variable_modifications = c(R = 49.469))

Color the peaks with different colors
plotSpectraPTM(sp, col = c(y = "red", b = "blue", acxy = "chartreuse3", other = "black"))

PSM A class for peptide-spectrum matches

Description

The PSM class is a simple class to store and manipulate peptide-spectrum matches. The class en-
capsulates PSM data as a DataFrame (or more specifically a DFrame) with additional lightweight
metadata annotation.

There are two types of PSM objects:

• Objects with duplicated spectrum identifiers. This holds for multiple matches to the same
spectrum, be it different peptide sequences or the same sequence with or without a post-
translational modification. Such objects are typically created with the PSM() constructor start-
ing from mzIdentML files.

• Reduced objects where the spectrum identifiers (or any equivalent column) are unique keys
within the PSM table. Matches to the same scan/spectrum are merged into a single PSM data
row. Reduced PSM object are created with the reducePSMs() function. See examples below.

Objects can be checked for their reduced state with the reduced() function which returns TRUE for
reduced instances, FALSE when the spectrum identifiers are duplicated, or NA when unknown. The
flag can also be set explicitly with the reduced()<- setter.

Usage

PSM(
x,
spectrum = NA,
peptide = NA,
protein = NA,
decoy = NA,
rank = NA,
score = NA,
fdr = NA,
parser = c("mzR", "mzID"),
BPPARAM = SerialParam()

)

reduced(object, spectrum = psmVariables(object)["spectrum"])

PSM 23

reduced(object) <- value

psmVariables(object, which = "all")

reducePSMs(object, k = object[[psmVariables(object)["spectrum"]]])

S4 method for signature 'PSM'
adjacencyMatrix(object)

Arguments

x character() of mzid file names, an instance of class PSM, or a data.frame.

spectrum character(1) variable name that defines a spectrum in the PSM data. Default
are "spectrumID" (mzR parser) or "spectrumid" (mzID parser). It is also used
to calculate the reduced state.

peptide character(1) variable name that defines a peptide in the PSM data. Detaults
are "sequence" (mzR parser) or "pepSeq" (mzID parser).

protein character(1) variable name that defines a protein in the PSM data. Detaults
are "DatabaseAccess" (mzR parser) or "accession" (mzID parser).

decoy character(1) variable name that defines a decoy hit in the PSM data. Detaults
are "isDecoy" (mzR parser) or "isdecoy" (mzID parser).

rank character(1) variable name that defines the rank of the peptide spectrum match
in the PSM data. Default is "rank".

score character(1) variable name that defines the PSM score. This value isn’t set
by default as it depends on the search engine and application. Default is NA.

fdr character(1) variable name that defines that defines the spectrum FDR (or
any similar/relevant metric that can be used for filtering). This value isn’t set by
default as it depends on the search engine and application. Default is NA.

parser character(1) defining the parser to be used to read the mzIdentML files. One
of "mzR" (default) or "mzID".

BPPARAM an object from the BiocParallel package to control parallel processing. The
default value is SerialParam()‘ to read files in series.

object An instance of class PSM.

value new value to be passed to setter.

which character() with the PSM variable name to retrieve. If "all" (default), all
named variables are returned. See PSM() for valid PSM variables.

k A vector or factor of length equal to nrow(x) that defines the primary key
used to reduce x. This typically corresponds to the spectrum identifier. The
defauls is to use the spectrum PSM variable.

Value

PSM() returns a PSM object.

reducePSMs() returns a reduced version of the x input.

24 PSM

Creating and using PSM objects

• The PSM() constructor uses parsers provided by the mzR or mzID packages to read the mzIdentML
data. The vignette describes some apparent differences in their outputs. The constructor input
is a character of one more multiple file names.

• PSM objects can also be created from a data.frame object (or any variable that can be coerced
into a DataFrame.

• Finally, PSM() can also take a PSM object as input, which leaves the PSM data as is and is used
to set/update the PSM variables.

• The constructor can also initialise variables (called PSM variables) needed for downstream
processing, notably filtering (see filterPSMs()) and to generate a peptide-by-protein ad-
jacency matrix (see makeAdjacencyMatrix()). These variables can be extracted with the
psmVariables() function. They represent the columns in the PSM table that identify spectra,
peptides, proteins, decoy peptides hit ranks and, optionally, a PSM score. The value of these
variables will depend on the backend used to create the object, or left blank (i.e. encoded as
NA) when building an object by hand from a data.frame. In such situation, they need to be
passed explicitly by the user as arguments to PSM().

• The adjacencyMatrix() accessor can be used to retrieve the binary sparse peptide-by-protein
adjacency matrix from the PSM object. It also relies on PSM variables which thus need to be
set beforehand. For more flexibility in the generation of the adjacency matrix (for non-binary
matrices), use makeAdjacencyMatrix().

Examples

Example with a single mzid file

f <- msdata::ident(full.names = TRUE, pattern = "TMT")
basename(f)

mzR parser (default)
psm <- PSM(f)
psm

PSM variables
psmVariables(psm)

mzID parser
psm_mzid <- PSM(f, parser = "mzID")
psm_mzid

different PSM variables
psmVariables(psm_mzid)

Reducing the PSM data
(i <- which(duplicated(psm$spectrumID))[1:2])
(i <- which(psm$spectrumID %in% psm$spectrumID[i]))
psm2 <- psm[i,]
reduced(psm2)

PSM 25

Peptide sequence CIDRARHVEVQIFGDGKGRVVALGERDCSLQRR with
Carbamidomethyl modifications at positions 1 and 28.
DataFrame(psm2[, c("sequence", "spectrumID", "modName", "modLocation")])
reduced(psm2) <- FALSE
reduced(psm2)

uses by default the spectrum PSM variable, as defined during
the construction - see psmVariables()
rpsm2 <- reducePSMs(psm2)
rpsm2
DataFrame(rpsm2[, c("sequence", "spectrumID", "modName", "modLocation")])
reduced(rpsm2)

Multiple mzid files

library(rpx)
PXD022816 <- PXDataset("PXD022816")
PXD022816

(mzids <- pxget(PXD022816, grep("mzID", pxfiles(PXD022816))[1:2]))
psm <- PSM(mzids)
psm
psmVariables(psm)

Here, spectrum identifiers are repeated accross files
psm[grep("scan=20000", psm$spectrumID), "spectrumFile"]

Let's create a new primary identifier composed of the scan
number and the file name
psm$pkey <- paste(sub("^.+Task\\\\", "", psm$spectrumFile),

sub("^.+scan=", "", psm$spectrumID),
sep = "::")

head(psm$pkey)

the PSM is not reduced
reduced(psm, "pkey")
DataFrame(psm[6:7,])

same sequence, same spectrumID, same file
psm$sequence[6:7]
psm$pkey[6:7]

different modification locations
psm$modLocation[6:7]

here, we need to *explicitly* set pkey to reduce
rpsm <- reducePSMs(psm, psm$pkey)
rpsm
reduced(rpsm, "pkey")

26 PSMatch

the two rows are now merged into a single one; the distinct
modification locations are preserved.
(i <- which(rpsm$pkey == "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894"))
DataFrame(rpsm[i, c("sequence", "pkey", "modName", "modLocation")])

PSM from a data.frame

psmdf <- data.frame(spectrum = paste0("sp", 1:10),
sequence = replicate(10,

paste(sample(getAminoAcids()[-1, "AA"], 10),
collapse = "")),

protein = sample(paste0("Prot", LETTERS[1:7]), 10,
replace = TRUE),

decoy = rep(FALSE, 10),
rank = rep(1, 10),
score = runif(10))

psmdf

psm <- PSM(psmdf)
psm
psmVariables(psm)

no PSM variables set
try(adjacencyMatrix(psm))

set PSM variables
psm <- PSM(psm, spectrum = "spectrum", peptide = "sequence",

protein = "protein", decoy = "decoy", rank = "rank")
psm
psmVariables(psm)

adjacencyMatrix(psm)

PSMatch PSMatch: Handling and Managing Peptide Spectrum Matches

Description

The PSMatch package offers functionality to load, manage and analyse Peptide Spectrum Matches
as generated in mass spectrometry-based proteomics. The four main objects and concepts that are
proposed in this package are described below, and are aimed to proteomics practitioners to explore
and understand their identification data better.

PSM objects

As mentioned in the PSM() manual page, The PSM class is a simple class to store and manipulate
peptide-spectrum matches. The class encapsulates PSM data as a DataFrame (or more specifi-
cally a DFrame) with additional lightweight metadata annotation. PSM objects are typically creatd

PSMatch 27

from XML-based mzID files or data.frames imported from spreadsheets. It is then possible to
apply widely used filters (such as removal of decoy hits, PSMs of rank > 1, ...) as described in
filterPSMs().

Adjacency matrices

PSM data, as produced by all proteomics search engines, is exported as a table-like structure where
PSM are documented along the rows by variables such as identification scores, peptides sequences,
modifications and the protein which the peptides originate from. There is always a level of am-
biguity in such data, as peptides can be mapped to mutliple proteins; they are then called shared
peptides, as opposed to unique peptides.

One convenient way to store the relation between peptides and proteins is as a peptide-by-protein ad-
jacency matrix. Such matrices can be generated from PSM object or vectors using the makeAdjacencyMatrix()
function.

The describePeptides() and describeProteins() functions are also helpful to tally the number
of unique and shared peptides and the number of proteins composed of unique or shared peptides,
or a combination thereof.

Connected Components

Once we model the peptide-to-protein relations explicitly using an adjacency matrix, it becomes
possible to perform computations on the proteins that are grouped by the peptides they share.
These groups are mathematically defined as connected components, which are implemented as
ConnectedComponents() objects.

Fragment ions

The package also provides functionality to calculate ions produced by the fragmentation of a pep-
tides (see calculateFragments()) and annotated MS2 Spectra::Spectra() objects (see labelFragments()).

Vignettes

A couple of vignette describe how to several of these concepts through illustrative use-cases. Use
vignette(package = "PSMatch") to get a list and open them directly in R or read them online on
the package’s webpage.

Author(s)

Maintainer: Laurent Gatto <laurent.gatto@uclouvain.be> (ORCID)

Authors:

• Johannes Rainer <Johannes.Rainer@eurac.edu> (ORCID)

• Sebastian Gibb <mail@sebastiangibb.de> (ORCID)

Other contributors:

• Samuel Wieczorek <samuel.wieczorek@cea.fr> [contributor]

• Thomas Burger <thomas.burger@cea.fr> [contributor]

• Guillaume Deflandre <guillaume.deflandre@uclouvain.be> (ORCID) [contributor]

https://rformassspectrometry.github.io/PSMatch/
https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0001-7406-4443
https://orcid.org/0009-0008-1257-2416

28 PSMatch

See Also

Useful links:

• https://github.com/RforMassSpectrometry/PSM

• Report bugs at https://github.com/RforMassSpectrometry/PSM/issues

https://github.com/RforMassSpectrometry/PSM
https://github.com/RforMassSpectrometry/PSM/issues

Index

[,ConnectedComponents,integer,ANY,ANY
(ConnectedComponents), 10

[,ConnectedComponents,integer,ANY,ANY-method
(ConnectedComponents), 10

[,ConnectedComponents,logical,ANY,ANY
(ConnectedComponents), 10

[,ConnectedComponents,logical,ANY,ANY-method
(ConnectedComponents), 10

[,ConnectedComponents,numeric,ANY,ANY
(ConnectedComponents), 10

[,ConnectedComponents,numeric,ANY,ANY-method
(ConnectedComponents), 10

addFragments (labelFragments), 17
adist(), 3
adjacencyMatrix, 2
adjacencyMatrix,ConnectedComponents

(ConnectedComponents), 10
adjacencyMatrix,ConnectedComponents-method

(ConnectedComponents), 10
adjacencyMatrix,PSM-method (PSM), 22

calculateFragments, 7
calculateFragments(), 18, 27
calculateFragments,character,missing-method

(calculateFragments), 7
ccMatrix (ConnectedComponents), 10
ConnectedComponents, 10
connectedComponents

(ConnectedComponents), 10
ConnectedComponents(), 4, 14, 27
ConnectedComponents-class

(ConnectedComponents), 10

DataFrame, 24
defaultNeutralLoss

(calculateFragments), 7
describePeptides (describeProteins), 13
describePeptides(), 27
describeProteins, 13

describeProteins(), 27
dims,ConnectedComponents

(ConnectedComponents), 10
dims,ConnectedComponents-method

(ConnectedComponents), 10

filterPsmDecoy (filterPSMs), 14
filterPsmFdr (filterPSMs), 14
filterPsmRank (filterPSMs), 14
filterPSMs, 14
filterPSMs(), 24, 27
filterPsmShared (filterPSMs), 14

getAminoAcids, 16
getAtomicMass, 17

igraph::layout_as_bipartite(), 3
igraph::modularity(), 12
igraph::tkplot(), 4

labelFragments, 17
labelFragments(), 27
length,ConnectedComponents

(ConnectedComponents), 10
length,ConnectedComponents-method

(ConnectedComponents), 10

makeAdjacencyMatrix (adjacencyMatrix), 2
makeAdjacencyMatrix(), 4, 11, 14, 24, 27
makePeptideProteinVector

(adjacencyMatrix), 2
makePeptideProteinVector(), 4
modificationPositions

(calculateFragments), 7
MsCoreUtils::common(), 17

ncols,ConnectedComponents
(ConnectedComponents), 10

ncols,ConnectedComponents-method
(ConnectedComponents), 10

29

30 INDEX

nrows,ConnectedComponents
(ConnectedComponents), 10

nrows,ConnectedComponents-method
(ConnectedComponents), 10

plotAdjacencyMatrix (adjacencyMatrix), 2
plotAdjacencyMatrix(), 12
plotSpectraPTM, 19
prcomp(), 12
prioritiseConnectedComponents

(ConnectedComponents), 10
prioritizeConnectedComponents

(ConnectedComponents), 10
PSM, 22
PSM(), 4, 11, 14, 23, 24, 26
PSM,character (PSM), 22
PSM,data.frame (PSM), 22
PSM,PSM (PSM), 22
PSM-class (PSM), 22
PSMatch, 26
PSMatch-package (PSMatch), 26
psmVariables (PSM), 22
psmVariables(), 3, 15, 16, 24

readPSMs (PSM), 22
reduced (PSM), 22
reduced<- (PSM), 22
reducePSMs (PSM), 22

show,ConnectedComponents
(ConnectedComponents), 10

Spectra::plotSpectra(), 21
Spectra::Spectra(), 27
strsplit(), 3

	adjacencyMatrix
	calculateFragments
	ConnectedComponents
	describeProteins
	filterPSMs
	getAminoAcids
	getAtomicMass
	labelFragments
	plotSpectraPTM
	PSM
	PSMatch
	Index

