Package ‘MsBackendMassbank’

October 24, 2025

Title Mass Spectrometry Data Backend for MassBank record Files
Version 1.17.1

Description Mass spectrometry (MS) data backend supporting import and
export of MS/MS library spectra from MassBank record files.
Different backends are available that allow handling of data in
plain MassBank text file format or allow also to interact directly
with MassBank SQL databases. Objects from this package are supposed
to be used with the Spectra Bioconductor package. This package thus
adds MassBank support to the Spectra package.

Depends R (>=4.0), Spectra (>=1.15.10)

Imports BiocParallel, S4Vectors, IRanges, methods, ProtGenerics (>=
1.35.3), MsCoreUtils, DBI, utils

Suggests testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19),
RSQLite, rmarkdown

License Artistic-2.0
LazyData yes
Encoding UTF-8
VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/MsBackendMassbank/issues

URL https://github.com/RforMassSpectrometry/MsBackendMassbank
biocViews Infrastructure, MassSpectrometry, Metabolomics, Datalmport
Roxygen list(markdown=TRUE)

RoxygenNote 7.3.2

Collate 'hidden_aliases.R' 'MsBackendMassbank.R'
'MsBackendMassbankSql-functions.R' 'MsBackendMassbankSql.R'
'functions-massbank.R'

git_url https://git.bioconductor.org/packages/MsBackendMassbank
git_branch devel

git_last_commit 4205ac6

git_last_commit_date 2025-06-30

https://github.com/RforMassSpectrometry/MsBackendMassbank/issues
https://github.com/RforMassSpectrometry/MsBackendMassbank

2 metaDataBlocks

Repository Bioconductor 3.23
Date/Publication 2025-10-24

Author RforMassSpectrometry Package Maintainer [cre],
Michael Witting [aut] (ORCID: <https://orcid.org/0000-0002-1462-4426>),
Johannes Rainer [aut] (ORCID: <https://orcid.org/0000-0002-6977-7147>),
Michael Stravs [ctb]

Maintainer
RforMassSpectrometry Package Maintainer <maintainer@rformassspectrometry.org>

Contents
hidden_aliases 2
metaDataBlocks 2
MsBackendMassbank L 3
MsBackendMassbankSqlo oo 5

Index 11

hidden_aliases Internal page for hidden aliases
Description

For S4 methods that require a documentation entry but only clutter the index.

metaDataBlocks Metadata blocks to be read

Description
metaDataBlocks returns a data.frame with the MassBank metadata blocks and whether they
should be imported by default from the MassBank text files.

Usage

metaDataBlocks()

Value

A data. frame with metadata blocks.

Author(s)
Michael Witting

Examples

metaDataBlocks ()

https://orcid.org/0000-0002-1462-4426
https://orcid.org/0000-0002-6977-7147

MsBackendMassbank 3

MsBackendMassbank MS data backend for mgf files

Description

The MsBackendMassbank class supports import of MS/MS spectra data from MS/MS spectrum data

from Massbank files. After initial import, the full MS data is kept in memory. MsBackendMassbank

extends the Spectra: :MsBackendDataFrame () backend directly and supports thus the Spectra: :applyProcessing()
function to make data manipulations persistent.

New objects are created with the MsBackendMassbank function. The backendInitialize method
has to be subsequently called to initialize the object and import MS/MS data from (one or more)
MassBank files. Optional parameter nonStop allows to specify whether the import returns with an
error if one of the text files lacks required data, such as mz and intensity values (default nonStop
= FALSE), or whether only affected file(s) is(are) skipped and a warning is shown (nonStop = TRUE).
Note that any other error will abort import regardless of parameter nonStop.

Usage

S4 method for signature 'MsBackendMassbank'
backendInitialize(

object,

files,

metaBlocks = metaDataBlocks(),

nonStop = FALSE,

BPPARAM = bpparam()
)

MsBackendMassbank ()

S4 method for signature 'MsBackendMassbank'
spectraVariableMapping(object, format = c("Massbank"))

S4 method for signature 'MsBackendMassbank'
export(
object,
X,
file = tempfile(),
mapping = spectraVariableMapping(MsBackendMassbank()),

Arguments
object Instance of MsBackendMassbank class.
files character with the (full) file name(s) of the MassBank file(s) from which

MS/MS data should be imported.

https://github.com/MassBank/MassBank-data

4 MsBackendMassbank

metaBlocks data. frame indicating which metadata shall be imported. Default is metaDataBlocks().

nonStop logical(1) whether import should be stopped if an xml file does not contain
all required fields. Defaults to nonStop = FALSE.

Currently ignored.

BPPARAM Parameter object defining the parallel processing setup to import data in parallel.
Defaults to BPPARAM = bpparam(). See BiocParallel: :bpparam() for more
information.

format for spectraVariableMapping: character(1) defining the format to be used.

Currently only format = "Massbank” is supported.

X Spectra: :Spectra() object that should be exported.
file for export: character (1) defining the output file.
mapping for export: named character vector allowing to specify how fields from the

Massbank file should be renamed. Names are supposed to be the spectra variable
name and values of the vector the field names in the Massbank file. See output of
spectraVariableMapping(MsBackendMassbank()) for the expected format.

Value

backendInitialize and MsBackendMassbank return an instance of MsBackendMassbank-class.

Author(s)

Michael Witting

Examples

Create an MsBackendMassbank backend and import data from a test file.

fls <- dir(system.file("extdata"”, package = "MsBackendMassbank"),
full.names = TRUE, pattern = "txt$")

be <- backendInitialize(MsBackendMassbank(), fls)

be

be$msLevel
be$intensity
be$mz

Initializing a backend reading additional metadata columns/information
mb <- metaDataBlocks()

mb

mb[1, 2] <- TRUE

be <- backendInitialize(MsBackendMassbank(), fls, metaBlocks = mb)
spectraVariables(be)
be$instrument

MsBackendMassbankSql 5

MsBackendMassbankSql MS backend accessing the MassBank MySQL database

Description

The MsBackendMassbankSql provides access to mass spectrometry data from MassBank by directly
accessing its MySQL/MariaDb database. In addition it supports adding new spectra variables or
locally changing spectra variables provided by MassBank (without changing the original values in
the database).

Note that MsBackendMassbankSql requires a local installation of the MassBank database since
direct database access is not supported for the main MassBank instance.

Also, some of the fields in the MassBank database are not directly compatible with Spectra, such
as the collision energy which is not available as a numeric value. The collision energy as available in
MassBank is reported as spectra variable "collision_energy_text". Also, precursor m/z values
reported for some spectra can not be converted to a numeric and hence NA is reported with the
spectra variable precursorMz for these spectra. The variable "precursor_mz_text" can be used
to get the original precursor m/z reported in MassBank.

Finally, MsBackendMassbankSql does not support parallel processing because the database con-
nection stored within the object can not be shared acrcoss parallel processes. All functions on
Spectra objects with a MsBackendMassbankSql will (silently) disable parallel processing even if
the user provides a dedicated parallel processing setup with the BPPARAM parameter.

Usage
MsBackendMassbankSql ()

S4 method for signature 'MsBackendMassbankSql'
backendInitialize(object, dbcon, ...)

S4 method for signature 'MsBackendMassbankSql'
peaksData(object, columns = peaksVariables(object))

S4 method for signature 'MsBackendMassbankSql'
dataStorage(object)

S4 replacement method for signature 'MsBackendMassbankSql'
intensity(object) <- value

S4 replacement method for signature 'MsBackendMassbankSql'
mz(object) <- value

S4 method for signature 'MsBackendMassbankSql'
reset(object)

S4 method for signature 'MsBackendMassbankSql'
spectraData(object, columns = spectraVariables(object))

https://massbank.eu/MassBank/

MsBackendMassbankSql

S4 method for signature 'MsBackendMassbankSql'
spectraNames(object)

S4 replacement method for signature 'MsBackendMassbankSql'
spectraNames(object) <- value

S4 method for signature 'MsBackendMassbankSql'
tic(object, initial = TRUE)

S4 method for signature 'MsBackendMassbankSql'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendMassbankSql,ANY'
extractByIndex(object, i)

S4 method for signature 'Spectra’
compounds(object, ...)

S4 method for signature 'MsBackendMassbankSql'
compounds (object, ...)

S4 replacement method for signature 'MsBackendMassbankSql'
x$name <- value

S4 method for signature 'MsBackendMassbankSql'
precScanNum(object)

S4 method for signature 'MsBackendMassbankSql'
backendBpparam(object, BPPARAM = bpparam())

Arguments

object Object extending MsBackendMassbankSql.

dbcon For backendInitialize,MsBackendMassbankSql: SQL database connection
to the MassBank (MariaDb) database.
Additional arguments.

columns For spectraData accessor: optional character with column names (spectra
variables) that should be included in the returned DataFrame. By default, all
columns are returned. For peaksData accessor: optional character with re-
quested columns in the individual matrix of the returned 1ist. Use peaksVariables(object)
for supported columns.

value replacement value for <- methods. See individual method description or ex-
pected data type.

initial For tic: logical(1) whether the initially reported total ion current should be

reported, or whether the total ion current should be (re)calculated on the actual
data (initial = FALSE).

MsBackendMassbankSql 7

X Object extending MsBackendMassbankSql.

i For [: integer, logical or character to subset the object.

j For [: not supported.

drop For [: not considered.

name name of the variable to replace for <- methods. See individual method descrip-
tion or expected data type.

BPPARAM for backendBpparam: BiocParallel parallel processing setup. See BiocParallel: :bpparam()
for more information.

spectraVariables

For selectSpectraVariables: character with the names of the spectra vari-
ables to which the backend should be subsetted.

Value

See documentation of respective function.

Supported Backend functions

The following functions are supported by the MsBackendMassbankSql.

 [: subset the backend. Only subsetting by element (row/1) is allowed
e $, $<-: access or set/add a single spectrum variable (column) in the backend.

e acquisitionNum: returns the acquisition number of each spectrum. Returns an integer of
length equal to the number of spectra (with NA_integer_ if not available).

* peaksData returns a 1ist with the spectras’ peak data. The length of the list is equal to the
number of spectra in object. Each element of the list is a matrix with columns "mz" and
"intensity". For an empty spectrum, a matrix with 0 rows and two columns (named mz and
intensity) is returned. Parameter columns allows to select which peaks variables to return,
but supports currently only "mz" and "intensity".

* backendBpparam: whether the backend supports parallel processing. Takes a MsBackendMassbankSql
and a parallel processing setup (see BiocParallel: :bpparam() for details) as input and al-
ways returns a BiocParallel: :SerialParam(). This function can be used to test whether
a provided parallel processing setup is supported by the backend and returns the supported
setup.

* backendInitialize: initialises the backend by retrieving the IDs of all spectra in the database.
Parameter dbcon with the connection to the MassBank MySQL database is required.

» dataOrigin: gets a character of length equal to the number of spectra in object with the
data origin of each spectrum. This could e.g. be the mzML file from which the data was read.

* dataStorage: returns "<MassBank>" for all spectra.

* centroided, centroided<-: gets or sets the centroiding information of the spectra. centroided
returns a logical vector of length equal to the number of spectra with TRUE if a spectrum is
centroided, FALSE if it is in profile mode and NA if it is undefined. See also isCentroided for
estimating from the spectrum data whether the spectrum is centroided. value for centroided<-
is either a single logical or a logical of length equal to the number of spectra in object.

MsBackendMassbankSql

collisionEnergy, collisionEnergy<-: gets or sets the collision energy for all spectra in
object. collisionEnergy returns a numeric with length equal to the number of spectra
(NA_real_ if not present/defined), collisionEnergy<- takes a numeric of length equal to
the number of spectra in object. Note that the collision energy description from MassBank
are provided as spectra variable "collisionEnergyText".

intensity: gets the intensity values from the spectra. Returns a IRanges: :NumericList()
of numeric vectors (intensity values for each spectrum). The length of the 1ist is equal to
the number of spectrain object.

ionCount: returns a numeric with the sum of intensities for each spectrum. If the spectrum is
empty (see isEmpty), NA_real_ is returned.

isCentroided: a heuristic approach assessing if the spectra in object are in profile or cen-
troided mode. The function takes the qtl th quantile top peaks, then calculates the differ-
ence between adjacent m/z value and returns TRUE if the first quartile is greater than k. (See
Spectra:::.isCentroided for the code.)

isEmpty: checks whether a spectrum in object is empty (i.e. does not contain any peaks).
Returns a logical vector of length equal number of spectra.

isolationWindowLowerMz, isolationWindowlLowerMz<-: gets or sets the lower m/z bound-
ary of the isolation window.

isolationWindowTargetMz, isolationWindowTargetMz<-: gets or sets the target m/z of
the isolation window.

isolationWindowUpperMz, isolationWindowUpperMz<-: gets or sets the upper m/z bound-
ary of the isolation window.

isReadOnly: returns a logical (1) whether the backend is read only or does allow also to
write/update data.

length: returns the number of spectra in the object.

lengths: gets the number of peaks (m/z-intensity values) per spectrum. Returns an integer
vector (length equal to the number of spectra). For empty spectra, 0 is returned.

msLevel: gets the spectra’s MS level. Returns an integer vector (of length equal to the
number of spectra) with the MS level for each spectrum (or NA_integer_ if not available).

mz: gets the mass-to-charge ratios (m/z) from the spectra. Returns a IRanges: :NumericList()
or length equal to the number of spectra, each element a numeric vector with the m/z values
of one spectrum.

polarity, polarity<-: gets or sets the polarity for each spectrum. polarity returns an
integer vector (length equal to the number of spectra), with @ and 1 representing negative
and positive polarities, respectively. polarity<- expects an integer vector of length 1 or equal
to the number of spectra.

precursorCharge, precursorIntensity, precursorMz, precScanNum, precAcquisitionNum:
get the charge (integer), intensity (numeric), m/z (numeric), scan index (integer) and ac-
quisition number (interger) of the precursor for MS level 2 and above spectra from the
object. Returns a vector of length equal to the number of spectra in object. NA are reported
for MS1 spectra of if no precursor information is available.

reset: restores the backend to its original state, i.e. deletes all locally modified data and
reinitializes the backend to the full data available in the database.

MsBackendMassbankSql 9

* rtime, rtime<-: gets or sets the retention times for each spectrum (in seconds). rtime returns
a numeric vector (length equal to the number of spectra) with the retention time for each
spectrum. rtime<- expects a numeric vector with length equal to the number of spectra.

* scanIndex: returns an integer vector with the scan index for each spectrum. This represents
the relative index of the spectrum within each file. Note that this can be different to the
acquisitionNum of the spectrum which is the index of the spectrum as reported in the mzML
file.

* selectSpectraVariables: reduces the information within the backend to the selected spec-
tra variables.

* smoothed,smoothed<-: gets or sets whether a spectrum is smoothed. smoothed returns a
logical vector of length equal to the number of spectra. smoothed<- takes a logical vector
of length 1 or equal to the number of spectra in object.

* spectraData: gets general spectrum metadata (annotation, also called header). spectraData
returns a DataFrame. Note that replacing the spectra data with spectraData<- is not sup-
ported.

* spectraNames: returns a character vector with the names of the spectra in object.

* spectraVariables: returns a character vector with the available spectra variables (columns,
fields or attributes) available in object. This should return all spectra variables which are
present in object, also "mz"” and "intensity” (which are by default not returned by the
spectraVariables, Spectra method).

* tic: gets the total ion current/count (sum of signal of a spectrum) for all spectra in object.
By default, the value reported in the original raw data file is returned. For an empty spectrum,
NA_real_ is returned.

Not supported Backend functions

The following functions are not supported by the MsBackendMassbankSqgl since the original data
can not be changed.

backendMerge, export, filterDataStorage, filterPrecursorScan, peaksData<-, filterAcquisitionNum,
intensity<-, mz<-, precScanNum, spectraData<-, spectraNames<-.

Retrieving compound annotations for spectra

While compound annotations are also provided via the spectraVariables of the backend, it would
also be possible to use the compounds function on a Spectra object (that uses a MsBackendMassbankSql
backend) to retrieve compound annotations for the specific spectra.

Author(s)

Johannes Rainer

Examples

Create a connection to a database with MassBank data - in the present
example we connect to a tiny SQLite database bundled in this package
as public access to the MassBank MySQL is not (yet) supported. See the
vignette for more information on how to install MassBank locally and

10

MsBackendMassbankSql

enable MySQL database connections

library(RSQLite)

con <- dbConnect(SQLite(), system.file(”sql”, "minimassbank.sqlite”,
package = "MsBackendMassbank"))

Given that we have the connection to a MassBank databas we can
initialize the backend:

be <- backendInitialize(MsBackendMassbankSql(), dbcon = con)

be

Access MS level
msLevel (be)
be$msLevel

Access m/z values
be$mz

Access the full spectra data (including m/z and intensity values)
spectraData(be)

Add a new spectra variable
be$new_variable <- "b"
be$new_variable

Subset the backend
be_sub <- be[c(3, 1)]

spectraNames (be)
spectraNames (be_sub)

Index

* internal MsBackendMassbank-class
hidden_aliases, 2 (MsBackendMassbank), 3
[,MsBackendDataFrame-method MsBackendMassbankSql, 5
(hidden_aliases), 2 MsBackendMassbankSql-class
[,MsBackendMassbankSql-method (MsBackendMassbankSql), 5
(MsBackendMassbankSql), 5 mz<-,MsBackendMassbankSqgl-method
$<-,MsBackendMassbankSql-method (MsBackendMassbankSql), 5

(MsBackendMassbankSql), 5
peaksData,MsBackendMassbankSql-method

backendBpparam,MsBackendMassbankSqgl-method (MsBackendMassbankSql), 5
(MsBackendMassbankSql), 5 precScanNum,MsBackendMassbankSql-method
backendInitialize,MsBackendMassbank-method (MsBackendMassbankSql), 5

(MsBackendMassbank), 3
backendInitialize,MsBackendMassbankSql-methodreset,MsBackendMassbankSql-method

(MsBackendMassbankSql), 5 (MsBackendMassbankSql), 5
BiocParallel: :bpparam(), 4, 7

BiocParallel::SerialParam(), 7 Spectra: :applyProcessing(), 3

Spectra: :MsBackendDataFrame(), 3

compounds (MsBackendMassbankSql), 5 Spectra: :Spectra(), 4

compounds ,MsBackendMassbankSql-method spectraData,MsBackendMassbankSql-method
(MsBackendMassbankSql), 5 (MsBackendMassbanksql), 5

compounds, Spectra-method spectraNames,MsBackendMassbankSql-method
(MsBackendMassbankSql), 5 (MsBackendMassbankSql), 5

spectraNames<-,MsBackendMassbankSql-method

dataStorage,MsBackendMassbhankSql-method (MsBackendMassbankSql), 5

(MsBackendMassbankSql), 5 spectraVariableMapping,MsBackendMassbank-method

(MsBackendMassbank), 3
export,MsBackendMassbank-method
(MsBackendMassbank), 3 tic,MsBackendMassbankSql-method
extractByIndex,MsBackendMassbankSql,ANY-method (MsBackendMassbankSql), 5
(MsBackendMassbankSql), 5

hidden_aliases, 2

intensity<-,MsBackendMassbankSql-method
(MsBackendMassbankSql), 5
IRanges: :NumericList(), 8

metaDataBlocks, 2
metaDataBlocks(), 4
MsBackendMassbank, 3

11

	hidden_aliases
	metaDataBlocks
	MsBackendMassbank
	MsBackendMassbankSql
	Index

