
Package ‘MoleculeExperiment’
October 24, 2025

Title Prioritising a molecule-level storage of Spatial Transcriptomics
Data

Version 1.9.0

Description MoleculeExperiment contains functions to create and work with
objects from the new MoleculeExperiment class. We introduce this class for
analysing molecule-based spatial transcriptomics data (e.g., Xenium by 10X,
Cosmx SMI by Nanostring, and Merscope by Vizgen). This allows researchers
to analyse spatial transcriptomics data at the molecule level, and to have
standardised data formats accross vendors.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/SydneyBioX/MoleculeExperiment

BugReports https://github.com/SydneyBioX/MoleculeExperiment/issues

Imports SpatialExperiment, Matrix, purrr, data.table, dplyr (>=
1.1.1), magrittr, rjson, utils, methods, terra, ggplot2, rlang,
cli, EBImage, rhdf5, BiocParallel, S4Vectors, stats

Suggests knitr, BiocStyle, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews DataImport, DataRepresentation, Infrastructure, Software,
Spatial, Transcriptomics

Config/testthat/edition 3

Depends R (>= 2.10)

git_url https://git.bioconductor.org/packages/MoleculeExperiment

git_branch devel

git_last_commit 3dd8051

git_last_commit_date 2025-04-15

Repository Bioconductor 3.23

1

https://github.com/SydneyBioX/MoleculeExperiment
https://github.com/SydneyBioX/MoleculeExperiment/issues

2 .generateBPParam

Date/Publication 2025-10-24

Author Bárbara Zita Peters Couto [aut],
Nicholas Robertson [aut],
Ellis Patrick [aut],
Shila Ghazanfar [aut, cre]

Maintainer Shila Ghazanfar <shazanfar@gmail.com>

Contents
.generateBPParam . 2
accessors . 3
bufferBoundaries . 5
countMolecules . 6
dataframeToMEList . 7
MoleculeExperiment-class . 9
plotting-functions . 10
readBoundaries . 12
readCosmx . 13
readMerscope . 14
readMolecules . 15
readSegMask . 16
readXenium . 17
small_me . 18
subset_by_extent . 19
summarization . 19

Index 21

.generateBPParam Utility function to generate BPPARAM object.

Description

Utility function to generate BPPARAM object.

Usage

.generateBPParam(cores = 1)

Arguments

cores Desired number of cores for BPPARAM object.

Value

A BPPPARAM object.

accessors 3

accessors Accessor functions to work with MoleculeExperiment objects

Description

Accessor functions to work with MoleculeExperiment objects

Usage

S4 method for signature 'MoleculeExperiment'
molecules(x, assayName = NULL, flatten = FALSE)

S4 method for signature 'MoleculeExperiment'
boundaries(object, assayName = NULL, flatten = FALSE)

S4 method for signature 'MoleculeExperiment'
features(object, assayName = NULL)

S4 method for signature 'MoleculeExperiment'
segmentIDs(object, assayName = NULL)

S4 replacement method for signature 'MoleculeExperiment'
molecules(x, assayName = NULL) <- value

S4 replacement method for signature 'MoleculeExperiment'
boundaries(object, assayName = NULL) <- value

Arguments

x The MoleculeExperiment to access.

assayName Character string specifying the name of the assay from which to retrieve or set
information in the slot of interest.

flatten Logical value specifying whether to flatten the ME list into a data.frame or not.
Defaults to FALSE.

object The MoleculeExperiment to access.

value New value to be added to the slot and assay of interest.

Value

A MoleculeExperiment object slot.

getters

Accessor functions to get data from the MoleculeExperiment object. These include:

• molecules() to retrieve information from the molecules slot.

4 accessors

• boundaries() to retrieve information from the boundaries slot.

• features() to retrieve feature names from the molecules slot.

• segmentIDs() to retrieve segment ids from the boundaries slot.

setters

The molecules<- setter accesses the molecules slot, whereas the boundaries slot can be accessed
with boundaries<-.

Examples

get example data
repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
me <- readXenium(repoDir,

keepCols = "essential",
addBoundaries = "cell"

)

get insight into MoleculeExperiment object (e.g., see assay names)
me

get insight into molecules slot (e.g., see the assay names)
showMolecules(me)

for developers, use molecules() getter
expect a large output from call below
molecules(me, assayName = "detected")
alternatively, return rectangular data structure with flatten = TRUE
molecules(me, assayName = "detected", flatten = TRUE)

get insight into boundaries slot (e.g., see the assay names)
showBoundaries(me)

for developers, use boundaries() getter
expect a large output from call below
boundaries(me, assayName = "cell")
alternatively, return rectangular data structure with flatten = TRUE
boundaries(me, assayName = "cell", flatten = TRUE)

features() getter
features(me, assayName = "detected")

segmentIDs() getter
segmentIDs(me, assayName = "cell")

setter example
read in and standardise nucleus boundaries too
nucleiMEList <- readBoundaries(

dataDir = repoDir,
pattern = "nucleus_boundaries.csv",
segmentIDCol = "cell_id",

bufferBoundaries 5

xCol = "vertex_x",
yCol = "vertex_y",
keepCols = "essential",
boundariesAssay = "nucleus",
scaleFactorVector = 1

)

use `boundaries<-` setter to add nucleus boundaries to the boundaries slot
boundaries(me, assayName = "nucleus") <- nucleiMEList
me

bufferBoundaries Create a new boundaries assay with buffers

Description

This function takes in an existing MoleculeExperiment object and generates a new boundaries assay
with added buffers. This can be useful for visualisation and for countMolecules.

Usage

bufferBoundaries(me, assayName = "cell", ...)

Arguments

me A MoleculeExperiment object.

assayName Character string (default "cell") specifying the existing boundaries assay that
should have buffer added.

... Arguments that pass to internal functions. The most relevant parameter is buffer
(default 0).

Value

A boundaries assay with essential columns and vertices with added buffer.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
me <- readXenium(repoDir,

keepCols = "essential"
)
MoleculeExperiment::boundaries(me, "cell_buffer") <- bufferBoundaries(

me,
assayName = "cell", buffer = 1

)

library(ggplot2)
ggplot_me() +

6 countMolecules

geom_polygon_me(me, assayName = "cell", fill = "grey") +
geom_polygon_me(me, assayName = "cell_buffer", fill = NA, colour = "red") +
geom_point_me(me) +
coord_cartesian(

xlim = c(4900, 4919.98),
ylim = c(6400.02, 6420)

)

countMolecules Count molecules per region of interest (e.g., cell)

Description

This function takes the information from the molecules and boundaries slot, and counts the molecules
per region of interest. Its input is a MoleculeExperiment object, and its output a SpatialExperiment
object. That way, if one is interested in doing downstream analyses at the cell level, one can do so.

Usage

countMolecules(
me,
moleculesAssay = "detected",
boundariesAssay = "cell",
buffer = 0,
matrixOnly = FALSE,
nCores = 1

)

Arguments

me MoleculeExperiment object containing both the transcript data as well as the
boundaries data. I.e., the "molecules" and "boundaries" slots need to be filled.
See MoleculeExperiment() for more information.

moleculesAssay Character string naming the list of the molecules slot from which transcript in-
formation should be retrieved from. The default is the detected transcript data
that is read in when creating a MoleculeExperiment object. It is possible to
change it to another mode, e.g., "high_threshold" will access the transcript in-
formation that has been stored in the "high_threshold" element of the list in the
molecules slot.

boundariesAssay

Character string naming the list of the boundaries slot from which boundary
information should be retrieved from. For example, for counting transcripts per
cell, the list containing the cell boundaries (e.g., "cell") should be selected.

buffer Single numeric value (default 0) indicating value to buffer beyond segment
boundaries, i.e. to count molecules just outside of a segment boundary

dataframeToMEList 7

matrixOnly Logical value indicating whether to return a matrix of the counted molecules per
segment (e.g., cell). Is FALSE by default, i.e., the default output is a SpatialEx-
periment object.

nCores Number of cores to use for the operation.

Value

A SpatialExperiment object derived from a MoleculeExperiment object. Alternatively, a matrix
with the counted molecules per segment.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
me <- readXenium(repoDir,

keepCols = "essential"
)

spe <- countMolecules(me)
spe

dataframeToMEList Convert a transcript (molecule) or boundary dataframe to the ME list
format

Description

The goal of this function is to standardise transcript and boundary files for input to a MoleculeEx-
periment object.

Usage

dataframeToMEList(
df,
dfType = NULL,
assayName = NULL,
sampleCol = "sample_id",
factorCol = NULL,
xCol = "x_location",
yCol = "y_location",
keepCols = "essential",
scaleFactor = 1

)

8 dataframeToMEList

Arguments

df A data.frame containing the transcript information or the boundary information.
NOTE: this dataframe should, at a minimum, have the following 4 columns:
sample_id, factorCol (e.g., feature_id in transcripts, or cell_id in boundaries),
x_location and y_location.

dfType Character string specifying contents of the dataframe. Can be either "molecules"
or "boundaries".

assayName Character string specifying the name with which to identify the information later
on in an ME object.

sampleCol Character string specifying the name of the column with the sample id.

factorCol Character string specifying the name of the column with the factors with which
to group the data in the lists. When working with molecules, this column would
be e.g., "feature_id" in xenium. When working with boundaries, this column
would be e.g., "cell_id" in xenium.

xCol Character string specifying the name of the column with global x coordinates.

yCol Character string specifying the name of the column with global y coordinates.

keepCols Character string which can be either "essential" or "all". If "essential", the func-
tion will only work with the x and y location information.

scaleFactor Integer specifying the scale factor by which to change the scale of the x and y
locations (e.g., to change from pixel to micron). The default value is 1.

Value

A list with the format required to input it into slots of a MoleculeExperiment object.

Examples

moleculesDf <- data.frame(
sample_id = rep(c("sample1", "sample2"), times = c(30, 20)),
features = rep(c("gene1", "gene2"), times = c(20, 30)),
x_coords = runif(50),
y_coords = runif(50)

)

moleculesMEList <- dataframeToMEList(moleculesDf,
dfType = "molecules",
assayName = "detected",
sampleCol = "sample_id",
factorCol = "features",
xCol = "x_coords",
yCol = "y_coords")

moleculesMEList

MoleculeExperiment-class 9

MoleculeExperiment-class

MoleculeExperiment class: An S4 class container to store imaging-
based spatial transcriptomics data.

Description

This class enables the analysis of imaging-based ST data at the molecule level, and standardises
data across vendors. The aim of this class is to facilitate ST data integration and comparison and,
importantly, facilitate common analytical and visualisation workflows.

Usage

MoleculeExperiment(molecules, boundaries = NULL)

Arguments

molecules Detected transcripts information in a standardised ME list format, as is generated
by dataframeToMEList() and readMolecules() functions.

boundaries Slot with boundary information in a standardised ME list format, as is generated
by dataframeToMEList() and readBoundaries() functions.

Value

A MoleculeExperiment object

Slots

molecules Slot containing information about the detected transcripts. This slot is designed as a
list of lists, where each sample contains a list of tibbles with information for each gene. The
basic information required for this slot are the gene names of the transcripts, as well as their x
and y locations.

boundaries Slot containing the boundaries defining each segmented cell. The slot is designed as
a list of lists, where each sample contains a list of tibbles for each cell, consisting of the x and
y coordinates of the polygon vertices defining the cell boundary.

Examples

creating a simple ME object from toy data
moleculesDf <- data.frame(

sample_id = rep(c("sample1", "sample2"), times = c(30, 20)),
features = rep(c("gene1", "gene2"), times = c(20, 30)),
x_coords = runif(50),
y_coords = runif(50)

)
boundariesDf <- data.frame(

sample_id = rep(c("sample1", "sample2"), times = c(16, 6)),
cell_id = rep(c("cell1", "cell2", "cell3", "cell4",

10 plotting-functions

"cell1", "cell2"),
times = c(4, 4, 4, 4, 3, 3)),

vertex_x = rnorm(22),
vertex_y = rnorm(22)

)
moleculesMEList <- dataframeToMEList(moleculesDf,

dfType = "molecules",
assayName = "detected",
sampleCol = "sample_id",
factorCol = "features",
xCol = "x_coords",
yCol = "y_coords")

boundariesMEList <- dataframeToMEList(boundariesDf,
dfType = "boundaries",
assayName = "cell",
sampleCol = "sample_id",
factorCol = "cell_id",
xCol = "vertex_x",
yCol = "vertex_y")

toyME <- MoleculeExperiment(molecules = moleculesMEList,
boundaries = boundariesMEList)

toyME

plotting-functions Plotting functions for SpatialUtils

Description

A set of ggplot functions to build customized plots for imaging based spatial transcriptomics data.

Usage

ggplot_me()

geom_point_me(
me,
assayName = "detected",
byColour = NULL,
selectFeatures = NULL,
...

)

geom_polygon_me(me, assayName = "cell", byFill = NULL, ...)

geom_raster_img(

plotting-functions 11

path = NULL,
image = NULL,
displacement = c(0, 0),
pixelSize = 1,
...

)

Arguments

me MoleculeExperiment object.

assayName Character string specifying name of assay from which to get data.

byColour Character string specifying the column name to colour by.

selectFeatures character vector of features to keep for geom_point_me.

... Additional parameters to be passed to ggplot.

byFill Character string specifying the column name to fill by.

path Path of the image. Default: NULL

image Image object to be plotted as raster. Default: NULL

displacement the x-y coordinate of the top-left pixel of the image. Default: c(0, 0)

pixelSize the pixel size in micron, Default: 1

Value

A plot with transcripts and/or segmentation information for imaging based spatial transcriptomics
data.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
me <- readXenium(repoDir,

keepCols = "essential",
addBoundaries = c("cell", "nucleus"))

g = ggplot_me() +
geom_polygon_me(me, byFill = "segment_id", colour = "black") +
geom_point_me(me, byColour = "feature_id", size = 0.1) +
geom_polygon_me(me, assayName = "nucleus", fill = NA, colour = "red")

g

12 readBoundaries

readBoundaries Read in csv boundary information and convert to ME list format.

Description

This function reads in csv boundary files and converts them to the ME list format, so that they can be
added to an ME object later on. To account for different coordinate scales possible being used by the
boundary versus transcript information, this function scales the coordinate values of the boundaries
to match the unit of the detected transcript locations. The various arguments offer flexibility to
standardise data from different molecule-based ST technologies into the ME list format.

Usage

readBoundaries(
dataDir,
pattern = NULL,
segmentIDCol = NULL,
xCol = NULL,
yCol = NULL,
keepCols = "essential",
boundariesAssay = NULL,
scaleFactorVector = 1

)

Arguments

dataDir Path of the directory containing the boundary csv files.

pattern Character string specifying the unique pattern with which to identify the files of
interest in the directory. This is useful to work with multiple samples. Defaults
to NULL.

segmentIDCol Character string specifying the name of the column containing the segment IDs.
Defaults to NULL.

xCol Character string specifying the name of the column containing the x coordinates
of the vertices defining the boundaries. Defaults to NULL.

yCol Character string specifying the name of the column containing the y coordinates
of the vertices defining the boundaries. Defaults to NULL.

keepCols Character string specifying which columns to keep. Defaults to "essential". The
other option is to select "all", or custom columns by specifying their names in a
vector.

boundariesAssay

Character string specifying the name with which to identify the boundary data
in the ME object later on. Defaults to NULL.

scaleFactorVector

Vector containing the scale factor/s with which to change the coordinate data
from pixel to micron. It can be either a single integer, or multiple scale factors
for the different samples. The default value is 1.

readCosmx 13

Value

An ME list containing the boundary information. This can be used as input to the boundaries slot
of an ME object.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
nucleiMEList <- readBoundaries(dataDir = repoDir,

pattern = "nucleus_boundaries.csv",
segmentIDCol = "cell_id",
xCol = "vertex_x",
yCol = "vertex_y",
keepCols = "essential",
boundariesAssay = "nucleus",
scaleFactorVector = 1)

nucleiMEList

readCosmx Read in Cosmx data (Nanostring) as an ME object.

Description

This function is a wrapper around the readMolecules function. It can read both molecule and mask
information. The segmentation masks are converted to boundaries, and these are added to the
boundaries slot of the MoleculeExperiment object.

Usage

readCosmx(dataDir, keepCols = "essential", addBoundaries = "cell")

Arguments

dataDir Character string specifying the directory with the Cosmx output files.

keepCols Character string specifying which columns to keep. Defaults to "essential". The
other option is to select "all", or custom columns by specifying their names in a
vector.

addBoundaries A string with which to specify the name of the boundary assay to be added to
the me object. Can be a string, or NULL. If NULL, a simple ME object with no
boundaries will be created.

Value

A MoleculeExperiment object

14 readMerscope

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/nanostring_Lung9_Rep1")
#
meCosmx <- readCosmx(repoDir,

keepCols = "essential"
)
meCosmx

readMerscope Read in Merscope data to an ME object

Description

Reads in Merscope (Vizgen) molecule and boundary data from a directory, and standardises it into
a MoleculeExperiment object.

Usage

readMerscope(dataDir, keepCols = "essential", addBoundaries = "cell")

Arguments

dataDir Character string specifying the directory with the Cosmx output files.

keepCols Vector of characters specifying the columns of interest from the transcripts file.
"essential" selects columns with gene names, x and y locations. "all" will select
all columns. Alternatively, specific colums of interest can be selected by speci-
fying them as characters in a vector. Note that this personalised vector needs to
contain the essential columns.

addBoundaries A string with which to specify the name of the boundary assay to be added to
the me object. Can be a string, or NULL. If NULL, a simple ME object with no
boundaries will be created.

Value

A MoleculeExperiment object

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/vizgen_HumanOvarianCancerPatient2Slice2")
meMerscope <- readMerscope(repoDir,

keepCols = "essential",
addBoundaries = "cell"

)
meMerscope

readMolecules 15

readMolecules Read in detected transcripts file/s into a MoleculeExperiment object

Description

A function to standardise transcripts.csv files across different molecule- based ST technologies, and
store them into an ME object. It is technology agnostic, so it is accompanied with wrappers for the
specific technologies (e.g., see readXenium).

Usage

readMolecules(
dataDir,
pattern = NULL,
featureCol = NULL,
xCol = NULL,
yCol = NULL,
keepCols = "essential",
moleculesAssay = NULL,
scaleFactorVector = 1

)

Arguments

dataDir Character string specifying the directory with the file/s containing detected tran-
scripts for different runs/samples.

pattern Character string specifying the pattern with which to find the transcripts files.
For example, in Xenium data, the pattern would be "transcripts.csv". In contrast,
in Cosmx data, the pattern would be "tx_file".

featureCol Character string specifying the name of the column with feature names. For
example, "feature_name" in xenium transcripts.csv files.

xCol Character string specifying the name of the column with the x locations of the
transcripts.

yCol Character string specifying the name of the column with the y locations of the
transcripts.

keepCols Vector of characters specifying the columns of interest from the transcripts file.
"essential" selects columns with gene names, x and y locations. "all" will select
all columns. Alternatively, specific colums of interest can be selected by speci-
fying them as characters in a vector. Note that this personalised vector needs to
contain the essential columns.

moleculesAssay Character string specifying the name of the list in which the transcript informa-
tion is going to be stored in the molecules slot. The default name is "detected",
as we envision that a MoleculeExperiment will usually be created with raw de-
tected transcript information.

16 readSegMask

scaleFactorVector

Vector containing the scale factor/s with which to change the coordinate data
from pixel to micron. It can be either a single integer, or multiple scale factors
for the different samples. The default value is 1.

Value

A simple MoleculeExperiment object with a filled molecules slot.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
simple_me <- readMolecules(repoDir,

pattern = "transcripts.csv",
featureCol = "feature_name",
xCol = "x_location",
yCol = "y_location",
keepCols = "essential"

)
simple_me

readSegMask Read a segmentation mask

Description

Reads a segmentation mask TIFF and transforms it into a ME boundaries object. One must provide
either the path or the loaded image object.

Usage

readSegMask(
extent,
path = NULL,
image = NULL,
assayName = "cell",
background_value = NULL,
sample_id = NULL

)

Arguments

extent The extent of the loaded segmentation mask in micrometers. Used to align the
mask with the transcripts. This must be of the form c(xmin, xmax, ymin, ymax).

path The path of the segmenation mask, Default: NULL

image The loaded image object, Default: NULL

assayName The name of the segmentation (e.g. cell, or nucleus), Default: ’cell’

readXenium 17

background_value

The value corresponding to the background in the segmentation, Default: NULL

sample_id What the sample should be named, Default: NULL

Value

A boundaries object.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
segMask <- paste0(repoDir, "/BIDcell_segmask.tif")
data <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain/sample1")
me <- readXenium(data,

keepCols = "essential",
addBoundaries = NULL

)
boundaries(me, "BIDcell_segmentation") <- readSegMask(

use the molecule extent to define the boundary extent
extent(me, assayName = "detected"),
path = segMask, assayName = "BIDcell_segmentation",
sample_id = "sample1", background_value = 0

)
ggplot_me() +

geom_polygon_me(
me,
assayName = "BIDcell_segmentation", fill = NA, colour = "black"

) +
geom_point_me(me, byColour = "feature_id", size = 0.1) +
geom_polygon_me(

me,
assayName = "BIDcell_segmentation", fill = NA, colour = "red"

)

readXenium Read in Xenium data into a MoleculeExperiment object

Description

Function to read in, and standardise, Xenium output data into an ME object. Detected transcripts
files are required. Additionally, it is also possible to read in boundary files ("cell", "nuclei", or both).
This function is a wrapper around readMolecules and readBoundaries functions.

Usage

readXenium(dataDir, keepCols = "essential", addBoundaries = "cell")

18 small_me

Arguments

dataDir Character string specifying the directory with the xenium output files.

keepCols Vector of characters specifying the columns of interest from the transcripts file
and boundaries file. Can be "all" or "essential". "essential" selects columns with
gene names, x and y locations in the transcripts file; "essential" selects columns
with cell ids, and x and y locations for the vertices defining the boundaries in
the boundaries file.

addBoundaries Vector with which to specify the names of the boundary assays to be added to
the me object. Can be "cell", "nucleus", both, or NULL. The latter will lead to
the creation of a simple ME object with just the molecules slot filled.

Value

A MoleculeExperiment object containing xenium data.

Examples

repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")

me <- readXenium(repoDir,
keepCols = "essential")

me

small_me A subsetted Xenium dataset include for demostration purposes.

Description

A subsetted Xenium dataset include for demostration purposes.

Usage

data(small_me)

Format

An object of class MoleculeExperiment of length 1.

subset_by_extent 19

subset_by_extent Subset functions for MoleculeExperiment objects

Description

A set of functions to subset MoleculeExperiment objects by different factors

Usage

subset_by_extent(me, extent)

Arguments

me MoleculeExperiment object.

extent The extent in micrometers to subset the me object. This must be of the form
c(xmin, xmax, ymin, ymax).

Value

A subsetted MoleculeExperiment object

Examples

data(small_me)

subset_extent <- c(xmin = 3000, xman = 4000, ymin = 2000, ymax = 3000)
subset_small_me <- subset_by_extent(small_me, subset_extent)

check the extent after subsetting
extent(subset_small_me, assayName = "detected")

summarization Summarization methods to get insights into a MoleculeExperiment ob-
ject

Description

The following methods are useful to get quick view of the contents in a MoleculeExperiment object.
For example, showMolecules and showBoundaries summarise the large nested ME list of lists in
the molecules and boundaries slots. nFeatures and nTranscripts get the numbers of features or
transcripts, respectively.

20 summarization

Usage

S4 method for signature 'MoleculeExperiment'
show(object)

S4 method for signature 'MoleculeExperiment'
showMolecules(object)

S4 method for signature 'MoleculeExperiment'
showBoundaries(object)

S4 method for signature 'MoleculeExperiment'
extent(object, assayName = NULL)

S4 method for signature 'MoleculeExperiment'
nFeatures(object)

S4 method for signature 'MoleculeExperiment'
nTranscripts(object)

Arguments

object Name of MoleculeExperiment object of interest.

assayName Character string specifying the name of the assay from which to view a summary
of the contents.

Value

A MoleculeExperiment object summary.

Examples

get example data
repoDir <- system.file("extdata", package = "MoleculeExperiment")
repoDir <- paste0(repoDir, "/xenium_V1_FF_Mouse_Brain")
me <- readXenium(repoDir,

keepCols = "essential",
addBoundaries = "cell"

)

showMolecules(me)
showBoundaries(me)

nFeatures(me)

nTranscripts(me)

Index

∗ datasets
small_me, 18

.generateBPParam, 2

accessors, 3

boundaries (accessors), 3
boundaries,MoleculeExperiment-method

(accessors), 3
boundaries<- (accessors), 3
boundaries<-,MoleculeExperiment-method

(accessors), 3
bufferBoundaries, 5

countMolecules, 6

dataframeToMEList, 7

extent (summarization), 19
extent,MoleculeExperiment-method

(summarization), 19

features (accessors), 3
features,MoleculeExperiment-method

(accessors), 3

geom_point_me (plotting-functions), 10
geom_polygon_me (plotting-functions), 10
geom_raster_img (plotting-functions), 10
ggplot_me (plotting-functions), 10

MoleculeExperiment
(MoleculeExperiment-class), 9

MoleculeExperiment-class, 9
molecules (accessors), 3
molecules,MoleculeExperiment-method

(accessors), 3
molecules<- (accessors), 3
molecules<-,MoleculeExperiment-method

(accessors), 3

nFeatures (summarization), 19

nFeatures,MoleculeExperiment-method
(summarization), 19

nTranscripts (summarization), 19
nTranscripts,MoleculeExperiment-method

(summarization), 19

plotting-functions, 10

readBoundaries, 12
readCosmx, 13
readMerscope, 14
readMolecules, 15
readSegMask, 16
readXenium, 17

segmentIDs (accessors), 3
segmentIDs,MoleculeExperiment-method

(accessors), 3
show,MoleculeExperiment-method

(summarization), 19
showBoundaries (summarization), 19
showBoundaries,MoleculeExperiment-method

(summarization), 19
showMolecules (summarization), 19
showMolecules,MoleculeExperiment-method

(summarization), 19
small_me, 18
subset_by_extent, 19
summarization, 19

21

	.generateBPParam
	accessors
	bufferBoundaries
	countMolecules
	dataframeToMEList
	MoleculeExperiment-class
	plotting-functions
	readBoundaries
	readCosmx
	readMerscope
	readMolecules
	readSegMask
	readXenium
	small_me
	subset_by_extent
	summarization
	Index

