Package ‘ISAnalytics’

October 24, 2025

Title Analyze gene therapy vector insertion sites data identified from
genomics next generation sequencing reads for clonal tracking
studies

Version 1.19.3
Date 2025-07-21

Description In gene therapy, stem cells are modified using viral vectors to deliver the therapeu-
tic transgene and replace functional properties since the genetic modification is stable and inher-
ited in all cell progeny. The retrieval and mapping of the sequences flanking the virus-
host DNA junctions allows the identification of insertion sites (IS), essential for monitor-
ing the evolution of genetically modified cells in vivo. A comprehensive toolkit for the analy-
sis of IS is required to foster clonal trackign studies and supporting the assess-
ment of safety and long term efficacy in vivo. This package is aimed at (1) supporting automa-
tion of IS workflow, (2) performing base and advance analysis for IS tracking (clonal abun-
dance, clonal expansions and statistics for insertional mutagenesis, etc.), (3) providing basic biol-
ogy insights of transduced stem cells in vivo.

License CC BY 4.0

URL https://calabrialab.github.io/ISAnalytics,
https://github.com//calabrialab/isanalytics,
https://calabrialab.github.io/ISAnalytics/

BugReports https://github.com/calabrialab/ISAnalytics/issues

biocViews Biomedicallnformatics, Sequencing, SingleCell, CellBiology,
FunctionalGenomics, Datalmport

Depends R (>=4.5)

Imports utils, dplyr, readr, tidyr, purtr, rlang, tibble, stringr, fs,
lubridate, lifecycle, ggplot2, ggrepel, stats, readxl, tools,
grDevices, forcats, glue, shiny, shinyWidgets, datamods, bslib,
vegan, data.table, DT

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

https://calabrialab.github.io/ISAnalytics
https://github.com//calabrialab/isanalytics
https://calabrialab.github.io/ISAnalytics/
https://github.com/calabrialab/ISAnalytics/issues

Suggests testthat, covr, knitr, BiocStyle, sessioninfo, rmarkdown,
roxygen2, withr, extraDistr, ggalluvial, scales, gridExtra,
R.utils, RefManageR, flexdashboard, circlize, plotly, gtools,
eulerr, openxlsx, jsonlite, pheatmap, BiocParallel, progressr,
future, doFuture, foreach, psych, Rcapture

VignetteBuilder knitr

RdMacros lifecycle

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/ISAnalytics
git_branch devel

git_last_commit 923672f

git_last_commit_date 2025-07-21

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Author Francesco Gazzo [cre] (ORCID: <https://orcid.org/0009-0000-4626-1386>),
Giulia Pais [aut] (ORCID: <https://orcid.org/0009-0005-5621-4803>),
Andrea Calabria [aut],
Giulio Spinozzi [aut]

Maintainer Francesco Gazzo <gazzo.francesco@hsr.it>

Contents

aggregate_metadata Lol e
aggregate_values_by_key L oo
anNNOtAtiON_ISSUES . . . « v v v v v e e e e e e
association_file
AS_SPArse_MAtriX o oo e e e e e e e e
available_outlier tests
available_tags L
blood_lineages_default oo
circos_genomic_density Lo e
CIS_grubbs e e
CIS_grubbs_overtime i e
CIS_volcano_plot e
clinical_relevant_suspicious_genes oot
COMPAriSON_MALIIX . . .« o o o v v v v e e e bt e e e e e e e
compute_abundance Lo e
compute_near_integrations oo
cumulative_count_union e e e e e e e e e e
cumulative_iS e e e e e e e e e e
date_formats e
default_af transform
default_iss_file_prefixes
default_meta_agg

Contents

https://orcid.org/0009-0000-4626-1386
https://orcid.org/0009-0005-5621-4803

Contents

3
default_rec_agg lambdas 30
default_report_path 30
default_Stats s 31
enable_progress_bars 31
export_ISA_settings e e e 32
fisher_scatterplot L 32
generate_blank_association_file oL oL 34
generate_default_folder_structure 35
generate_Vispa2_launch_ AF 36
gene_frequency_fisher 37
HSC_population_plot 39
HSC_population_size_estimate e 41
import_association_file 44
import_ISA_settings e 46
import_parallel_Vispa2Matrices o e 47
import_parallel_Vispa2Matrices_auto oo 49
import_parallel_Vispa2Matrices_interactive 49
import_single_Vispa2Matrix e e 50
Import_Vispa2_statS e e e e e e e e 52
INSPECt_tags o e e e e 53
integration_alluvial_plot L 54
Integration_matriCes i e e e e e e e e e e 56
ISAnalytics e 57
ISAnalytics-deprecated 58
ISS_SOUICE . v v v v v v o o e e e e e e e e 58
is_sharing e 60
known_clinical_oncogenes 62
mandatory_IS_vars L. 62
matching_options e e 64
NGSdataExplorer e 65
outliers_by_pool_fragments 65
outlier_filter L e e 67
per_id_column e e 69
PIOtO_ONCOZENEGS . . « « v v v v e e b e e et e e e e e e e e 69
purity_filtero 70
qUantification_types o e e e e e e e e 72
realign_after_collisions 73
reduced_AF columns e 74
refGenes_hgl9 e 75
refGenes_hg38 L 76
refGene_table colS 77
remove_colliSIONS e 77
reset_mandatory_IS_vars 79
sample_statiStics L 80
separate_quant_matriCes e e e e e e e e 82
set_mandatory_IS_vars L. e 83
set_matrix_file_suffixes 86

sharing_heatmap 87

4 aggregate_metadata
sharing_Venn e e e e e e e e e 88
threshold_filter e 89
top_abund_tableGrob 91
top_cis_overtime_heatmapo 92
tOP_INtEZrations o i e e e e e 96
top_targeted_genes e e e e e e e 97
transform_columns e e e 99
unzip_file_system e 100

Index 101

aggregate_metadata Performs aggregation on metadata contained in the association file.

Description

[Stable] Groups metadata by the specified grouping keys and returns a summary of info for each
group. For more details on how to use this function: vignette("workflow_start”, package =
"ISAnalytics")

Usage

aggregate_metadata(
association_file,
grouping_keys = c("SubjectID", "CellMarker", "Tissue”, "TimePoint"),
aggregating_functions = default_meta_agg(),
import_stats = lifecycle::deprecated()
)
Arguments
association_file
The imported association file (via import_association_file)
grouping_keys A character vector of column names to form a grouping operation
aggregating_functions
A data frame containing specifications of the functions to be applied to columns
in the association file during aggregation. It defaults to default_meta_agg. The
structure of this data frame should be maintained if the user wishes to change
the defaults.
import_stats [Deprecated] The import of VISPA2 stats has been moved to its dedicated func-
tion, see import_Vispa2_stats.
Value

An aggregated data frame

aggregate_values_by_key 5

See Also

Other Data cleaning and pre-processing: aggregate_values_by_key(), compute_near_integrations(),
default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),purity_filter(),
realign_after_collisions(), remove_collisions(), threshold_filter()

Examples

data("association_file"”, package = "ISAnalytics")
aggreg_meta <- aggregate_metadata(
association_file = association_file

)
head(aggreg_meta)

aggregate_values_by_key
Aggregates matrices values based on specified key.

Description

[Stable] Performs aggregation on values contained in the integration matrices based on the key and
the specified lambda. For more details on how to use this function: vignette("workflow_start”,
package = "ISAnalytics")

Usage

aggregate_values_by_key(
X,
association_file,
value_cols = "Value”,
key = c("SubjectID”, "CellMarker"”, "Tissue"”, "TimePoint"),
lambda = list(sum = ~sum(.x, na.rm = TRUE)),
group = c(mandatory_IS_vars(), annotation_IS_vars()),
join_af_by = "CompleteAmplificationID”

Arguments

X A single integration matrix or a list of imported integration matrices
association_file
The imported association file

value_cols A character vector containing the names of the columns to apply the given lamb-
das. Must be numeric or integer columns.

key A string or a character vector with column names of the association file to take
as key

lambda A named list of functions or purrr-style lambdas. See details section.

group Other variables to include in the grouping besides key, can be set to NULL

join_af_by A character vector representing the joining key between the matrix and the meta-

data. Useful to re-aggregate already aggregated matrices.

6 aggregate_values_by_key

Details

Setting the lambda parameter:
The lambda parameter should always contain a named list of either functions or purrr-style lamb-
das. It is also possible to specify the namespace of the function in both ways, for example:

lambda = list(sum = sum, desc = psych::describe)

Using purrr-style lambdas allows to specify arguments for the functions, keeping in mind that the
first parameter should always be . x:

lambda = list(sum = ~sum(.x, na.rm = TRUE))

It is also possible to use custom user-defined functions, keeping in mind that the symbol will be
evaluated in the calling environment, for example if the function is called in the global environ-
ment and lambda contains "foo" as a function, "foo" will be evaluated in the global environment.

foo <- function(x) {
sum(x)

3

lambda = list(sum = ~sum(.x, na.rm = TRUE), foo = foo)
Or with lambda notation

lambda = list(sum = ~sum(.x, na.rm = TRUE), foo = ~foo(.x))

Constraints on aggregation functions:
Functions passed in the lambda parameters must respect a few constraints to properly work and
it’s the user responsibility to ensure this.
* Functions have to accept as input a numeric or integer vector
* Function should return a single value or a list/data frame: if a list or a data frame is returned
as a result, all the columns will be added to the final data frame.

Value

A list of data frames or a single data frame aggregated according to the specified arguments

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), compute_near_integrations(),
default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),purity_filter(),
realign_after_collisions(), remove_collisions(), threshold_filter()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")

)
head(aggreg)

annotation_issues 7

annotation_issues Check for genomic annotation problems in IS matrices.

Description
[Experimental] This helper function checks if each individual integration site, identified by the
mandatory_IS_vars(), has been annotated with two or more distinct gene symbols.

Usage

annotation_issues(matrix)

Arguments
matrix Either a single matrix or a list of matrices, ideally obtained via import_parallel_Vispa2Matrices()
or import_single_Vispa2Matrix()
Value

Either NULL if no issues were detected or 1 or more data frames with genomic coordinates of the IS
and the number of distinct genes associated
See Also
Other Import functions helpers: date_formats(), default_af_transform(), default_iss_file_prefixes(),
matching_options(), quantification_types()
Examples

data("integration_matrices”, package = "ISAnalytics")
annotation_issues(integration_matrices)

association_file Example of association file.

Description
This file is a simple example of association file. Use it as reference to properly fill out yours. To
generate an empty association file to fill see the generate_blank_association_file() function.
Usage

data("association_file")

Format

An object of class data. table (inherits from data. frame) with 53 rows and 83 columns.

8 as_sparse_matrix

Details

The data was obtained manually by simulating real research data.

See Also

generate_blank_association_file

as_sparse_matrix Converts tidy integration matrices in the original sparse matrix form.

Description

[Stable] This function is particularly useful when a sparse matrix structure is needed by a specific
function (mainly from other packages).

Usage

as_sparse_matrix(
X,
single_value_col = "Value",
fragmentEstimate = "fragmentEstimate”,
seqCount = "seqgCount”,
barcodeCount = "barcodeCount”,
cellCount = "cellCount"”,
ShsCount = "ShsCount”,
key = pcr_id_column()

Arguments

X A single tidy integration matrix or a list of integration matrices. Supports also
multi-quantification matrices obtained via comparison_matrix
single_value_col
Name of the column containing the values when providing a single-quantification
matrix
fragmentEstimate
For multi-quantification matrix support: the name of the fragment estimate val-
ues column

seqCount For multi-quantification matrix support: the name of the sequence count values
column

barcodeCount For multi-quantification matrix support: the name of the barcode count values

column

cellCount For multi-quantification matrix support: the name of the cell count values col-
umn

ShsCount For multi-quantification matrix support: the name of the Shs Count values col-

umn

available_outlier_tests 9

key The name of the sample identifier fields (for aggregated matrices can be a vector
with more than 1 element)

Value
Depending on input, 2 possible outputs:

* A single sparse matrix (data frame) if input is a single quantification matrix

» A list of sparse matrices divided by quantification if input is a single multi-quantification
matrix or a list of matrices

See Also

Other Utilities: comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_Vispa2_launch_AF (), generate_blank_association_file(), generate_default_folder_structure(),
import_ISA_settings(), separate_quant_matrices(), transform_columns()

Examples

data("integration_matrices”, package = "ISAnalytics")
sparse <- as_sparse_matrix(integration_matrices)

available_outlier_tests
A character vector containing all the names of the currently supported
outliers tests that can be called in the function outlier_filter.

Description
A character vector containing all the names of the currently supported outliers tests that can be
called in the function outlier_filter.

Usage

available_outlier_tests()

Value

A character vector

Examples

available_outlier_tests()

10 blood_lineages_detault

available_tags All available tags for dynamic vars look-up tables.

Description

Contains all information associated with critical tags used in the dynamic vars system. To know
more see vignette("workflow_start"”, package="ISAnalytics").

Usage

available_tags()

Value

A data frame

Examples

available_tags()

blood_lineages_default
Default blood lineages info

Description

A default table with info relative to different blood lineages associated with cell markers that can
be supplied as a parameter to HSC_population_size_estimate

Usage

blood_lineages_default()

Value

A data frame

Examples

blood_lineages_default()

circos_genomic_density 11

circos_genomic_density
Trace a circos plot of genomic densities.

Description

[Stable] For this functionality the suggested package circlize is required. Please note that this
function is a simple wrapper of basic circlize functions, for an in-depth explanation on how
the functions work and additional arguments please refer to the official documentation Circular
Visualization in R

Usage

circos_genomic_density(
data,
gene_labels = NULL,
label_col = NULL,
cytoband_specie = "hgl19",
track_colors = "navyblue”,
grDevice = c("png"”, "pdf", "svg", "jpeg", "bmp", "tiff", "default”),
file_path = getwd(),

)
Arguments
data Either a single integration matrix or a list of integration matrices. If a list is
provided, a separate density track for each data frame is plotted.
gene_labels Either NULL or a data frame in bed format. See details.
label_col Numeric index of the column of gene_labels that contains the actual labels.

Relevant only if gene_labels is not set to NULL.

cytoband_specie
Specie for initializing the cytoband

track_colors Colors to give to density tracks. If more than one integration matrix is pro-
vided as data should be of the same length. Values are recycled if length of
track_colors is smaller than the length of the input data.

grDevice The graphical device where the plot should be traced. default, if executing
from RStudio is the viewer.

file_path If a device other than default is chosen, the path on disk where the file should
be saved. Defaults to {current directory}/circos_plot.{device}.

Additional named arguments to pass on to chosen device, circlize: :circos.par(),
circlize::circos.genomicDensity() and circlize::circos.genomicLabels()

https://cran.r-project.org/web/packages/circlize/index.html
https://jokergoo.github.io/circlize_book/book/
https://jokergoo.github.io/circlize_book/book/

12 CIS_grubbs

Details

Providing genomic labels:

If genomic labels should be plotted alongside genomic density tracks, the user should provide
them as a simple data frame in standard bed format, namely chr, start, end plus a column
containing the labels. NOTE: if the user decides to plot on the default device (viewer in RStudio),
he must ensure there is enough space for all elements to be plotted, otherwise an error message is
thrown.

Value

NULL

See Also

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(), fisher_scatterplot(),
integration_alluvial_plot(), sharing_heatmap(), sharing_venn(), top_abund_tableGrob(),
top_cis_overtime_heatmap()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
by_subj <- aggreg |>
dplyr::group_by(.data$SubjectID) |>
dplyr::group_split()
circos_genomic_density(by_subj,
track_colors = c("navyblue”, "gold"),
grDevice = "default”, track.height = 0.1

CIS_grubbs Grubbs test for Common Insertion Sites (CIS).

Description

[Stable] Statistical approach for the validation of common insertion sites significance based on
the comparison of the integration frequency at the CIS gene with respect to other genes con-
tained in the surrounding genomic regions. For more details please refer to this paper: https://
ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in

https://ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in
https://ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in

CIS_grubbs 13

Usage

CIS_grubbs(
X,
genomic_annotation_file = "hg19”,
grubbs_flanking_gene_bp = 1e+05,
threshold_alpha = 0.05,
by = NULL,
return_missing_as_df = TRUE,
results_as_list = TRUE

Arguments

X An integration matrix, must include the mandatory_IS_vars() columns and
the annotation_IS_vars() columns

genomic_annotation_file
Database file for gene annotation, see details.

grubbs_flanking_gene_bp

Number of base pairs flanking a gene
threshold_alpha

Significance threshold

by Either NULL or a character vector of column names. If not NULL, the function
will perform calculations for each group and return a list of data frames with
the results. E.g. for by = "SubjectID", CIS will be computed for each distinct
SubjectID found in the table ("SubjectID" column must be included in the input
data frame).

return_missing_as_df
Returns those genes present in the input df but not in the refgenes as a data
frame?

results_as_list
If TRUE return the group computations as a named list, otherwise return a single
df with an additional column containing the group id

Details

Genomic annotation file:

A data frame containing genes annotation for the specific genome. From version 1.5.4 the ar-
gument genomic_annotation_file accepts only data frames or package provided defaults. The
user is responsible for importing the appropriate tabular files if customization is needed. The an-
notations for the human genome (hg19 or hg38) and murine genome (mm9 or mm10) are already
included in this package: to use one of them just set the argument genomic_annotation_file
to either "hg19”, "hg38", "mm9"” or "mm10". If for any reason the user is performing an analysis
on another genome, this file needs to be changed respecting the USCS Genome Browser format,
meaning the input file headers should include:

name2, chrom, strand, min_txStart, max_txEnd, minmax_TxLen, average_TxLen, name, min_cdsStart,
max_cdsEnd, minmax_CdsLen, average_CdsLen

14 CIS_grubbs_overtime

Value

A data frame

Required tags
The function will explicitly check for the presence of these tags:

e chromosome
¢ locus

* is_strand

* gene_symbol

e gene_strand

See Also

Other Analysis functions: HSC_population_size_estimate(), compute_abundance(), cumulative_is(),
gene_frequency_fisher(), is_sharing(), iss_source(), sample_statistics(), top_integrations(),
top_targeted_genes()

Examples
data("integration_matrices”, package = "ISAnalytics")
cis <- CIS_grubbs(integration_matrices)
cis

CIS_grubbs_overtime Compute CIS and Grubbs test over different time points and groups.

Description

[Experimental] Computes common insertion sites and Grubbs test for each separate group and
separating different time points among the same group. The logic applied is the same as the function
CIS_grubbs().

Usage

CIS_grubbs_overtime(
X!
genomic_annotation_file "hg19",
grubbs_flanking_gene_bp = 1e+05,
threshold_alpha = 0.05,
group = "SubjectID”,
timepoint_col = "TimePoint”,
as_df = TRUE,
return_missing_as_df = TRUE,
max_workers = NULL

CIS_grubbs_overtime 15

Arguments

X An integration matrix, must include the mandatory_IS_vars() columns and
the annotation_IS_vars() columns
genomic_annotation_file
Database file for gene annotation, see details.
grubbs_flanking_gene_bp
Number of base pairs flanking a gene
threshold_alpha
Significance threshold

group A character vector of column names that identifies a group. Each group must
contain one or more time points.

timepoint_col What is the name of the column containing time points?

as_df Choose the result format: if TRUE the results are returned as a single data frame
containing a column for the group id and a column for the time point, if FALSE
results are returned in the form of nested lists (one table for each time point and
for each group), if "group” results are returned as a list separated for each group
but containing a single table with all time points.

return_missing_as_df

Returns those genes present in the input df but not in the refgenes as a data
frame?

max_workers Maximum number of parallel workers. If NULL the maximum number of workers
is calculated automatically.

Details

Genomic annotation file:

A data frame containing genes annotation for the specific genome. From version 1.5.4 the ar-
gument genomic_annotation_file accepts only data frames or package provided defaults. The
user is responsible for importing the appropriate tabular files if customization is needed. The an-
notations for the human genome (hg19 or hg38) and murine genome (mm9 or mm10) are already
included in this package: to use one of them just set the argument genomic_annotation_file
to either "hg19”, "hg38", "mm9"” or "mm10". If for any reason the user is performing an analysis
on another genome, this file needs to be changed respecting the USCS Genome Browser format,
meaning the input file headers should include:

name?2, chrom, strand, min_txStart, max_txEnd, minmax_TxLen, average_TxLen, name, min_cdsStart,
max_cdsEnd, minmax_CdsLen, average_CdsLen

Value

A list with results and optionally missing genes info

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(

16 CIS_volcano_plot

X = integration_matrices,

association_file = association_file,

value_cols = c("seqCount”, "fragmentEstimate")
)
cis_overtime <- CIS_grubbs_overtime(aggreg)
cis_overtime

CIS_volcano_plot Trace volcano plot for computed CIS data.

Description

[Stable] Traces a volcano plot for IS frequency and CIS results.

Usage
CIS_volcano_plot(
X’
onco_db_file = "proto_oncogenes”,
tumor_suppressors_db_file = "tumor_suppressors”,
species = "human”,

known_onco = known_clinical_oncogenes(),
suspicious_genes = clinical_relevant_suspicious_genes(),
significance_threshold = 0.05,
annotation_threshold_ontots = 0.1,

highlight_genes = NULL,

title_prefix = NULL,

return_df = FALSE

Arguments

X Either a simple integration matrix or a data frame resulting from the call to
CIS_grubbs with add_standard_padjust = TRUE

onco_db_file Uniprot file for proto-oncogenes (see details). If different from default, should
be supplied as a path to a file.

tumor_suppressors_db_file
Uniprot file for tumor-suppressor genes. If different from default, should be
supplied as a path to a file.

non

species One between "human”, "mouse” and "all”

known_onco Data frame with known oncogenes. See details.
suspicious_genes

Data frame with clinical relevant suspicious genes. See details.
significance_threshold

The significance threshold

CIS_volcano_plot 17

annotation_threshold_ontots
Value above which genes are annotated with colorful labels

highlight_genes
Either NULL or a character vector of genes to be highlighted in the plot even if
they’re not above the threshold

title_prefix A string or character vector to be displayed in the title - usually the project name
and other characterizing info. If a vector is supplied, it is concatenated in a
single string via paste()

return_df Return the data frame used to generate the plot? This can be useful if the user
wants to manually modify the plot with ggplot2. If TRUE the function returns a
list containing both the plot and the data frame.

Details

Input data frame:

Users can supply as x either a simple integration matrix or a data frame resulting from the call to
CIS_grubbs. In the first case an internal call to the function CIS_grubbs() is performed.

Oncogene and tumor suppressor genes files:

These files are included in the package for user convenience and are simply UniProt files with
gene annotations for human and mouse. For more details on how this files were generated use the
help ?tumor_suppressors, ?proto_oncogenes

Known oncogenes:
The default values are included in this package and it can be accessed by doing:

known_clinical_oncogenes()

If the user wants to change this parameter the input data frame must preserve the column structure.
The same goes for the suspicious_genes parameter (DOIReference column is optional):

clinical_relevant_suspicious_genes()

Value

A plot or a list containing a plot and a data frame

Required tags
The function will explicitly check for the presence of these tags:

* gene_symbol

See Also

Other Plotting functions: HSC_population_plot(), circos_genomic_density(), fisher_scatterplot(),
integration_alluvial_plot(), sharing_heatmap(), sharing_venn(), top_abund_tableGrob(),
top_cis_overtime_heatmap()

18 comparison_matrix

Examples

data("integration_matrices”, package = "ISAnalytics")

cis_plot <- CIS_volcano_plot(integration_matrices,
title_prefix = "PJ01"

)

cis_plot

clinical_relevant_suspicious_genes
Clinical relevant suspicious genes (for mouse and human).

Description

Clinical relevant suspicious genes (for mouse and human).

Usage

clinical_relevant_suspicious_genes()

Value

A data frame

See Also

Other Plotting function helpers: known_clinical_oncogenes()

Examples

clinical_relevant_suspicious_genes()

comparison_matrix Obtain a single integration matrix from individual quantification ma-
trices.

Description

[Stable] Takes a list of integration matrices referring to different quantification types and merges
them into a single data frame with multiple value columns, each renamed according to their quan-
tification type of reference.

comparison_matrix 19

Usage

comparison_matrix(
X,
fragmentEstimate = "fragmentEstimate”,
seqCount = "seqgCount”,
barcodeCount = "barcodeCount”,
cellCount = "cellCount”,
ShsCount = "ShsCount”,

value_col_name = "Value”
)
Arguments

X A named list of integration matrices, ideally obtained via import_parallel_Vispa2Matrices.
Names must be quantification types in quantification_types().

fragmentEstimate
The name of the output column for fragment estimate values

seqCount The name of the output column for sequence count values

barcodeCount The name of the output column for barcode count values
cellCount The name of the output column for cell count values
ShsCount The name of the output column for Shs count values

value_col_name Name of the column containing the corresponding values in the single matrices

Value

A single data frame

See Also

quantification_types

Other Utilities: as_sparse_matrix(), enable_progress_bars(), export_ISA_settings(), generate_Vispa2_launch_
generate_blank_association_file(), generate_default_folder_structure(), import_ISA_settings(),
separate_quant_matrices(), transform_columns()

Examples

sc <- tibble::tribble(
~chr, ~integration_locus, ~strand, ~CompleteAmplificationID, ~Value,
"1", 45324, "+" "ID1", 543,
"2", 52423, "-", "ID1", 42,
"6", 54623, "-", "ID2", 67,
"X", 12314, "+" "ID3", 8
)
fe <- tibble::tribble(
~chr, ~integration_locus, ~strand, ~CompleteAmplificationID, ~Value,
"1, 45324, "+", "ID1", 56.76,
"2", 52423, "-",6 "ID1", 78.32,
"6", 54623, "-", "ID2", 123.45,

20

)

compute_abundance

"X", 12314, "+", "ID3", 5.34

comparison_matrix(list(

fragmentEstimate = fe,
seqCount = sc

)
compute_abundance Computes the abundance for every integration event in the input data
frame.
Description

[Stable] Abundance is obtained for every integration event by calculating the ratio between the
single value and the total value for the given group.

Usage

compute_abundance(

X,

columns = c("fragmentEstimate_sum"),

percentage = TRUE,

key = c("SubjectID", "CellMarker"”, "Tissue"”, "TimePoint"),
keep_totals = FALSE

)
Arguments

X An integration matrix - aka a data frame that includes the mandatory_IS_vars()
as columns. The matrix can either be aggregated (via aggregate_values_by_key())
or not.

columns A character vector of column names to process, must be numeric or integer
columns

percentage Add abundance as percentage?

key The key to group by when calculating totals

keep_totals A value between TRUE, FALSE or df. If TRUE, the intermediate totals for each

group will be kept in the output data frame as a dedicated column with a trail-
ing "_tot". If FALSE, totals won’t be included in the output data frame. If df,
the totals are returned to the user as a separate data frame, together with the
abundance data frame.

Details

Abundance will be computed upon the user selected columns in the columns parameter. For each
column a corresponding relative abundance column (and optionally a percentage abundance col-
umn) will be produced.

compute_near_integrations 21

Value

Either a single data frame with computed abundance values or a list of 2 data frames (abundance_df,
quant_totals)

Required tags
The function will explicitly check for the presence of these tags:

¢ All columns declared in mandatory_IS_vars()

See Also

Other Analysis functions: CIS_grubbs(),HSC_population_size_estimate(), cumulative_is(),
gene_frequency_fisher(), is_sharing(), iss_source(), sample_statistics(), top_integrations(),
top_targeted_genes()

Examples

data("integration_matrices”, package = "ISAnalytics")
abund <- compute_abundance(

X = integration_matrices,

columns = "fragmentEstimate”,

key = "CompleteAmplificationID"

)
head(abund)

compute_near_integrations
Scans input matrix to find and merge near integration sites.

Description

[Stable] This function scans the input integration matrix to detect eventual integration sites that
are too "near" to each other and merges them into single integration sites adjusting their values if

needed.
Usage

compute_near_integrations(
X’
threshold = 4,
is_identity_tags = c("chromosome”, "is_strand"),
keep_criteria = c("max_value"”, "keep_first"),
value_columns = c("”seqCount”, "fragmentEstimate"),
max_value_column = "seqCount”,

sample_id_column = pcr_id_column(),
additional_agg_lambda = list(.default = default_rec_agg_lambdas()),
max_workers = 4,

22 compute_near._integrations

map_as_file = TRUE,
file_path = default_report_path(),
strand_specific = lifecycle::deprecated()

)
Arguments
X An integration matrix
threshold A single integer that represents an absolute number of bases for which two in-

tegrations are considered distinct. If the threshold is set to 3 it means, provided
fields chr and strand are the same, integrations sites which have at least 3 bases
in between them are considered distinct.

is_identity_tags
Character vector of tags that identify the integration event as distinct (except for
"locus"). See details.

keep_criteria While scanning, which integration should be kept? The 2 possible choices for
this parameter are:

* "max_value": keep the integration site which has the highest value (and
collapse other values on that integration).
 "keep_first": keeps the first integration

value_columns Character vector, contains the names of the numeric experimental columns
max_value_column

The column that has to be considered for searching the maximum value
sample_id_column

The name of the column containing the sample identifier
additional_agg_lambda

A named list containing aggregating functions for additional columns. See de-

tails.
max_workers Maximum parallel workers allowed
map_as_file Produce recalibration map as a .tsv file?
file_path String representing the path were the file will be saved. Must be a folder. Rele-

vant only if map_as_file is TRUE.
strand_specific
[Deprecated] Deprecated, use is_identity_tags

Details

The concept of ''near'':

An integration event is uniquely identified by all fields specified in the mandatory_IS_vars()
look-up table. It can happen to find IS that are formally distinct (different combination of values
in the fields), but that should not considered distinct in practice, since they represent the same
integration event - this may be due to artefacts at the putative locus of the IS in the merging of
multiple sequencing libraries.

We say that an integration event IS1 is near to another integration event IS2 if the absolute differ-
ence of their loci is strictly lower than the set threshold.

compute_near_integrations 23

Value

The IS identity:

There is also another aspect to be considered. Since the algorithm is based on a sliding window
mechanism, on which groups of IS should we set and slide the window?

By default, we have 3 fields in the mandatory_IS_vars(): chr, integration_locus, strand, and we
assume that all the fields contribute to the identity of the IS. This means that IS1 and IS2 can be
compared only if they have the same chromosome and the same strand. However, if we would like
to exclude the strand of the integration from our considerations then IS1 and IS2 can be selected
from all the events that fall on the same chromosome. A practical example:

IS1=(chr = "1", strand = "+", integration_locus = 14568)

IS2 = (chr = "1", strand = "-", integration_locus = 14567)

if is_identity_tags = c("chromosome”, "is_strand"”) IS1 and IS2 are considered distinct
because they differ in strand, therefore no correction will be applied to loci of either of the 2. If
is_identity_tags = c("chromosome”) then IS1 and IS2 are considered near, because the strand
is irrelevant, hence one of the 2 IS will change locus.

Aggregating near IS:

IS that fall in the same interval are evaluated according to the criterion selected - if recalibration
is necessary, rows with the same sample ID are aggregated in a single row with a quantification
value that is the sum of all the merged rows.

If the input integration matrix contains annotation columns, that is additional columns that are not

* part of the mandatory IS vars (see mandatory_IS_vars())
* part of the annotation IS vars (see annotation_IS_vars())
¢ the sample identifier column

* the quantification column

it is possible to specify how they should be aggregated. Defaults are provided for each column
type (character, integer, numeric...), but custom functions can be specified as a named list, where
names are column names in x and values are functions to be applied. NOTE: functions must
be purrr-style lambdas and they must perform some kind of aggregating operation, aka they must
take a vector as input and return a single value. The type of the output should match the type of the
target column. If you specify custom lambdas, provide defaults in the special element . defaults.
Example:

list(
numeric_col = ~ sum(.x),
char_col = ~ paste@(.x, collapse = ", "),
.defaults = default_rec_agg_lambdas()

)

An integration matrix with same or less number of rows

Required tags

The function will explicitly check for the presence of these tags:

e chromosome

24 cumulative_count_union

* locus
e is_strand

* gene_symbol

Note

We do recommend to use this function in combination with comparison_matrix to automatically
perform re-calibration on all quantification matrices.

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),purity_filter(),
realign_after_collisions(), remove_collisions(), threshold_filter()

Examples

data("integration_matrices”, package = "ISAnalytics")
rec <- compute_near_integrations(
X = integration_matrices, map_as_file = FALSE
)
head(rec)

cumulative_count_union
Integrations cumulative count in time by sample

Description

[Defunct] This function was deprecated in favour of a single function, please use cumulative_is

instead.
Usage
cumulative_count_union(
X’
association_file = NULL,
timepoint_column = "TimePoint",

key = c("SubjectID", "CellMarker"”, "Tissue"”, "TimePoint"),
include_tp_zero = FALSE,

zero = "0000",

aggregate = FALSE,

cumulative_is 25

Arguments

X A simple integration matrix or an aggregated matrix (see details)

association_file
NULL or the association file for x if aggregate is set to TRUE

timepoint_column
What is the name of the time point column?

key The aggregation key - must always contain the timepoint_column

include_tp_zero
Include timepoint 0?7

zero How is 0 coded in the data frame?
aggregate Should x be aggregated?

Additional parameters to pass to aggregate_values_by_key

Value

A data frame

Examples
Not run:
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
cumulative_count <- cumulative_count_union(aggreg)
cumulative_count

End(Not run)

cumulative_is Expands integration matrix with the cumulative IS union over time.

Description

[Experimental] Given an input integration matrix that can be grouped over time, this function adds
integrations in groups assuming that if an integration is observed at time point "t" then it is also
observed in time point "t+1".

26 cumulative_is

Usage
cumulative_is(
X,
key = c("SubjectID", "CellMarker”, "Tissue"”, "TimePoint"),
timepoint_col = "TimePoint”,

include_tp_zero = FALSE,
counts = TRUE,
keep_og_is = FALSE,
expand = TRUE

)

Arguments
X An integration matrix, ideally aggregated via aggregate_values_by_key()
key The aggregation key used

timepoint_col The name of the time point column
include_tp_zero
Should time point 0 be included?

counts Add cumulative counts? Logical
keep_og_is Keep original set of integrations as a separate column?
expand If FALSE, for each group, the set of integration sites is returned in a separate

column as a nested table, otherwise the resulting column is unnested.

Value

A data frame

Required tags
The function will explicitly check for the presence of these tags:

¢ All columns declared in mandatory_IS_vars()

* Checks if the matrix is annotated by assessing presence of annotation_IS_vars()

See Also

Other Analysis functions: CIS_grubbs(),HSC_population_size_estimate(), compute_abundance(),
gene_frequency_fisher(), is_sharing(), iss_source(), sample_statistics(), top_integrations(),
top_targeted_genes()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")

date_formats 27

)
cumulated_is <- cumulative_is(aggreg)
cumulated_is

date_formats Possible choices for the dates_format pa-
rameter in import_association_file,
import_parallel_vispa2Matrices_interactive and

import_parallel_vispa2Matrices_auto.

Description

All options correspond to lubridate functions, see more in the dedicated package documentation.

Usage

date_formats()

Value

A character vector

See Also

import_association_file, import_parallel_Vispa2Matrices_auto

Other Import functions helpers: annotation_issues(), default_af_transform(), default_iss_file_prefixes(),
matching_options(), quantification_types()

Examples

date_formats()

default_af_transform Default transformations to apply to association file columns.

Description

A list of default transformations to apply to the association file columns after importing it via
import_association_file()

Usage

default_af_transform(convert_tp)

Arguments

convert_tp The value of the argument convert_tp in the call to import_association_file()

28 default_iss_file_prefixes

Value

A named list of lambdas

See Also
Other Import functions helpers: annotation_issues(), date_formats(),default_iss_file_prefixes(),

matching_options(), quantification_types()

Examples

default_af_transform(TRUE)

default_iss_file_prefixes
Default regex prefixes for Vispa?2 stats files.

Description

Note that each element is a regular expression.

Usage

default_iss_file_prefixes()

Value

A character vector of regexes

See Also
Other Import functions helpers: annotation_issues(), date_formats(), default_af_transform(),

matching_options(), quantification_types()

Examples

default_iss_file_prefixes()

default_meta_agg 29

default_meta_agg Default metadata aggregation function table

Description

A default columns-function specifications for aggregate_metadata

Usage

default_meta_agg()

Details

This data frame contains four columns:

e Column: holds the name of the column in the association file that should be processed

* Function: contains either the name of a function (e.g. mean) or a purrr-style lambda (e.g. ~
mean(.x, na.rm = TRUE)). This function will be applied to the corresponding column speci-
fied in Column

* Args: optional additional arguments to pass to the corresponding function. This is relevant
ONLY if the corresponding Function is a simple function and not a purrr-style lambda.

* OQutput_colname: a glue specification that will be used to determine a unique output column
name. See glue for more details.

Value

A data frame

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(),outlier_filter(),outliers_by_pool_fragments(),purity_filter(),
realign_after_collisions(), remove_collisions(), threshold_filter()

Examples

default_meta_agg()

30 default_report_path

default_rec_agg_lambdas
Defaults for column aggregations in
compute_near_integrations().

Description

Defaults for column aggregations in compute_near_integrations().

Usage

default_rec_agg_lambdas()

Value

A named list of lambdas

Examples

default_rec_agg_lambdas()

default_report_path Default folder for saving ISAnalytics reports. Supplied as default ar-
gument for several functions.

Description

Default folder for saving ISAnalytics reports. Supplied as default argument for several functions.

Usage

default_report_path()

Value

A path

Examples

default_report_path()

default_stats 31

default_stats A set of pre-defined functions for sample_statistics.

Description

A set of pre-defined functions for sample_statistics.

Usage

default_stats()

Value

A named list of functions/purrr-style lambdas

Examples

default_stats()

enable_progress_bars Enable global progress bars for ISAnalytics functions.

Description
This is a simple wrapper around functions from the package progressr. To customize the appear-
ance of the progress bar, please refer to progressr documentation.

Usage

enable_progress_bars()

Value

NULL

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), export_ISA_settings(), generate_Vispa2_launch_AF(
generate_blank_association_file(), generate_default_folder_structure(), import_ISA_settings(),
separate_quant_matrices(), transform_columns()

Examples

enable_progress_bars()
progressr::handlers(global = FALSE) # Deactivate

https://progressr.futureverse.org/

32 fisher_scatterplot

export_ISA_settings Export a dynamic vars settings profile.

Description

This function allows exporting the currently set dynamic vars in json format so it can be quickly
imported later. Dynamic variables need to be properly set via the setter functions before call-
ing the function. For more details, refer to the dedicated vignette vignette("workflow_start”,
package="ISAnalytics").

Usage

export_ISA_settings(folder, setting_profile_name)

Arguments

folder The path to the folder where the file should be saved. If the folder doesn’t exist,
it gets created automatically

setting_profile_name
A name for the settings profile

Value

NULL

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), generate_Vispa2_launch_AF
generate_blank_association_file(), generate_default_folder_structure(), import_ISA_settings(),
separate_quant_matrices(), transform_columns()

Examples

tmp_folder <- tempdir()
export_ISA_settings(tmp_folder, "DEFAULT")

fisher_scatterplot Plot results of gene frequency Fisher’s exact test.

Description

[Stable] Plots results of Fisher’s exact test on gene frequency obtained via gene_frequency_fisher()
as a scatterplot.

fisher_scatterplot 33

Usage
fisher_scatterplot(
fisher_df,
p_value_col = "Fisher_p_value_fdr",
annot_threshold = 0.05,
annot_color = "red”,
gene_sym_col = "GeneName",

do_not_highlight = NULL,
keep_not_highlighted = TRUE

)

Arguments
fisher_df Test results obtained via gene_frequency_fisher()
p_value_col Name of the column containing the p-value to consider

annot_threshold
Annotate with a different color if a point is below the significance threshold.
Single numerical value.

annot_color The color in which points below the threshold should be annotated

gene_sym_col The name of the column containing the gene symbol

do_not_highlight
Either NULL, a character vector, an expression or a purrr-style lambda. Tells
the function to ignore the highlighting and labeling of these genes even if their
p-value is below the threshold. See details.

keep_not_highlighted
If present, how should not highlighted genes be treated? If set to TRUE points are
plotted and colored with the chosen color scale. If set to FALSE the points are
removed entirely from the plot.

Details

Specifying genes to avoid highlighting:

In some cases, users might want to avoid highlighting certain genes even if their p-value is below
the threshold. To do so, use the argument do_not_highlight: character vectors are appropriate
for specific genes that are to be excluded, expressions or lambdas allow a finer control. For
example we can supply:

expr <- rlang::expr(!stringr::str_starts(GeneName, "MIR") &
average_TxLen_1 >= 300)

with this expression, genes that have a p-value < threshold and start with "MIR" or have an aver-
age_TxLen_1 lower than 300 are excluded from the highlighted points. NOTE: keep in mind that
expressions are evaluated inside a dplyr::filter context.

Similarly, lambdas are passed to the filtering function but only operate on the column containing
the gene symbol.

lambda <- ~ stringr::str_starts(.x, "MIR")

34 generate_blank_association_file

Value

A plot

See Also

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(),circos_genomic_density(),
integration_alluvial_plot(), sharing_heatmap(), sharing_venn(), top_abund_tableGrob(),
top_cis_overtime_heatmap()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics"”)

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
cis <- CIS_grubbs(aggreg, by = "SubjectID")
fisher <- gene_frequency_fisher(ciscisPT0O01, ciscisPT002,
min_is_per_gene = 2
)
fisher_scatterplot(fisher)

generate_blank_association_file
Create a blank association file.

Description

Produces a blank association file to start using both VISPA2 and ISAnalytics

Usage

generate_blank_association_file(path)

Arguments

path The path on disk where the file should be written - must be a file

Value

NULL

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_Vispa2_launch_AF (), generate_default_folder_structure(), import_ISA_settings(),
separate_quant_matrices(), transform_columns()

generate_default_folder_structure 35

Examples

temp <- tempfile()
generate_blank_association_file(temp)

generate_default_folder_structure
Generate a default folder structure, following VISPA2 standards

Description

The function produces a folder structure in the file system at the provided path that respects VISPA2
standards, with package-included data.

Usage
generate_default_folder_structure(
type = "correct”,
dir = tempdir(),
af = "default”,
matrices = "default”
)
Arguments
type One value between "correct”, "incorrect” and "both"”. Tells the function
wheter to produce a correct structure or introduce some errors (mainly for testing
purposes).
dir Path to the folder in which the structure will be produced
af Either "default” for the association file provided as example in the package or
a custom association file as a data frame
matrices Either "default” for integration matrices provided as example in the package
or a custom multi-quantification matrix
Value

A named list containing the path to the association file and the path to the top level folder(s) of the
structure

Required tags
The function will explicitly check for the presence of these tags:
* project_id

* tag_seq

. vispa_concatenate

36 generate_Vispa2_launch_AF

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_Vispa2_launch_AF (), generate_blank_association_file(), import_ISA_settings(),
separate_quant_matrices(), transform_columns()

Examples

fs_path <- generate_default_folder_structure(type = "correct”)
fs_path

generate_Vispa2_launch_AF
Creates a reduced association file for a VISPA2 run, given project and
pool

Description
The function selects the appropriate columns and prepares a file for the launch of VISPA2 pipeline
for each project/pool pair specified.

Usage

generate_Vispa2_launch_AF (association_file, project, pool, path)

Arguments

association_file
The imported association file (via import_association_file())

project A vector of characters containing project names
pool A vector of characters containing pool names
path A single string representing the path to the folder where files should be written.

If the folder doesn’t exist it will be created.

Details

Note: the function is vectorized, meaning you can specify more than one project and more than one
pool as vectors of characters, but you must ensure that:

* Both project and pool vectors have the same length

* You correclty type names in corresponding positions, for example c("PJO1", "PJO1") - c("POOLO1",
"POOLO02"). If you type a pool in the position of a corresponding project that doesn’t match
no file will be produced since that pool doesn’t exist in the corresponding project.

Value

NULL

gene_frequency_fisher 37

Required tags
The function will explicitly check for the presence of these tags:

e cell _marker
e fusion_id

* per_repl_id
* pool_id

* project_id
* subject

* tag_id

* tissue

* tp_days

e vector_id

The names of the pools in the pool argument is checked against the column corresponding to the
pool_id tag.

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_blank_association_file(), generate_default_folder_structure(), import_ISA_settings(),
separate_quant_matrices(), transform_columns()

Examples

temp <- tempdir()
data("association_file"”, package = "ISAnalytics")
generate_Vispa2_launch_AF(association_file, "PJ@1", "POOLQ1", temp)

gene_frequency_fisher Compute Fisher’s exact test on gene frequencies.

Description

[Experimental] Provided 2 data frames with calculations for CIS, via CIS_grubbs(), computes
Fisher’s exact test. Results can be plotted via fisher_scatterplot().

Usage
gene_frequency_fisher(
cis_x,
cis_y,
min_is_per_gene = 3,
gene_set_method = c("intersection”, "union"),

onco_db_file = "proto_oncogenes”,

38 gene_frequency_fisher
tumor_suppressors_db_file = "tumor_suppressors”,
species = "human”,
known_onco = known_clinical_oncogenes(),
suspicious_genes = clinical_relevant_suspicious_genes(),
significance_threshold = 0.05,
remove_unbalanced_0 = TRUE
)
Arguments
cis_x A data frame obtained via CIS_grubbs()
cis_y A data frame obtained via CIS_grubbs ()
min_is_per_gene
Used for pre-filtering purposes. Genes with a number of distinct integration
less than this number will be filtered out prior calculations. Single numeric or
integer.
gene_set_method
One between "intersection" and "union". When merging the 2 data frames,
intersection will perform an inner join operation, while union will perform
a full join operation.
onco_db_file Uniprot file for proto-oncogenes (see details). If different from default, should
be supplied as a path to a file.
tumor_suppressors_db_file
Uniprot file for tumor-suppressor genes. If different from default, should be
supplied as a path to a file.
species One between "human”, "mouse” and "all”
known_onco Data frame with known oncogenes. See details.
suspicious_genes
Data frame with clinical relevant suspicious genes. See details.
significance_threshold
Significance threshold for the Fisher’s test p-value
remove_unbalanced_o
Remove from the final output those pairs in which there are no IS for one group
or the other and the number of IS of the non-missing group are less than the
mean number of IS for that group
Details

Oncogene and tumor suppressor genes files:

These files are included in the package for user convenience and are simply UniProt files with
gene annotations for human and mouse. For more details on how this files were generated use the
help ?tumor_suppressors, ?proto_oncogenes

Known oncogenes:

The default values are included in this package and it can be accessed by doing:

HSC_population_plot 39

known_clinical_oncogenes()

If the user wants to change this parameter the input data frame must preserve the column structure.
The same goes for the suspicious_genes parameter (DOIReference column is optional):

clinical_relevant_suspicious_genes()

Value

A data frame

Required tags

The function will explicitly check for the presence of these tags:

* gene_symbol

See Also

Other Analysis functions: CIS_grubbs (), HSC_population_size_estimate(), compute_abundance(),
cumulative_is(), is_sharing(), iss_source(), sample_statistics(), top_integrations(),
top_targeted_genes()

Examples

data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")
aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqgCount”, "fragmentEstimate")
)
cis <- CIS_grubbs(aggreg, by = "SubjectID")
fisher <- gene_frequency_fisher(ciscisPT0O01, ciscisPT002,
min_is_per_gene = 2
)

fisher

HSC_population_plot Plot of the estimated HSC population size for each patient.

Description

Plot of the estimated HSC population size for each patient.

40 HSC_population_plot

Usage
HSC_population_plot(
estimates,
project_name,
timepoints = "Consecutive”,
models = "Mth Chao (LB)"
)
Arguments
estimates The estimates data frame, obtained via HSC_population_size_estimate

project_name The project name, will be included in the plot title

timepoints Which time points to plot? One between "All", "Stable" and "Consecutive"
models Name of the models to plot (as they appear in the column of the estimates)
Value
A plot
See Also

Other Plotting functions: CIS_volcano_plot(), circos_genomic_density(), fisher_scatterplot(),
integration_alluvial_plot(), sharing_heatmap(), sharing_venn(), top_abund_tableGrob(),
top_cis_overtime_heatmap()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
aggreg_meta <- aggregate_metadata(
association_file = association_file

)

estimate <- HSC_population_size_estimate(
X = aggreg,
metadata = aggreg_meta,
stable_timepoints = c(90, 180, 360),
cell_type = "Other”

)

p <- HSC_population_plot(estimate$est, "PJO1")
p

HSC_population_size_estimate 41

HSC_population_size_estimate
Hematopoietic stem cells population size estimate.

Description

[Stable] Hematopoietic stem cells population size estimate with capture-recapture models.

Usage

HSC_population_size_estimate(
X,
metadata,
stable_timepoints = NULL,
aggregation_key = c("SubjectID”, "CellMarker"”, "Tissue"”, "TimePoint"),
blood_lineages = blood_lineages_default(),

timepoint_column = "TimePoint”,
seqCount_column = "seqCount_sum"”,
fragmentEstimate_column = "fragmentEstimate_sum”,

segCount_threshold = 3,
fragmentEstimate_threshold = 3,
nIS_threshold = 5,

cell_type = "MYELOID",
tissue_type = "PB",

max_workers = 4

)

Arguments
X An aggregated integration matrix. See details.
metadata An aggregated association file. See details.

stable_timepoints
A numeric vector or NULL if there are no stable time points. NOTE: the vec-
tor is NOT intended as a sequence min-max, every stable time point has to be
specified individually
aggregation_key
A character vector indicating the key used for aggregating x and metadata. Note
that x and metadata should always be aggregated with the same key.
blood_lineages A data frame containing information on the blood lineages. Users can supply
their own, provided the columns CellMarker and CellType are present.
timepoint_column
What is the name of the time point column to use? Note that this column must
be present in the key.
seqCount_column
What is the name of the column in x containing the values of sequence count
quantification?

42

HSC_population_size_estimate

fragmentEstimate_column
What is the name of the column in x containing the values of fragment estimate
quantification? If fragment estimate is not present in the matrix, param should
be set to NULL.
seqCount_threshold
A single numeric value. After re-aggregating x, rows with a value greater or
equal will be kept, the others will be discarded.
fragmentEstimate_threshold
A single numeric value. Threshold value for fragment estimate, see details.
nIS_threshold A single numeric value. If a group (row) in the metadata data frame has a count

of distinct integration sites strictly greater than this number it will be kept, oth-
erwise discarded.

cell_type The cell types to include in the models. Note that the matching is case-insensitive.
tissue_type The tissue types to include in the models. Note that the matching is case-
insensitive.
max_workers Maximum parallel workers allowed
Value

A data frame with the results of the estimates

Input formats

Both x and metadata should be supplied to the function in aggregated format (ideally through the
use of aggregate_metadata and aggregate_values_by_key). Note that the aggregation_key,
aka the vector of column names used for aggregation, must contain at least the columns associated
with the tags subject, cell_marker, tissue and a time point column (the user can specify the
name of the column in the argument timepoint_column).

Specifying more than one group

Groups for the estimates are computed as a pair of cell type and tissue. If the user wishes to compute
estimates for more than one combination of cell type and tissue, it is possible to specify them as
character vectors to the fields cell_type and tissue_type respectively, noting that:

* Vectors must have the same length or one of the 2 has to be of length 1

* Itis aresponsibility of the user to check whether the combination exists in the dataset provided.

Example:

estimate <- HSC_population_size_estimate(
X = aggreg,
metadata = aggreg_meta,
cell_type = c("MYELOID", "T", "B"),
tissue_type = "PB"

Evaluated groups will be:

HSC_population_size_estimate 43

- MYELOID PB
- T PB
- B PB

Note that estimates are computed individually for each group.

On time points

If stable_timepoints is a vector with length > 1, the function will look for the first available stable
time point and slice the data from that time point onward. If NULL is supplied instead, it means there
are no stable time points available. Note that O time points are ALWAYS discarded. Also, to be
included in the analysis, a group must have at least 2 distinct non-zero time points. NOTE: the
vector passed has to contain all individual time points, not just the minimum and maximum

Setting a threshold for fragment estimate

If fragment estimate is present in the input matrix, the filtering logic changes slightly: rows in the
original matrix are kept if the sequence count value is greater or equal than the seqCount_threshold
AND the fragment estimate value is greater or equal to the fragmentEstimate_threshold IF
PRESENT (non-zero value). This means that for rows that miss fragment estimate, the filtering
logic will be applied only on sequence count. If the user wishes not to use the combined filtering
with fragment estimate, simply set fragmentEstimate_threshold = @.

Required tags

The function will explicitly check for the presence of these tags:

* subject
* tissue

e cell_marker

See Also

Other Analysis functions: CIS_grubbs (), compute_abundance(), cumulative_is(), gene_frequency_fisher(),
is_sharing(), iss_source(), sample_statistics(), top_integrations(), top_targeted_genes()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics"”)

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
aggreg_meta <- aggregate_metadata(association_file = association_file)
estimate <- HSC_population_size_estimate(
X = aggreg,
metadata = aggreg_meta,
fragmentEstimate_column = NULL,

44

import_association_file

stable_timepoints = c(90, 180, 360),

cell_type

"Other”

import_association_file

Import the association file from disk

Description

[Stable] Imports the association file and optionally performs a check on the file system starting
from the root to assess the alignment between the two.

Usage
import_association_file(

path,
root = NULL,
dates_format = "ymd",
separator = "\t",
filter_for = NULL,
import_iss = FALSE,
convert_tp = TRUE,

report_path = default_report_path(),
transformations = default_af_transform(convert_tp),
tp_padding = lifecycle::deprecated(),

Arguments

path
root

dates_format

separator

filter_for

import_iss

convert_tp

The path on disk to the association file.
The path on disk of the root folder of VISPA2 output or NULL. See details.

A single string indicating how dates should be parsed. Must be a value in:
date_formats()

The column separator used in the file

A named list where names represent column names that must be filtered. For
example: list(ProjectID = c("PROJECT1", "PROJECT2)) will filter the
association file so that it contains only those rows for which the value of the col-
umn "ProjectID" is one of the specified values. If multiple columns are present
in the list all filtering conditions are applied as a logical AND.

Import VISPA2 pool stats and merge them with the association file? Logical
value

Should be time points be converted into months and years? Logical value

import_association_file 45

report_path The path where the report file should be saved. Can be a folder or NULL if no
report should be produced. Defaults to {user_home}/ISAnalytics_reports.
transformations
Either NULL or a named list of purrr-style lambdas where names are column
names the function should be applied to.

tp_padding [Deprecated] Deprecated. Use transformations instead.

Additional arguments to pass to import_Vispa2_stats

Details

Transformations:

Lambdas provided in input in the transformations argument, must be transformations, aka
functions that take in input a vector and return a vector of the same length as the input.

If the transformation list contains column names that are not present in the data frame, they are
simply ignored.

File system alignment:

If the root argument is set to NULL no file system alignment is performed. This allows to import
the basic file but it won’t be possible to perform automated matrix and stats import. For more
details see the "How to use import functions" vignette: vignette("workflow_start”, package
= "ISAnalytics")

Time point conversion:

The time point conversion is based on the following logic, given TPD is the column containing the
time point expressed in days and TPM and TPY are respectively the time points expressed as month
and years

e If TPD is NA —> NA (for both months and years)

e TPM=0, TPY =0 if and only if TPD =0
For conversion in months:

e TPM = ceiling(TPD/30) if TPD < 30 otherwise TPM = round(TPD/30)
For conversion in years:

e TPY = ceiling(TPD/360)

Value

The data frame containing metadata

Required tags
The function will explicitly check for the presence of these tags:
* project_id
* pool_id
* tag_seq
* subject

* tissue

46 import_ISA_settings

* tp_days
e cell_marker
* pcr_replicate
* vispa_concatenate
 per_repl_id
* proj_folder
The function will use all the available specifications contained in association_file_columns(TRUE)

to read and parse the file. If the specifications contain columns with a type "date”, the function
will parse the generic date with the format in the dates_format argument.

See Also

transform_columns
date_formats

Other Import functions: import_Vispa2_stats(), import_parallel_Vispa2Matrices(), import_single_Vispa2Matri

Examples

fs_path <- generate_default_folder_structure(type = "correct”)
af <- import_association_file(fs_path$af,

root = fs_path$root,

report_path = NULL

)
head(af)

import_ISA_settings Import a dynamic vars settings profile.

Description

The function allows the import of an existing dynamic vars profile in json format. This is a
quick and convenient way to set up the workflow, alternative to specifying lookup tables manu-
ally through the corresponding setter functions. For more details, refer to the dedicated vignette
vignette("workflow_start"”, package="ISAnalytics").

Usage

import_ISA_settings(path)

Arguments

path The path to the json file on disk

Value

NULL

import_parallel_Vispa2Matrices 47

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_Vispa2_launch_AF (), generate_blank_association_file(), generate_default_folder_structure(),
separate_quant_matrices(), transform_columns()

Examples

tmp_folder <- tempdir()

export_ISA_settings(tmp_folder, "DEFAULT")
import_ISA_settings(fs::path(tmp_folder, "DEFAULT_ISAsettings.json"))
reset_dyn_vars_config()

import_parallel_Vispa2Matrices
Import integration matrices from paths in the association file.

Description

[Stable] The function offers a convenient way of importing multiple integration matrices in an
automated or semi-automated way. For more details see the "How to use import functions" vignette:
vignette("workflow_start"”, package = "ISAnalytics")

Usage

import_parallel_Vispa2Matrices(
association_file,
quantification_type = c(”seqCount”, "fragmentEstimate"”),
matrix_type = c("annotated”, "not_annotated”),
workers = 2,
multi_quant_matrix = TRUE,
report_path = default_report_path(),
patterns = NULL,
matching_opt = matching_options(),
mode = "AUTO",

Arguments

association_file
Data frame imported via import_association_file (with file system alignment)
quantification_type
A vector of requested quantification_types. Possible choices are quantifica-
tion_types

matrix_type A single string representing the type of matrices to be imported. Can only be
one in "annotated" or "not_annotated".

48 import_parallel_Vispa2Matrices

workers A single integer representing the number of parallel workers to use for the import

multi_quant_matrix
If set to TRUE will produce a multi-quantification matrix through comparison_matrix
instead of a list.

report_path The path where the report file should be saved. Can be a folder or NULL if no
report should be produced. Defaults to {user_home}/ISAnalytics_reports.

patterns A character vector of additional patterns to match on file names. Please note
that patterns must be regular expressions. Can be NULL if no patterns need to be
matched.

matching_opt A single value between matching_options

mode Only AUTO is supported. As of ISAnalytics 1.8.3, the value INTERACTIVE is
officially deprecated.

<dynamic-dots> Additional named arguments to pass to comparison_matrix
and import_single_Vispa2_matrix

Value

Either a multi-quantification matrix or a list of integration matrices

Required tags
The function will explicitly check for the presence of these tags:

* project_id

. vispa_concatenate

See Also

Other Import functions: import_Vispa2_stats(), import_association_file(), import_single_Vispa2Matrix()

Examples

fs_path <- generate_default_folder_structure(type = "correct”)
af <- import_association_file(fs_paths$af,

root = fs_path$root,

report_path = NULL

)

matrices <- import_parallel_Vispa2Matrices(af,
c("seqCount”, "fragmentEstimate"),
mode = "AUTO", report_path = NULL

)

head(matrices)

import_parallel_Vispa2Matrices_auto 49

import_parallel_Vispa2Matrices_auto
Import integration matrices from association file.

Description

[Defunct] This function was deprecated to avoid redundancy. Please refer to import_parallel_Vispa2Matrices.

Usage

import_parallel_Vispa2Matrices_auto(
association_file,
quantification_type,
matrix_type = "annotated”,
workers = 2,
multi_quant_matrix = TRUE,
patterns = NULL,
matching_opt = matching_options(),
export_report_path = NULL,

Value

A data frame or a list

import_parallel_Vispa2Matrices_interactive
Import integration matrices from association file.

Description

[Defunct] This function was deprecated to avoid redundancy. Please refer to import_parallel_Vispa2Matrices.

Usage

import_parallel_Vispa2Matrices_interactive(
association_file,
quantification_type,
matrix_type = "annotated”,
workers = 2,
multi_quant_matrix = TRUE,
export_report_path = NULL,

50 import_single_Vispa2Matrix

Value

A data frame or a list

import_single_Vispa2Matrix
Import a single integration matrix from file

Description

[Stable] This function allows to read and import an integration matrix (ideally produced by VISPA2)
and converts it to a tidy format.

Usage
import_single_Vispa2Matrix(
path,
separator = "\t",

additional_cols = NULL,

transformations = NULL,

sample_names_to = pcr_id_column(),
values_to = "Value”,

to_exclude = lifecycle::deprecated(),
keep_excluded = lifecycle: :deprecated()

)
Arguments
path The path to the file on disk
separator The column delimiter used, defaults to \t

additional_cols
Either NULL, a named character vector or a named list. See details.

transformations
Either NULL or a named list of purrr-style lambdas where names are column
names the function should be applied to.

sample_names_to
Name of the output column holding the sample identifier. Defaults to pcr_id_column()

values_to Name of the output column holding the quantification values. Defaults to Value.
to_exclude [Deprecated] Deprecated. Use additonal_cols instead

keep_excluded [Deprecated] Deprecated. Use additonal_cols instead

import_single_Vispa2Matrix 51

Details

Additional columns:

Additional columns are annotation columns present in the integration matrix to import that are not

* part of the mandatory IS vars (see mandatory_IS_vars())

* part of the annotation IS vars (see annotation_IS_vars())

* the sample identifier column

* the quantification column
When specified they tell the function how to treat those columns in the import phase, by providing
a named character vector, where names correspond to the additional column names and values are
a choice of the following:

* "char" for character (strings)

e "int" for integers

* "logi" for logical values (TRUE / FALSE)

e "numeric” for numeric values

e "factor" for factors

» "date” for generic date format - note that functions that need to read and parse files will try
to guess the format and parsing may fail

* One of the accepted date/datetime formats by lubridate, you can use ISAnalytics: :date_formats()
to view the accepted formats

non

to drop the column

For more details see the "How to use import functions" vignette: vignette("workflow_start”,
package = "ISAnalytics")

Transformations:

Lambdas provided in input in the transformations argument, must be transformations, aka
functions that take in input a vector and return a vector of the same length as the input.

If the transformation list contains column names that are not present in the data frame, they are
simply ignored.

Value

A data frame object in tidy format

Required tags

The function will explicitly check for the presence of these tags:

¢ All columns declared in mandatory_IS_vars()

See Also

transform_columns

Other Import functions: import_Vispa2_stats(), import_association_file(), import_parallel_Vispa2Matrices()

52

Examples

import_Vispa2_stats

fs_path <- generate_default_folder_structure(type = "correct”)
matrix_path <- fs::path(

fs_path$root, "PJ@O1", "quantification”,

"POOL@Q1-1", "PJO1_POOL@1-1_seqCount_matrix.no@.annotated.tsv.gz"

)

matrix <- import_single_Vispa2Matrix(matrix_path)

head(matrix)

import_Vispa2_stats Import Vispa2 stats given the aligned association file.

Description

[Stable] Imports all the Vispa?2 stats files for each pool provided the association file has been aligned
with the file system (see import_association_file).

Usage

import_Vispa2_stats(
association_file,
file_prefixes = default_iss_file_prefixes(),
join_with_af = TRUE,
pool_col = "concatenatePoolIDSeqRun”,

report_path =

Arguments

default_report_path()

association_file

file_prefixes

join_with_af

pool_col

report_path

Value

A data frame

The file system aligned association file (contains columns with absolute paths to
the ’iss’ folder)

A character vector with known file prefixes to match on file names. NOTE: the
elements represent regular expressions. For defaults see default_iss_file_prefixes.

Logical, if TRUE the imported stats files will be merged with the association file,
if FALSE a single data frame holding only the stats will be returned.

A single string. What is the name of the pool column used in the Vispa2 run?
This will be used as a key to perform a join operation with the stats files POOL
column.

The path where the report file should be saved. Can be a folder or NULL if no
report should be produced. Defaults to {user_home}/ISAnalytics_reports.

inspect_tags 53

Required tags
The function will explicitly check for the presence of these tags:

* project_id
* tag_seq
* vispa_concatenate

 per_repl_id

See Also

Other Import functions: import_association_file(), import_parallel_Vispa2Matrices(),
import_single_Vispa2Matrix()

Examples

fs_path <- generate_default_folder_structure(type = "correct”)
af <- import_association_file(fs_path$af,
root = fs_path$root,
import_iss = FALSE,
report_path = NULL
)
stats_files <- import_Vispa2_stats(af,
join_with_af = FALSE,
report_path = NULL
)
head(stats_files)

inspect_tags Retrieve description of a tag by name.

Description
Given one or multiple tags, prints the associated description and functions where the tag is explicitly
used.

Usage

inspect_tags(tags)

Arguments

tags A character vector of tag names

Value

NULL

54 integration_alluvial_plot

See Also
Other dynamic vars: mandatory_IS_vars(), pcr_id_column(), reset_mandatory_IS_vars(),

set_mandatory_IS_vars(), set_matrix_file_suffixes()

Examples

inspect_tags(c("chromosome”, "project_id", "x"))

integration_alluvial_plot
Alluvial plots for IS distribution in time.

Description

[Stable] Alluvial plots allow the visualization of integration sites distribution in different points in
time in the same group. This functionality requires the suggested package ggalluvial.

Usage

integration_alluvial_plot(
X,
group = c("SubjectID”, "CellMarker"”, "Tissue"),
plot_x = "TimePoint",
plot_y = "fragmentEstimate_sum_PercAbundance"”,
alluvia = mandatory_IS_vars(),
alluvia_plot_y_threshold = 1,
top_abundant_tbl = TRUE,
empty_space_color = "grey90",

)
Arguments
X A data frame. See details.
group Character vector containing the column names that identify unique groups.
plot_x Column name to plot on the x axis
plot_y Column name to plot on the y axis
alluvia Character vector of column names that uniquely identify alluvia

alluvia_plot_y_threshold
Numeric value. Everything below this threshold on y will be plotted in grey and
aggregated. See details.

top_abundant_tbl
Logical. Produce the summary top abundant tables via top_abund_tableGrob?

https://corybrunson.github.io/ggalluvial/

integration_alluvial_plot 55

empty_space_color
Color of the empty portion of the bars (IS below the threshold). Can be either a
string of known colors, an hex code or NA_character to set the space transpar-
ent. All color specs accepted in ggplot2 are suitable here.

Additional arguments to pass on to top_abund_tableGrob

Details

Input data frame:

The input data frame must contain all the columns specified in the arguments group, plot_x,
plot_y and alluvia. The standard input for this function is the data frame obtained via the
compute_abundance function.

Plotting threshold on y:

The plotting threshold on the quantification on the y axis has the function to highlight only relevant
information on the plot and reduce computation time. The default value is 1, that acts on the
default column plotted on the y axis which contains a percentage value. This translates in natural
language roughly as "highlight with colors only those integrations (alluvia) that at least in 1 point
in time have an abundance value >= 1 %". The remaining integrations will be plotted as a unique
layer in the column, colored as specified by the argument empty_space_color.

Customizing the plot:

The returned plots are ggplot2 objects and can therefore further modified as any other ggplot2
object. For example, if the user decides to change the fill scale it is sufficient to do

plot +
ggplot2::scale_fill_viridis_d(...) + # or any other discrete fill scale
ggplot2::theme(...) # change theme options

NOTE: if you requested the computation of the top ten abundant tables and you want the colors
to match you should re-compute them

A note on strata ordering:

Strata in each column are ordered first by time of appearance and secondly in decreasing order
of abundance (value of y). It means, for example, that if the plot has 2 or more columns, in the
second column, on top, will appear first appear IS that appeared in the previous columns and then
all other IS, ordered in decreasing order of abundance.

Value

For each group a list with the associated plot and optionally the summary tableGrob

See Also

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(), circos_genomic_density(),
fisher_scatterplot(), sharing_heatmap(), sharing_venn(), top_abund_tableGrob(), top_cis_overtime_heatmaj

56 integration_matrices

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
abund <- compute_abundance(x = aggreg)
alluvial_plots <- integration_alluvial_plot(abund,
alluvia_plot_y_threshold = 0.5
)
ex_plot <- alluvial_plots[[1]]1$plot +
ggplot2::labs(
title = "IS distribution over time”,
subtitle = "Patient 1, MNC BM",
y = "Abundance (%)",
x = "Time point (days after GT)"
)
print(ex_plot)

integration_matrices Example of imported multi-quantification integration matrices.

Description

The data was obtained manually by simulating real research data.

Usage

data("integration_matrices”)

Format
Data frame with 1689 rows and 8 columns

chr The chromosome number (as character)

integration_locus Number of the base at which the viral insertion occurred
strand Strand of the integration

GeneName Symbol of the closest gene

GeneStrand Strand of the closest gene

CompleteAmplification]ID Unique sample identifier

seqCount Value of the sequence count quantification

fragmentEstimate Value of the fragment estimate quantification

ISAnalytics 57

ISAnalytics ISAnalytics: Analyze gene therapy vector insertion sites data identified
Jfrom genomics next generation sequencing reads for clonal tracking
studies

Description

[Stable] In gene therapy, stem cells are modified using viral vectors to deliver the therapeutic trans-
gene and replace functional properties since the genetic modification is stable and inherited in all
cell progeny. The retrieval and mapping of the sequences flanking the virus-host DNA junctions
allows the identification of insertion sites (IS), essential for monitoring the evolution of genetically
modified cells in vivo. A comprehensive toolkit for the analysis of IS is required to foster clonal
trackign studies and supporting the assessment of safety and long term efficacy in vivo. This pack-
age is aimed at (1) supporting automation of IS workflow, (2) performing base and advance analysis
for IS tracking (clonal abundance, clonal expansions and statistics for insertional mutagenesis, etc.),
(3) providing basic biology insights of transduced stem cells in vivo.

Useful resources

* VISPA2: A Scalable Pipeline for High-Throughput Identification and Annotation of Vector
Integration Sites

Vignettes

e vignette("workflow_start”, package = "ISAnalytics")

Author(s)
Maintainer: Francesco Gazzo <gazzo.francesco@hsr.it> (ORCID)
Authors:
e Giulia Pais <giuliapaisl@gmail.com> (ORCID)
¢ Andrea Calabria <calabria.andrea@hsr.it>

* Giulio Spinozzi <spinozzi.giulio@hsr.it>

See Also
Useful links:
e https://calabrialab.github.io/ISAnalytics
* https://github.com//calabrialab/isanalytics

* https://calabrialab.github.io/ISAnalytics/
* Report bugs at https://github.com/calabrialab/ISAnalytics/issues

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://orcid.org/0009-0000-4626-1386
https://orcid.org/0009-0005-5621-4803
https://calabrialab.github.io/ISAnalytics
https://github.com//calabrialab/isanalytics
https://calabrialab.github.io/ISAnalytics/
https://github.com/calabrialab/ISAnalytics/issues

58 1SS_source

ISAnalytics-deprecated
Deprecated functions in package ISAnalytics.

Description

These functions are provided for compatibility with older versions of ‘ISAnalytics’ only, and will
be defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:
* import_parallel_Vispa2Matrices_auto (defunct): import_parallel_Vispa2Matrices
* import_parallel_Vispa2Matrices_interactive (defunct): import_parallel_Vispa2Matrices
* unzip_file_system: generate_default_folder_structure
e cumulative_count_union (defunct): cumulative_is

threshold_filter

iss_source Find the source of IS by evaluating sharing.

Description

[Stable] The function computes the sharing between a reference group of interest for each time
point and a selection of groups of interest. In this way it is possible to observe the percentage of
shared integration sites between reference and each group and identify in which time point a certain
IS was observed for the first time.

Usage

iss_source(
reference,
selection,
ref_group_key = c("SubjectID”, "CellMarker", "Tissue”, "TimePoint"),
selection_group_key = c(”"SubjectID”, "CellMarker”, "Tissue"”, "TimePoint"),
timepoint_column = "TimePoint",
by_subject = TRUE,
subject_column = "SubjectID”

iss_source 59

Arguments
reference A data frame containing one or more groups of reference. Groups are identified
by ref_group_key
selection A data frame containing one or more groups of interest to compare. Groups are

identified by selection_group_key

ref_group_key Character vector of column names that identify a unique group in the reference

data frame
selection_group_key

Character vector of column names that identify a unique group in the selection

data frame
timepoint_column

Name of the column holding time point info?
by_subject Should calculations be performed for each subject separately?
subject_column Name of the column holding subjects information. Relevant only if by_subject

= TRUE
Value

A list of data frames or a data frame

See Also

Other Analysis functions: CIS_grubbs(), HSC_population_size_estimate(), compute_abundance(),
cumulative_is(), gene_frequency_fisher(), is_sharing(), sample_statistics(), top_integrations(),
top_targeted_genes()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics"”)

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,

value_cols = c("seqCount”, "fragmentEstimate")
)
df1 <- aggreg |>
dplyr::filter(.data$Tissue == "BM")
df2 <- aggreg |>
dplyr::filter(.data$Tissue == "PB")
source <- iss_source(df1, df2)
source

ggplot2: :ggplot (source$PT001, ggplot2::aes(
x = as.factor(g2_TimePoint),
y = sharing_perc, fill = gl
)+
ggplot2::geom_col() +
ggplot2::labs(
x = "Time point”, y = "Shared IS % with MNC BM",
title = "Source of is MNC BM vs MNC PB”

60 is_sharing

is_sharing Sharing of integration sites between given groups.

Description

[Stable] Computes the amount of integration sites shared between the groups identified in the input
data.

Usage

is_sharing(
group_key = c("SubjectID”, "CellMarker", "Tissue”, "TimePoint"),
group_keys = NULL,
n_comp = 2,
is_count = TRUE,
relative_is_sharing = TRUE,
minimal = TRUE,
include_self_comp = FALSE,
keep_genomic_coord = FALSE,
table_for_venn = FALSE

)
Arguments

One or more integration matrices

group_key Character vector of column names which identify a single group. An associated
group id will be derived by concatenating the values of these fields, separated
by |V_H

group_keys A list of keys for asymmetric grouping. If not NULL the argument group_key
is ignored

n_comp Number of comparisons to compute. This argument is relevant only if provided
a single data frame and a single key.

is_count Logical, if TRUE returns also the count of IS for each group and the count for the

union set

relative_is_sharing
Logical, if TRUE also returns the relative sharing.

minimal Compute only combinations instead of all possible permutations? If TRUE saves
time and excludes redundant comparisons.

include_self_comp
Include comparisons with the same group?

keep_genomic_coord
If TRUE keeps the genomic coordinates of the shared integration sites in a dedi-
cated column (as a nested table)

table_for_venn Add column with truth tables for venn plots?

is_sharing 61

Details

An integration site is always identified by the combination of fields in mandatory_IS_vars(), thus
these columns must be present in the input(s).

The function accepts multiple inputs for different scenarios, please refer to the vignette vignette ("workflow_start”,
package = "ISAnalytics"”) for a more in-depth explanation.

Output:

The function outputs a single data frame containing all requested comparisons and optionally
individual group counts, genomic coordinates of the shared integration sites and truth tables for
plotting venn diagrams.

Plotting sharing:

The sharing data obtained can be easily plotted in a heatmap via the function sharing_heatmap
or via the function sharing_venn

Value

A data frame

Required tags

The function will explicitly check for the presence of these tags:

¢ All columns declared in mandatory_IS_vars()

See Also

Other Analysis functions: CIS_grubbs(),HSC_population_size_estimate(), compute_abundance(),
cumulative_is(), gene_frequency_fisher(), iss_source(), sample_statistics(), top_integrations(),
top_targeted_genes()

Examples
data("integration_matrices”, package = "ISAnalytics"”)
data("association_file"”, package = "ISAnalytics"”)

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqgCount”, "fragmentEstimate")
)
sharing <- is_sharing(aggreg)
sharing

62 mandatory_IS_vars

known_clinical_oncogenes
Known clinical oncogenes (for mouse and human).

Description

Known clinical oncogenes (for mouse and human).

Usage

known_clinical_oncogenes()

Value

A data frame

See Also

Other Plotting function helpers: clinical_relevant_suspicious_genes()

Examples

known_clinical_oncogenes()

mandatory_IS_vars Current dynamic vars specifications getters.

Description

Fetches the look-up tables for different categories of dynamic vars. For more details, refer to the
dedicated vignette vignette("workflow_start”, package="ISAnalytics").

* mandatory_IS_vars returns the look-up table of variables that are used to uniquely identify
integration events

* annotation_IS_vars() returns the look-up table of variables that contain genomic annota-
tions

* association_file_columns() returns the look-up table of variables that contains informa-
tion on how metadata is structured

* iss_stats_specs() returns the look-up table of variables that contains information on the
format of pool statistics files produced automatically by VISPA2

* matrix_file_suffixes() returns the look-up table of variables that contains all default file
names for each quantification type and it is used by automated import functions

mandatory_IS_vars 63

Usage

mandatory_IS_vars(include_types = FALSE)
annotation_IS_vars(include_types = FALSE)
association_file_columns(include_types = FALSE)
iss_stats_specs(include_types = FALSE)

matrix_file_suffixes()

Arguments
include_types If set to TRUE returns both the names and the types associated, otherwise returns
only a character vector of names
Value

A character vector or a data frame

See Also
Other dynamic vars: inspect_tags(), pcr_id_column(), reset_mandatory_IS_vars(), set_mandatory_IS_vars(),
set_matrix_file_suffixes()

Examples

Names only
mandatory_IS_vars()

Names and types
mandatory_IS_vars(TRUE)

Names only
annotation_IS_vars()

Names and types
annotation_IS_vars(TRUE)

Names only
association_file_columns()

Names and types
association_file_columns(TRUE)

Names only
iss_stats_specs()

Names and types
iss_stats_specs(TRUE)

64 matching_options

Names only
matrix_file_suffixes()

matching_options Possible choices for the matching_opt parameter.

Description

These are all the possible values for the matching_opt parameter in import_parallel_vispa2Matrices_auto.

Usage

matching_options()

Details

The values "ANY", "ALL" and "OPTIONAL", represent how the patterns should be matched, more
specifically

* ANY = look only for files that match AT LEAST one of the patterns specified

* ALL =look only for files that match ALL of the patterns specified

* OPTIONAL = look preferentially for files that match, in order, all patterns or any pattern
and if no match is found return what is found (keep in mind that duplicates are discarded in
automatic mode)

Value

A vector of characters for matching_opt

See Also

import_parallel_Vispa2Matrices_auto

Other Import functions helpers: annotation_issues(), date_formats(), default_af_transform(),
default_iss_file_prefixes(), quantification_types()

Examples

opts <- matching_options()

NGSdataExplorer

65

NGSdataExplorer Launch the shiny application NGSdataExplorer.

Description

Launch the shiny application NGSdataExplorer.

Usage
NGSdataExplorer ()

Value

Nothing

Examples

Not run:
NGSdataExplorer()

End(Not run)

outliers_by_pool_fragments
Identify and flag outliers based on pool fragments.

Description

[Stable] Identify and flag outliers based on expected number of raw reads per pool.

Usage

outliers_by_pool_fragments(
metadata,
key = "BARCODE_MUX",
outlier_p_value_threshold = 9.01,
normality_test = FALSE,
normality_p_value_threshold = 0.05,
transform_log2 = TRUE,
per_pool_test = TRUE,
pool_col = "PoolID",
min_samples_per_pool = 5,
flag_logic = "AND",
keep_calc_cols = TRUE,
report_path = default_report_path()

66 outliers_by_pool_fragments

Arguments
metadata The metadata data frame
key A character vector of numeric column names

outlier_p_value_threshold
The p value threshold for a read to be considered an outlier
normality_test Perform normality test? Normality is assessed for each column in the key using
Shapiro-Wilk test and if the values do not follow a normal distribution, other
calculations are skipped
normality_p_value_threshold
Normality threshold
transform_log2 Perform a log2 trasformation on values prior the actual calculations?
per_pool_test Perform the test for each pool?
pool_col A character vector of the names of the columns that uniquely identify a pool
min_samples_per_pool
The minimum number of samples that a pool needs to contain in order to be
processed - relevant only if per_pool_test = TRUE

flag_logic A character vector of logic operators to obtain a global flag formula - only rele-
vant if the key is longer than one. All operators must be chosen between: AND,
OR, XOR, NAND, NOR, XNOR

keep_calc_cols Keep the calculation columns in the output data frame?

report_path The path where the report file should be saved. Can be a folder, a file or NULL if
no report should be produced. Defaults to {user_home}/ISAnalytics_reports.

Details

Modular structure:
The outlier filtering functions are structured in a modular fashion. There are 2 kind of functions:
* Qutlier tests - Functions that perform some kind of calculation based on inputs and flags
metadata
e Qutlier filter - A function that takes one or more outlier tests, combines all the flags with a
given logic and filters out rows that are flagged as outliers
This function is an outlier test, and calculates for each column in the key
e The zscore of the values
¢ The tstudent of the values
* The the associated p-value (tdist)
Optionally the test can be performed for each pool and a normality test can be run prior the actual
calculations. Samples are flagged if this condition is respected:
* tdist < outlier_p_value_threshold & zscore < 0
If the key contains more than one column an additional flag logic can be specified for combin-
ing the results. Example: let’s suppose the key contains the names of two columns, X and Y
key = c("X", "Y") if we specify the the argument flag_logic = "AND" then the reads will be

flagged based on this global condition: (tdist_X < outlier_p_value_threshold & zscore_X < 0)
AND (tdist_Y < outlier_p_value_threshold & zscore_Y < 0)

The user can specify one or more logical operators that will be applied in sequence.

outlier_filter 67

Value

A data frame of metadata with the column to_remove

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(), default_meta_agg(),outlier_filter(), purity_filter(),
realign_after_collisions(), remove_collisions(), threshold_filter()

Examples

data("association_file"”, package = "ISAnalytics")

flagged <- outliers_by_pool_fragments(association_file,
report_path = NULL

)

head(flagged)

outlier_filter Filter out outliers in metadata, identified by the chosen outlier test.

Description

[Experimental] Filter out outliers in metadata by using appropriate outlier tests.

Usage

outlier_filter(
metadata,
pcr_id_col = pcr_id_column(),
outlier_test = c(outliers_by_pool_fragments),
outlier_test_outputs = NULL,
combination_logic = c("AND"),
negate = FALSE,
report_path = default_report_path(),

)
Arguments
metadata The metadata data frame
pcr_id_col The name of the pcr identifier column

outlier_test One or more outlier tests. Must be functions, either from available_outlier_tests()
or custom functions that produce an appropriate output format (see details).
outlier_test_outputs
NULL, a data frame or a list of data frames. See details.

68 outlier_filter

combination_logic
One or more logical operators ("AND", "OR", "XOR", "NAND", "NOR", "XNOR").
See datails.

negate If TRUE will return only the metadata that was flagged to be removed. If FALSE
will return only the metadata that wasn’t flagged to be removed.

report_path The path where the report file should be saved. Can be a folder or NULL if no
report should be produced. Defaults to {user_home}/ISAnalytics_reports.

Additional named arguments passed to outliers_test

Details

Modular structure:
The outlier filtering functions are structured in a modular fashion. There are 2 kind of functions:
* Outlier tests - Functions that perform some kind of calculation based on inputs and flags
metadata
e Qutlier filter - A function that takes one or more outlier tests, combines all the flags with a
given logic and filters out rows that are flagged as outliers

This function acts as the filter. It can either take one or more outlier tests as functions and call
them through the argument outlier_test, or it can take directly outputs produced by individual
tests in the argument outlier_test_outputs - if both are provided the second one has priority.
The second method offers a bit more freedom, since single tests can be run independently and
intermediate results saved and examined more in detail. If more than one test is to be performed,
the argument combination_logic tells the function how to combine the flags: you can specify 1
logical operator or more than 1, provided it is compatible with the number of tests.

Writing custom outlier tests:
You have the freedom to provide your own functions as outlier tests. For this purpose, functions
provided must respect this guidelines:

* Must take as input the whole metadata df

¢ Must return a df containing AT LEAST the pcr_id_col and a logical column "to_remove”
that contains the flag

e The pcr_id_col must contain all the values originally present in the metadata df

Value

A data frame of metadata which has less or the same amount of rows

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(), default_meta_agg(), outliers_by_pool_fragments(), purity_filter(),
realign_after_collisions(), remove_collisions(), threshold_filter()

per_id_column 69

Examples

data("association_file"”, package = "ISAnalytics")
filtered_af <- outlier_filter(association_file,
key = "BARCODE_MUX",
report_path = NULL
)
head(filtered_af)

pcr_id_column Easily retrieve the name of the pcr id column.

Description

The function is a shortcut to retrieve the currently set pcr id column name from the association file
column tags look-up table. This column is needed every time a joining operation with metadata
needs to be performed

Usage

pcr_id_column()

Value

The name of the column

See Also
Other dynamic vars: inspect_tags(), mandatory_IS_vars(), reset_mandatory_IS_vars(),

set_mandatory_IS_vars(), set_matrix_file_suffixes()

Examples

pcr_id_column()

proto_oncogenes Data frames for proto-oncogenes (human and mouse) and tumor-
suppressor genes from UniProt.

Description

The file is simply a result of a research with the keywords "proto-oncogenes" and "tumor suppres-
sor" for the target genomes on UniProt database.

70 purity_filter
Usage
data("proto_oncogenes”)

data("tumor_suppressors")

Format

An object of class tb1l_df (inherits from tbl, data. frame) with 569 rows and 13 columns.
An object of class tbl_df (inherits from tbl, data. frame) with 523 rows and 13 columns.

Functions

* tumor_suppressors: Data frame for tumor suppressor genes

purity_filter Filter integration sites based on purity.

Description

[Stable] Filter that targets possible contamination between cell lines based on a numeric quantifi-
cation (likely abundance or sequence count).

Usage

purity_filter(
X,
lineages = blood_lineages_default(),
aggregation_key = c("SubjectID"”, "CellMarker"”, "Tissue"”, "TimePoint"),
group_key = c("CellMarker”, "Tissue"),
selected_groups = NULL,
join_on = "CellMarker"”,
min_value = 3,
impurity_threshold = 10,
by_timepoint = TRUE,
timepoint_column = "TimePoint",
value_column = "seqCount_sum”

Arguments

X An aggregated integration matrix, obtained via aggregate_values_by_key()
lineages A data frame containing cell lineages information
aggregation_key

The key used for aggregating x

group_key A character vector of column names for re-aggregation. Column names must be
either in x or in 1ineages. See details.

purity_filter 71

selected_groups
Either NULL, a character vector or a data frame for group selection. See details.

join_on Common columns to perform a join operation on

min_value A minimum value to filter the input matrix. Integrations with a value strictly
lower than min_value are excluded (dropped) from the output.
impurity_threshold
The ratio threshold for impurity in groups

by_timepoint Should filtering be applied on each time point? If FALSE, all time points are
merged together

timepoint_column
Column in x containing the time point

value_column Column in x containing the numeric quantification of interest

Details

Setting input arguments:

The input matrix can be re-aggregated with the provided group_key argument. This key contains
the names of the columns to group on (besides the columns holding genomic coordinates of the
integration sites) and must be contained in at least one of x or lineages data frames. If the key
is not found only in x, then a join operation with the lineages data frame is performed on the
common column(s) join_on.

Group selection:

It is possible for the user to specify on which groups the logic of the filter should be applied
to. For example: if we have group_key = c("HematoLineage") and we set selected_groups
=c("CD34", "Myeloid", "Lymphoid") it means that a single integration will be evaluated for
the filter only for groups that have the values of "CD34", "Myeloid" and "Lymphoid" in the
"HematoLineage" column. If the same integration is present in other groups it is kept as it is.
selected_groups can be set to NULL if we want the logic to apply to every group present in the
data frame, it can be set as a simple character vector as the example above if the group key has
length 1 (and there is no need to filter on time point). If the group key is longer than 1 then the
filter is applied only on the first element of the key.

If a more refined selection on groups is needed, a data frame can be provided instead:

group_key = c("CellMarker”, "Tissue")
selected_groups = tibble::tribble(

~ CellMarker, ~ Tissue,
"CD34", "BM",
"CD14", "BM",
"CD14", "PB"

)

Columns in the data frame should be the same as group key (plus, eventually, the time point
column). In this example only those groups identified by the rows in the provided data frame are
processed.

Value

A data frame

72 quantification_types

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(),default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),
realign_after_collisions(), remove_collisions(), threshold_filter()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,

value_cols = c("seqCount”, "fragmentEstimate")
)
filtered_by_purity <- purity_filter(

X = aggreg,

value_column = "seqCount_sum”
)

head(filtered_by_purity)

quantification_types Possible choices for the quantification_type parameter.

Description
These are all the possible values for the quantification_type parameterin import_parallel_vispa2Matrices_interac
and import_parallel_vispa2Matrices_auto.

Usage

quantification_types()

Details
The possible values are:
* fragmentEstimate
* seqCount
* barcodeCount

e cellCount
¢ ShsCount

Value

A vector of characters for quantification types

realign_after_collisions 73

See Also

import_parallel_Vispa2Matrices_interactive, import_parallel_Vispa2Matrices_auto

Other Import functions helpers: annotation_issues(), date_formats(), default_af_transform(),
default_iss_file_prefixes(), matching_options()

Examples

quant_types <- quantification_types()

realign_after_collisions
Re-aligns matrices of other quantification types based on the pro-
cessed sequence count matrix.

Description

[Stable] This function should be used to keep data consistent among the same analysis: if for some
reason you removed the collisions by passing only the sequence count matrix to remove_collisions(),
you should call this function afterwards, providing a list of other quantification matrices. NOTE:

if you provided a list of several quantification types to remove_collisions() before, there is no
need to call this function.

Usage

realign_after_collisions(
sc_matrix,
other_matrices,
sample_column = pcr_id_column()

)

Arguments

sc_matrix The sequence count matrix already processed for collisions via remove_collisions()

other_matrices A named list of matrices to re-align. Names in the list must be quantification
types (quantification_types()) except "seqCount".

sample_column The name of the column containing the sample identifier

Details

For more details on how to use collision removal functionality: vignette("workflow_start”,
package = "ISAnalytics")

Value

A named list with re-aligned matrices

74 reduced AF_columns

See Also

remove_collisions

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(),default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),
purity_filter(), remove_collisions(), threshold_filter()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics"”)

separated <- separate_quant_matrices(
integration_matrices

)

no_coll <- remove_collisions(
x = separated$seqCount,
association_file = association_file,
quant_cols = c(seqCount = "Value"),
report_path = NULL

)

realigned <- realign_after_collisions(
sc_matrix = no_coll,
other_matrices = list(fragmentEstimate = separated$fragmentEstimate)

)
realigned
reduced_AF_columns Names of the columns of the association file to consider for Vispa2
launch.
Description

Selection of column names from the association file to be considered for Vispa2 launch. NOTE: the
TagID column appears only once but needs to be repeated twice for generating the launch file. Use
the appropriate function to generate the file automatically.

Usage

reduced_AF_columns()

Value

A character vector

Examples

reduced_AF_columns()

refGenes_hg19 75

refGenes_hg19 Gene annotation files for hgl9, mm9.

Description

This file was obtained following this steps:

1. Download from http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/ the refGene.sql,
knownGene.sql, knownToRefSeq.sql, kgXref.sql tables

2. Import everything it in mysql

3. Generate views for annotation:

SELECT kg. chrom™, min(kg.cdsStart) as CDS_minStart,

max(kg. cdsEnd™) as CDS_maxEnd, k2a.geneSymbol,

kg. strand™ as GeneStrand, min(kg.txStart) as TSS_minStart,

max (kg.txEnd) as TSS_maxStart,

kg.proteinID as ProteinlID, k2a.protAcc as ProteinAcc, k2a.spDisplayID
FROM ~knownGene~ AS kg JOIN kgXref AS k2a

ON BINARY kg.name = k2a.kgID COLLATE latinl_bin

-- latinl_swedish_ci

-- WHERE k2a.spDisplayID IS NOT NULL and (k2a. geneSymbol™ LIKE 'Tcra%' or
k2a. geneSymbol~ LIKE 'TCRA%')

WHERE (k2a.spDisplayID IS NOT NULL or k2a.spDisplayID NOT LIKE '')
and k2a. geneSymbol™~ LIKE 'Tcra%'

group by kg. chrom™, k2a.geneSymbol

ORDER BY kg.chrom ASC , kg.txStart ASC

Usage

data("refGenes_hg19")

data("refGenes_mm9")

Format

An object of class tb1_df (inherits from tb1, data. frame) with 27275 rows and 12 columns.
An object of class tbl_df (inherits from tbl, data. frame) with 24487 rows and 12 columns.

Functions

* refGenes_mm9: Data frame for murine mm9 genome

76 refGenes_hg38

refGenes_hg38 Reference gene annotation for hg38 or mml0.

Description

A gene-level annotation dataset derived from the UCSC knownGene and kgXref tables for the
hg38 or mm10 genome assembly. This data aggregates transcript-level information into gene-level
summary statistics, including transcript span, CDS length, and average values across isoforms. It
is the hg38 equivalent of refGenes_hg19, or mm10 equivalent of refGenes_mm9, updated using
Ensembl-based transcript IDs from GENCODE.

These objects are tibbles (tbl_df) and inherit from data. frame.

Usage
data("refGenes_hg38")

data("refGenes_mm10")

Format
A tibble with one row per gene and the following columns:

name2 Gene symbol (e.g., AICF)
chrom Chromosome (e.g., chr10)
strand Strand direction, "+" or "-"

min_txStart Minimum transcript start position across all isoforms
max_txEnd Maximum transcript end position across all isoforms
minmax_TxLen Gene length computed as max_txEnd - min_txStart
average_TxLen Average transcript length across isoforms

name Transcript ID (typically Ensembl ID in hg38, e.g., ENST00000...)
min_cdsStart Minimum CDS start position

max_cdsEnd Maximum CDS end position

minmax_CdsLen CDS length computed as max_cdsEnd - min_cdsStart

average_CdsLen Average CDS length across isoforms

An object of class tb1_df (inherits from tbl, data. frame) with 55316 rows and 12 columns.

Functions

* refGenes_mm10: Data frame for murine mm10 genome

Source

UCSC Genome Browser: https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/
UCSC Genome Browser: https://hgdownload. soe.ucsc.edu/goldenPath/mm10/database/

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/
https://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/

refGene_table_cols 77

refGene_table_cols Required columns for refGene file.

Description

Required columns for refGene file.

Usage

refGene_table_cols()

Value

Character vector of column names

Examples

refGene_table_cols()

remove_collisions Identifies and removes collisions.

Description

[Stable] A collision is an integration (aka a unique combination of the provided mandatory_IS_vars())
which is observed in more than one independent sample. The function tries to decide to which in-
dependent sample should an integration event be assigned to, and if no decision can be taken, the
integration is completely removed from the data frame. For more details refer to the vignette "Col-
lision removal functionality": vignette("workflow_start”, package = "ISAnalytics")

Usage

remove_collisions(
X,
association_file,
independent_sample_id = c("ProjectID”, "SubjectID"),

date_col = "SequencingDate”,
reads_ratio = 10,
quant_cols = c(seqCount = "seqCount”, fragmentEstimate = "fragmentEstimate"),

report_path = default_report_path(),
max_workers = NULL

78 remove_collisions

Arguments

X Either a multi-quantification matrix (recommended) or a named list of matrices
(names must be quantification types)
association_file
The association file imported via import_association_file()
independent_sample_id
A character vector of column names that identify independent samples
date_col The date column that should be considered.

reads_ratio A single numeric value that represents the ratio that has to be considered when
deciding between seqCount value.

quant_cols A named character vector where names are quantification types and values are
the names of the corresponding columns. The quantification seqCount MUST
be included in the vector.

report_path The path where the report file should be saved. Can be a folder or NULL if no
report should be produced. Defaults to {user_home}/ISAnalytics_reports.

max_workers Maximum number of parallel workers to distribute the workload. If NULL (de-
fault) produces the maximum amount of workers allowed, a numeric value is
requested otherwise. WARNING: a higher number of workers speeds up com-
putation at the cost of memory consumption! Tune this parameter accordingly.

Value

Either a multi-quantification matrix or a list of data frames

Required tags
The function will explicitly check for the presence of these tags:
* project_id
* pool_id

* pcr_replicate

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(), default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),
purity_filter(), realign_after_collisions(), threshold_filter()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

no_coll <- remove_collisions(
X = integration_matrices,
association_file = association_file,
report_path = NULL

)

head(no_coll)

reset_mandatory_IS_vars 79

reset_mandatory_IS_vars
Resets dynamic vars to the default values.

Description

Reverts all changes to dynamic vars to the default values. For more details, refer to the dedicated
vignette vignette("workflow_start"”, package="ISAnalytics").

* reset_mandatory_IS_vars() re-sets the look-up table for mandatory IS vars.

* reset_annotation_IS_vars() re-sets the look-up table for genomic annotation IS vars.
* reset_af_columns_def () re-sets the look-up table for association file columns vars

* reset_iss_stats_specs() re-sets the look-up table for VISPA2 pool statistics vars

* reset_matrix_file_suffixes() re-sets the matrix file suffixes look-up table

* reset_dyn_vars_config() re-sets all look-up tables

Usage

reset_mandatory_IS_vars()
reset_annotation_IS_vars()
reset_af_columns_def ()
reset_iss_stats_specs()
reset_matrix_file_suffixes()

reset_dyn_vars_config()

Value

NULL

See Also

Other dynamic vars: inspect_tags(), mandatory_IS_vars(),pcr_id_column(), set_mandatory_IS_vars(),
set_matrix_file_suffixes()

80

sample_statistics

Examples

reset_mandatory_IS_vars()
reset_annotation_IS_vars()
reset_af_columns_def ()
reset_iss_stats_specs()
reset_matrix_file_suffixes()

reset_dyn_vars_config()

sample_statistics Computes user specified functions on numerical columns and updates
the metadata data frame accordingly.

Description

[Stable] The function operates on a data frame by grouping the content by the sample key and com-
puting every function specified on every column in the value_columns parameter. After that the
metadata data frame is updated by including the computed results as columns for the correspond-
ing key. For this reason it’s required that both x and metadata have the same sample key, and it’s
particularly important if the user is working with previously aggregated data. For example:

data("integration_matrices"”, package = "ISAnalytics")
data("association_file”, package = "ISAnalytics")
aggreg <- aggregate_values_by_key(

X = integration_matrices,

association_file = association_file,

value_cols = c("seqCount”, "fragmentEstimate")

)

aggreg_meta <- aggregate_metadata(association_file = association_file)

sample_stats <- sample_statistics(x = aggreg,

metadata = aggreg_meta,

value_columns = c("seqCount”, "fragmentEstimate"”),

sample_key = c("SubjectID”, "CellMarker”,"Tissue"”, "TimePoint"))

Usage

sample_statistics(
X,
metadata,
sample_key = "CompleteAmplificationID",
value_columns = "Value",

sample_statistics 81

functions = default_stats(),
add_integrations_count = TRUE

)
Arguments
X A data frame
metadata The metadata data frame
sample_key Character vector representing the key for identifying a sample

value_columns The name of the columns to be computed, must be numeric or integer

functions A named list of function or purrr-style lambdas

add_integrations_count
Add the count of distinct integration sites for each group? Can be computed
only if x contains the mandatory columns mandatory_IS_vars()

Value

A list with modified x and metadata data frames

Required tags

The function will explicitly check for the presence of these tags:
¢ All columns declared in mandatory_IS_vars()

These are checked only if add_integrations_count = TRUE.

See Also

Other Analysis functions: CIS_grubbs(),HSC_population_size_estimate(), compute_abundance(),
cumulative_is(), gene_frequency_fisher(), is_sharing(), iss_source(), top_integrations(),
top_targeted_genes()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

stats <- sample_statistics(
X = integration_matrices,
metadata = association_file,
value_columns = c("seqCount”, "fragmentEstimate")

)

stats

82 separate_quant_matrices

separate_quant_matrices
Separate a multiple-quantification matrix into single quantification
matrices.

Description

[Stable] The function separates a single multi-quantification integration matrix, obtained via com-
parison_matrix, into single quantification matrices as a named list of tibbles.

Usage

separate_quant_matrices(
X,
fragmentEstimate = "fragmentEstimate”,
seqCount = "seqCount”,
barcodeCount = "barcodeCount”,
cellCount = "cellCount"”,
ShsCount = "ShsCount”,
key = c(mandatory_IS_vars(), annotation_IS_vars(), "CompleteAmplificationID")

Arguments
X Single integration matrix with multiple quantification value columns, obtained
via comparison_matrix.
fragmentEstimate
Name of the fragment estimate values column in input
seqCount Name of the sequence count values column in input

barcodeCount Name of the barcode count values column in input

cellCount Name of the cell count values column in input

ShsCount Name of the shs count values column in input

key Key columns to perform the joining operation
Value

A named list of data frames, where names are quantification types

See Also

quantification_types

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_Vispa2_launch_AF (), generate_blank_association_file(), generate_default_folder_structure(),
import_ISA_settings(), transform_columns()

set_mandatory_IS_vars 83

Examples

data("integration_matrices”, package = "ISAnalytics")
separated <- separate_quant_matrices(
integration_matrices

)

set_mandatory_IS_vars Define custom dynamic vars.

Description

This set of function allows users to specify custom look-up tables for dynamic variables. For more
details, refer to the dedicated vignette vignette ("workflow_start”, package="ISAnalytics").

* set_mandatory_IS_vars() sets the look-up table for mandatory IS vars.
* set_annotation_IS_vars() sets the look-up table for genomic annotation IS vars.
* set_af_columns_def () sets the look-up table for association file columns vars

* set_iss_stats_specs() sets the look-up table for VISPA2 pool statistics vars

Usage

set_mandatory_IS_vars(specs)
set_annotation_IS_vars(specs)
set_af_columns_def (specs)

set_iss_stats_specs(specs)

Arguments

specs Either a named vector or a data frame with specific format. See details.

Details

The user can supply specifications in the form of a named vector or a data frame.

Named vector:

When using a named vector, names should be the names of the columns, values should be the type
associated with each column in the form of a string. The vector gets automatically converted into
a data frame with the right format (default values for the columns transform and flag are NULL
and required respectively). Use of this method is however discouraged: data frame inputs are

preferred since they offer more control.

84

set_mandatory_IS_vars

Look-up table structure:
The look-up table for dynamic vars should always follow this structure:

names types transform flag tag
<name of the column> <type> <a lambda or NULL> <flag> <tag>

where

names contains the name of the column as a character

types contains the type of the column. Type should be expressed as a string and should be
in one of the allowed types

char for character (strings)

int for integers

logi for logical values (TRUE / FALSE)

numeric for numeric values

factor for factors

date for generic date format - note that functions that need to read and parse files will try to
guess the format and parsing may fail

One of the accepted date/datetime formats by lubridate, you can use ISAnalytics: :date_formats()
to view the accepted formats

transform: a purrr-style lambda that is applied immediately after importing. This is useful
to operate simple transformations like removing unwanted characters or rounding to a certain
precision. Please note that these lambdas need to be functions that accept a vector as input
and only operate a transformation, aka they output a vector of the same length as the input.
For more complicated applications that may require the value of other columns, appropriate
functions should be manually applied post-import.

flag: as of now, it should be set either to required or optional - some functions internally
check for only required tags presence and if those are missing from inputs they fail, signaling
failure to the user

tag: a specific tag expressed as a string

Column types::
Type should be expressed as a string and should be in one of the allowed types

Value

NULL

char for character (strings)

int for integers

logi for logical values (TRUE / FALSE)

numeric for numeric values

factor for factors

date for generic date format - note that functions that need to read and parse files will try to

guess the format and parsing may fail

One of the accepted date/datetime formats by lubridate, you can use ISAnalytics: :date_formats()
to view the accepted formats

set_mandatory_IS_vars 85

See Also

Other dynamic vars: inspect_tags(),mandatory_IS_vars(),pcr_id_column(), reset_mandatory_IS_vars(),
set_matrix_file_suffixes()

Examples

tmp_mand_vars <- tibble::tribble(
~names, ~types, ~transform, ~flag, ~tag,
"chrom”, "char"”, ~ stringr::str_replace_all(.x,
"chromosome”,
"position”, "int", NULL, "required”, "locus",
"strand”, "char”, NULL, "required”, "is_strand”,
"gap", "int"”, NULL, "required”, NA_character_,
"junction”, "int", NULL, "required”, NA_character_

n n

chr”, ""), "required”,

)
set_mandatory_IS_vars(tmp_mand_vars)
print(mandatory_IS_vars(TRUE))
reset_mandatory_IS_vars()

tmp_annot_vars <- tibble::tribble(
~names, ~types, ~transform, ~flag, ~tag,
"gene", "char”, NULL, "required”,
"gene_symbol”,
"gene_strand”, "char”, NULL, "required”, "gene_strand”
)
print(annotation_IS_vars(TRUE))
reset_annotation_IS_vars()

temp_af_cols <- tibble::tribble(
~names, ~types, ~transform, ~flag, ~tag,
"project”, "char"”, NULL, "required”,
"project_id",
"pcr_id"”, "char”, NULL, "required"”, "pcr_repl_id",
"subject”, "char"”, NULL, "required”, "subject”
)
set_af_columns_def (temp_af_cols)
print(association_file_columns(TRUE))
reset_af_columns_def ()

tmp_iss_vars <- tibble::tribble(
~names, ~types, ~transform, ~flag, ~tag,
"pool”, "char"”, NULL, "required”,
"vispa_concatenate”,
"tag", "char", NULL, "required"”, "tag_seq”,
"barcode”, "int"”, NULL, "required”, NA_character_
)
set_iss_stats_specs(tmp_iss_vars)
iss_stats_specs(TRUE)
reset_iss_stats_specs()

86 set_matrix_file_suffixes

set_matrix_file_suffixes
Sets the look-up table for matrix file suffixes.

Description

The function automatically produces and sets a look-up table of matrix file suffixes based on user
input.

Usage

set_matrix_file_suffixes(
quantification_suffix = list(seqCount = "seqCount”, fragmentEstimate =

"fragmentEstimate”, barcodeCount = "barcodeCount”, cellCount = "cellCount”, ShsCount
= "ShsCount"),

annotation_suffix = list(annotated = ".no@.annotated”, not_annotated = ""),
file_ext = "tsv.gz",

glue_file_spec = "{quantification_suffix}_matrix{annotation_suffix}.{file_ext}"

)

Arguments

quantification_suffix

A named list - names must be quantification types in quantification_types(),
and values must be single strings, containing the associated suffix. Please note

that ALL quantification types must be specified or the function will produce an
error.

annotation_suffix

A named list - names must be annotated and not_annotated, values must be
single strings, containing the associated suffix. Please note that both names must
be present in the list or the function will produce an error.

file_ext The file extension (e.g. tsv, tsv.gz)

glue_file_spec A string specifying the pattern used to form the entire suffix, as per glue: :glue()
requirements. The string should contain the reference to quantification_suffix,
annotation_suffix and file_ext.

Value

NULL

See Also

Other dynamic vars: inspect_tags(), mandatory_IS_vars(),pcr_id_column(), reset_mandatory_IS_vars(),
set_mandatory_IS_vars()

sharing_heatmap

Examples

set_matrix_file_suffixes(
quantification_suffix = list(

n n

seqCount = "sc”,
fragmentEstimate = "fe",
barcodeCount = "barcodeCount”,

cellCount = "cellCount”,
ShsCount = "ShsCount”
)!
annotation_suffix = list(annotated = "annot"”, not_annotated = "")
)
matrix_file_suffixes()
reset_matrix_file_suffixes()

87

sharing_heatmap Plot IS sharing heatmaps.

Description

[Stable] Displays the IS sharing calculated via is_sharing as heatmaps.

Usage

sharing_heatmap(
sharing_df,
show_on_x = "g1",
show_on_y = "g2",
absolute_sharing_col = "shared”,
title_annot = NULL,
plot_relative_sharing = TRUE,
rel_sharing_col = c("on_g1", "on_union"),
show_perc_symbol_rel = TRUE,
interactive = FALSE

)

Arguments
sharing_df The data frame containing the IS sharing data
show_on_x Name of the column to plot on the x axis
show_on_y Name of the column to plot on the y axis

absolute_sharing_col
Name of the column that contains the absolute values of IS sharing
title_annot Additional text to display in the title

plot_relative_sharing
Logical. Compute heatmaps also for relative sharing?

88 sharing_venn

rel_sharing_col
Names of the columns to consider as relative sharing. The function is going to
plot one heatmap per column in this argument.

show_perc_symbol_rel
Logical. Only relevant if plot_relative_sharing is set to TRUE, should the
percentage symbol be displayed in relative heatmaps?

interactive Logical. Requires the package plotly is required for this functionality. Returns
the heatmaps as interactive HTML widgets.

Value

A list of plots or widgets

See Also

is_sharing

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(), circos_genomic_density(),
fisher_scatterplot(), integration_alluvial_plot(), sharing_venn(), top_abund_tableGrob(),
top_cis_overtime_heatmap()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics"”)

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
sharing <- is_sharing(aggreg,
minimal = FALSE,
include_self_comp = TRUE
)
sharing_heatmaps <- sharing_heatmap(sharing_df = sharing)
sharing_heatmaps$absolute
sharing_heatmaps$on_g1
sharing_heatmaps$on_union

sharing_venn Produce tables to plot sharing venn or euler diagrams.

Description
[Stable] This function processes a sharing data frame obtained via is_sharing() with the option
table_for_venn = TRUE to obtain a list of objects that can be plotted as venn or euler diagrams.
Usage

sharing_venn(sharing_df, row_range = NULL, euler = TRUE)

https://plotly.com/r/getting-started/

threshold_filter 89

Arguments
sharing_df The sharing data frame
row_range Either NULL or a numeric vector of row indexes (e.g. c¢(1, 4, 5) will produce
tables only for rows 1, 4 and 5)
euler If TRUE will produce tables for euler diagrams, otherwise will produce tables for
venn diagrams
Details

The functions requires the package eulerr. Each row of the input data frame is representable as
a venn/euler diagram. The function allows to specify a range of row indexes to obtain a list of
plottable objects all at once, leave it to NULL to process all rows.

To actually plot the data it is sufficient to call the function plot() and specify optional customiza-
tion arguments. See eulerr docs for more detail on this.

Value

A list of data frames

See Also

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(), circos_genomic_density(),
fisher_scatterplot(), integration_alluvial_plot(), sharing_heatmap(), top_abund_tableGrob(),
top_cis_overtime_heatmap()

Examples

data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")
aggreg <- aggregate_values_by_key(

X = integration_matrices,

association_file = association_file,

value_cols = c("seqCount”, "fragmentEstimate")
)
sharing <- is_sharing(aggreg, n_comp = 3, table_for_venn = TRUE)
venn_tbls <- sharing_venn(sharing, row_range = 1:3, euler = FALSE)
venn_tbls
plot(venn_tbls[[1]1])

threshold_filter Filter data frames with custom predicates

Description
[Deprecated] This function is deprecated and it’s likely going to be dropped in the next release
cycle.

Filter a single data frame or a list of data frames with custom predicates assembled from the function
parameters.

https://jolars.github.io/eulerr/index.html
https://jolars.github.io/eulerr/reference/plot.euler.html

90 threshold_filter

Usage

threshold_filter(x, threshold, cols_to_compare = "Value", comparators = ">")
Arguments

X A data frame or a list of data frames

threshold A numeric/integer vector or a named list of numeric/integer vectors

cols_to_compare
A character vector or a named list of character vectors

comparators A character vector or a named list of character vectors. Must be one of the
allowed values between c("<", ">" "==""l="">="_"<=")

Value

A data frame or a list of data frames

See Also

Other Data cleaning and pre-processing: aggregate_metadata(), aggregate_values_by_key(),
compute_near_integrations(),default_meta_agg(),outlier_filter(),outliers_by_pool_fragments(),
purity_filter(), realign_after_collisions(), remove_collisions()

Examples

Not run:

example_df <- tibble::tibble(
a = c(20, 30, 40),
b = c(40, 50, 60),
c =c("a", "b", "c"),
d = c(3L, 4L, 5L)

)

example_list <- list(
first = example_df,
second = example_df,
third = example_df

)

filtered <- threshold_filter(example_list,

threshold = list(
first = c(20, 60),
third = c(25)

),

cols_to_compare = list(
first = c("a", "b"),
third = c("a")

),

comparators = list(
first = c(">", "<"),
third = c(">=")

top_abund_tableGrob 91

)

filtered

#it

End(Not run)

top_abund_tableGrob Summary top abundant tableGrobs for plots.

Description

Produce summary tableGrobs as R graphics. For this functionality the suggested package gridExtra
is required. To visualize the resulting object:

gr

Usage

to

idExtra::grid.arrange(tableGrob)

p_abund_tableGrob(

df,

id_cols = mandatory_IS_vars(),

quant_col = "fragmentEstimate_sum_PercAbundance”,
by = "TimePoint",

alluvial_plot = NULL,

top_n = 10,

tbl_cols = "GeneName”,
include_id_cols = FALSE,
digits = 2,

perc_symbol = TRUE,
transform_by = NULL

)
Arguments

df A data frame

id_cols Character vector of id column names. To plot after alluvial, these columns must
be the same as the alluvia argument of integration_alluvial_plot.

quant_col Column name holding the quantification value. To plot after alluvial, these
columns must be the same as the plot_y argument of integration_alluvial_plot.

by The column name to subdivide tables for. The function will produce one table
for each distinct value in by. To plot after alluvial, these columns must be the
same as the plot_x argument of integration_alluvial_plot.

alluvial_plot Either NULL or an alluvial plot for color mapping between values of y.

top_n Integer. How many rows should the table contain at most?

tbl_cols Table columns to show in the final output besides quant_col.

in

clude_id_cols
Logical. Include id_cols in the output?

https://cran.r-project.org/web/packages/gridExtra/index.html

92 top_cis_overtime_heatmap

digits Integer. Digits to show for the quantification column
perc_symbol Logical. Show percentage symbol in the quantification column?

transform_by Either a function or a purrr-style lambda. This function is applied to the column
by before separating columns. If NULL no function is applied. Useful to modify
column order in final table.

Value

A tableGrob object

See Also

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(), circos_genomic_density(),
fisher_scatterplot(), integration_alluvial_plot(), sharing_heatmap(), sharing_venn(),
top_cis_overtime_heatmap()

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
abund <- compute_abundance(x = aggreg)
grob <- top_abund_tableGrob(abund)
gridExtra::grid.arrange(grob)

with transform
grob <- top_abund_tableGrob(abund, transform_by = ~ as.numeric(.x))

top_cis_overtime_heatmap
Heatmaps for the top N common insertion sites over time.

Description

[Experimental] This function computes the visualization of the results of the function CIS_grubbs_overtime()
in the form of heatmaps for the top N selected genes over time.

Usage
top_cis_overtime_heatmap(
X’
n_genes = 20,
timepoint_col = "TimePoint”,

group_col = "group”,

top_cis_overtime_heatmap 93

onco_db_file = "proto_oncogenes”,
tumor_suppressors_db_file = "tumor_suppressors”,
species = "human”,

known_onco = known_clinical_oncogenes(),
suspicious_genes = clinical_relevant_suspicious_genes(),
significance_threshold = 0.05,

plot_values = c("minus_log_p", "p"),

p_value_correction = c("fdr"”, "bonferroni”),
prune_tp_treshold = 20,

gene_selection_param = c("trimmed”, "n", "mean”, "sd”, "median”, "mad”, "min
fill_0_selection = TRUE,

fill_NA_in_heatmap = FALSE,

heatmap_color_palette = "default”,

title_generator = NULL,

save_as_files = FALSE,

files_format = c("pdf”, "png", "tiff", "bmp”, "jpg"),
folder_path = NULL,

n

, nmaxn) ,

Arguments

X Output of the function CIS_grubbs_overtime(), either in single data frame
form or nested lists

n_genes Number of top genes to consider

timepoint_col The name of the time point column in x

group_col The name of the group column in x

onco_db_file Uniprot file for proto-oncogenes (see details). If different from default, should
be supplied as a path to a file.

tumor_suppressors_db_file
Uniprot file for tumor-suppressor genes. If different from default, should be
supplied as a path to a file.

non

species One between "human”, "mouse” and "all”

known_onco Data frame with known oncogenes. See details.
suspicious_genes
Data frame with clinical relevant suspicious genes. See details.
significance_threshold
The significance threshold
plot_values Which kind of values should be plotted? Can either be "p"” for the p-value or
"minus_log_p" for a scaled p-value of the Grubbs test
p_value_correction
One among "bonferroni” and "fdr"

prune_tp_treshold
Minimum number of genes to retain a time point. See details.

94 top_cis_overtime_heatmap

gene_selection_param
The descriptive statistic measure to decide which genes to plot, possible choices

nn non

are "trimmed”, "n"”, "mean”, "sd", "median”,"mad”, "min”, "max". See

details.
fill_0_selection

Fill NA values with Os before computing statistics for each gene? (TRUE/FALSE)
fill_NA_in_heatmap

Fill NA values with 0 when plotting the heatmap? (TRUE/FALSE)
heatmap_color_palette

Colors for values in the heatmaps, either "default” or a function producing a

color palette, obtainable via grDevices: :colorRampPalette.

title_generator
Either NULL or a function. See details.
save_as_files Should heatmaps be saved to files on disk? (TRUE/FALSE)

files_format The extension of the files produced, supported formats are "pdf”, "png"”, "tiff", "bmp”, "jpg".
Relevant only if files_format = TRUE

folder_path Path to the folder where files will be saved

Other params to pass to pheatmap: : pheatmap

Details

Oncogene and tumor suppressor genes files:

These files are included in the package for user convenience and are simply UniProt files with
gene annotations for human and mouse. For more details on how this files were generated use the
help ?tumor_suppressors, ?proto_oncogenes

Known oncogenes:
The default values are included in this package and it can be accessed by doing:

known_clinical_oncogenes()

If the user wants to change this parameter the input data frame must preserve the column structure.
The same goes for the suspicious_genes parameter (DOIReference column is optional):

clinical_relevant_suspicious_genes()

Top N gene selection:
Since the genes present in different time point slices are likely different, the decision process to
select the final top N genes to represent in the heatmap follows this logic:
» Each time point slice is arranged either in ascending order (if we want to plot the p-value) or
in descending order (if we want to plot the scaled p-value) and the top n genes are selected
* A series of statistics are computed over the union set of genes on ALL time points (min, max,
mean, ...)
* A decision is taken by considering the ordered gene_selection_param (order depends once
again if the values are scaled or not), and the first N genes are selected for plotting.

top_cis_overtime_heatmap 95

Filling NA values prior calculations:

It is possible to fill NA values (aka missing combinations of GENE/TP) with Os prior computing
the descriptive statistics on which gene selection is based. Please keep in mind that this has an
impact on the final result, since for computing metrics such as the mean, NA values are usually
removed, decreasing the overall number of values considered - this does not hold when NA
values are substituted with Os.

The statistics:

Statistics are computed for each gene over all time points of each group. More in detail, n:
counts the number of instances (rows) in which the genes appears, aka it counts the time points
in which the gene is present. NOTE: if fill_0_selection option is set to TRUE this value will
be equal for all genes! All other statistics as per the argument gene_selection_param map to
the corresponding R functions with the exception of trimmed which is a simple call to the mean
function with the argument trimmed = 0.1.

Aesthetics:

It is possible to customise the appearence of the plot through different parameters.

e fill_NA_in_heatmap tells the function whether missing combinations of GENE/TP should
be plotted as NA or filled with a value (1 if p-value, O if scaled p-value)

* A title generator function can be provided to dynamically create a title for the plots: the
function can accept two positional arguments for the group identifier and the number of
selected genes respectively. If one or none of the arguments are of interest, they can be
absorbed with

* heatmap_color_palette can be used to specify a function from which colors are sampled
(refers to the colors of values only)

» To change the colors associated with annotations instead, use the argument annotation_colors
of pheatmap: : pheatmap() - it must be set to a list with this format:

list(
KnownGeneClass = c("OncoGene" = color_spec,
"Other"” = color_spec,
"TumSuppressor"” = color_spec),
ClinicalRelevance = c("TRUE" = color_spec,

"FALSE" = color_spec),
CriticalForInsMut = c("TRUE" = color_spec,
"FALSE" = color_spec)

Value

Either a list of graphical objects or a list of paths where plots were saved

See Also

Other Plotting functions: CIS_volcano_plot(),HSC_population_plot(), circos_genomic_density(),
fisher_scatterplot(), integration_alluvial_plot(), sharing_heatmap(), sharing_venn(),
top_abund_tableGrob()

96 top_integrations

Examples
data("integration_matrices”, package = "ISAnalytics")
data("association_file"”, package = "ISAnalytics")

aggreg <- aggregate_values_by_key(
X = integration_matrices,
association_file = association_file,
value_cols = c("seqCount”, "fragmentEstimate")
)
cis_overtime <- CIS_grubbs_overtime(aggreg)
hmaps <- top_cis_overtime_heatmap(cis_overtime$cis,
fill_NA_in_heatmap = TRUE
)

To re-plot:
grid::grid.newpage()
grid::grid.draw(hmaps$PT001$gtable)

top_integrations Sorts and keeps the top n integration sites based on the values in a
given column.

Description

[Stable] The input data frame will be sorted by the highest values in the columns specified and the
top n rows will be returned as output. The user can choose to keep additional columns in the output
by passing a vector of column names or passing 2 "shortcuts":

* keep = "everything" keeps all columns in the original data frame

* keep = "nothing” only keeps the mandatory columns (mandatory_IS_vars()) plus the columns

in the columns parameter.

Usage
top_integrations(
X ’
n = 20,
columns = "fragmentEstimate_sum_RelAbundance”,
keep = "everything”,
key = NULL
)
Arguments
X An integration matrix (data frame containing mandatory_IS_vars())
n How many integrations should be sliced (in total or for each group)? Must be
numeric or integer and greater than 0
columns Columns to use for the sorting. If more than a column is supplied primary

ordering is done on the first column, secondary ordering on all other columns

top_targeted_genes 97

keep Names of the columns to keep besides mandatory_IS_vars() and columns

key Either NULL or a character vector of column names to group by. If not NULL the
input will be grouped and the top fraction will be extracted from each group.

Value

Either a data frame with at most n rows or a data frames with at most n*(number of groups) rows.

Required tags
The function will explicitly check for the presence of these tags:

¢ All columns declared in mandatory_IS_vars()

See Also

Other Analysis functions: CIS_grubbs (), HSC_population_size_estimate(), compute_abundance(),
cumulative_is(), gene_frequency_fisher(), is_sharing(), iss_source(), sample_statistics(),
top_targeted_genes()

Examples

smpl <- tibble::tibble(
chr = c("1", "2", "3", "4" "5" "6"),
integration_locus = c(14536, 14544, 14512, 14236, 14522, 14566),
strand = c("+", "+", U=T) UM M=M 0NNy
CompleteAmplificationID = c("ID1", "ID2", "ID1", "ID1", "ID3", "ID2"),
Value = c(3, 10, 40, 2, 15, 150),
Value2 = c(456, 87, 87, 9, 64, 96),
Value3 = c("a", "b", "c", "d", "e", "f")

)
top <- top_integrations(smpl,
n =3,
columns = c("Value”, "Value2"),
keep = "nothing”
)
top_key <- top_integrations(smpl,
n=3,
columns = "Value”,
keep = "Value2",
key = "CompleteAmplificationID”
)
top_targeted_genes Top n targeted genes based on number of IS.
Description

[Experimental] Produces a summary of the number of integration events per gene, orders the table
in decreasing order and slices the first n rows - either on all the data frame or by group.

98 top_targeted_genes
Usage
top_targeted_genes(
X ’
n = 20,
key = c("SubjectID", "CellMarker"”, "Tissue"”, "TimePoint"),
consider_chr = TRUE,
consider_gene_strand = TRUE,
as_df = TRUE
)
Arguments
X An integration matrix - must be annotated
n Number of rows to slice
key If slice has to be performed for each group, the character vector of column names
that identify the groups. If NULL considers the whole input data frame.
consider_chr Logical, should the chromosome be taken into account? See details.
consider_gene_strand
Logical, should the gene strand be taken into account? See details.
as_df If computation is performed by group, TRUE returns all groups merged in a single
data frame with a column containing the group id. If FALSE returns a named list.
Details
Gene grouping:
When producing a summary of IS by gene, there are different options that can be chosen. The
argument consider_chr accounts for the fact that some genes (same gene symbol) may span
more than one chromosome: if set to TRUE counts of IS will be separated for those genes that span
2 or more chromosomes - in other words they will be in 2 different rows of the output table. On
the contrary, if the argument is set to FALSE, counts will be produced in a single row.
NOTE: the function counts DISTINCT integration events, which logically corresponds to a union
of sets. Be aware of the fact that counts per group and counts with different arguments might be
different: if for example counts are performed by considering chromosome and there is one gene
symbol with 2 different counts, the sum of those 2 will likely not be equal to the count obtained
by performing the calculations without considering the chromosome.
The same reasoning can be applied for the argument consider_gene_strand, that takes into
account the strand of the gene.
Value
A data frame or a list of data frames
Required tags

The function will explicitly check for the presence of these tags:

e chromosome

transform_columns 99

* locus
* gene_symbol
* gene_strand

Note that the tags "gene_strand" and "chromosome" are explicitly required only if consider_chr
= TRUE and/or consider_gene_strand = TRUE.

See Also

Other Analysis functions: CIS_grubbs(),HSC_population_size_estimate(), compute_abundance(),

cumulative_is(), gene_frequency_fisher(), is_sharing(), iss_source(), sample_statistics(),
top_integrations()

Examples

data("integration_matrices”, package = "ISAnalytics")
top_targ <- top_targeted_genes(
integration_matrices,

key = NULL
)
top_targ
transform_columns Apply transformations to an arbitrary number of columns.
Description

This function takes a named list of purr-style lambdas where names are the names of the columns
in the data frame that must be transformed. NOTE: the columns are overridden, not appended.

Usage

transform_columns(df, transf_list)

Arguments
df The data frame on which transformations should be operated
transf_list A named list of purrr-style lambdas, where names are column names the func-
tion should be applied to.
Details

Lambdas provided in input must be transformations, aka functions that take in input a vector and
return a vector of the same length as the input.

If the input transformation list contains column names that are not present in the input data frame,
they are simply ignored.

100 unzip_file_system

Value

A data frame with transformed columns

See Also

Other Utilities: as_sparse_matrix(), comparison_matrix(), enable_progress_bars(), export_ISA_settings(),
generate_Vispa2_launch_AF (), generate_blank_association_file(), generate_default_folder_structure(),
import_ISA_settings(), separate_quant_matrices()

Examples

df <- tibble::tribble(
~A, ~B, ~C, ~D,

1, 2, "a", "aa",
3, 4, "b", "bb",
5, 6, "c", "cc"
)
lambdas <- list(A =~ .x + 1, B=~ .x +2, C =~ stringr::str_to_upper(.x))

transform_columns(df, lambdas)

unzip_file_system A utility function to unzip and use example file systems included in the
package

Description

[Deprecated] From ISAnalytics 1.5.4 this function is defunct, since the package doesn’t in-
clude example tabular files anymore. Use the function generate_default_folder_structure()
to generate a default folder structure for running tests and play with the package import func-
tions. If you don’t need to test import functions, you can simply load package included data via
data("integration_matrices”) or data("association_file").

Usage

unzip_file_system(zipfile, name)

Arguments

zipfile The zipped file to decompress

name The name of the folder in the zipped archive ("fs" or "fserr")
Value

A path to reference

Index

* Analysis functions helpers
default_stats, 31

* Analysis functions
CIS_grubbs, 12
compute_abundance, 20
cumulative_is, 25
gene_frequency_fisher, 37
HSC_population_size_estimate, 41
is_sharing, 60
iss_source, 58
sample_statistics, 80
top_integrations, 96
top_targeted_genes, 97

x Data cleaning and pre-processing
aggregate_metadata, 4
aggregate_values_by_key, 5
compute_near_integrations, 21
default_meta_agg, 29
outlier_filter, 67
outliers_by_pool_fragments, 65
purity_filter, 70
realign_after_collisions, 73
remove_collisions, 77
threshold_filter, 89

+ Import functions helpers
annotation_issues, 7
date_formats, 27
default_af_transform, 27
default_iss_file_prefixes, 28
matching_options, 64
quantification_types, 72

+ Import functions
import_association_file, 44
import_parallel_Vispa2Matrices, 47
import_single_Vispa2Matrix, 50
import_Vispa2_stats, 52

x Outlier tests
available_outlier_tests, 9

+ Plotting function helpers

101

clinical_relevant_suspicious_genes
18
known_clinical_oncogenes, 62
+ Plotting functions
circos_genomic_density, 11
CIS_volcano_plot, 16
fisher_scatterplot, 32
HSC_population_plot, 39
integration_alluvial_plot, 54
sharing_heatmap, 87
sharing_venn, 88
top_abund_tableGrob, 91
top_cis_overtime_heatmap, 92
x Utilities
as_sparse_matrix, 8
comparison_matrix, 18
enable_progress_bars, 31
export_ISA_settings, 32
generate_blank_association_file,
34
generate_default_folder_structure,
35
generate_Vispa2_launch_AF, 36
import_ISA_settings, 46
separate_quant_matrices, 82
transform_columns, 99
+ datasets
association_file, 7
integration_matrices, 56
proto_oncogenes, 69
refGenes_hg19, 75
refGenes_hg38, 76
* dynamic vars
inspect_tags, 53
mandatory_IS_vars, 62
pcr_id_column, 69
reset_mandatory_IS_vars, 79
set_mandatory_IS_vars, 83
set_matrix_file_suffixes, 86

102

x internal
cumulative_count_union, 24

import_parallel_Vispa2Matrices_auto,

49

INDEX

default_iss_file_prefixes, 7,27, 28, 28,
52,64,73

default_meta_agg, 4-0, 24, 29, 67, 68, 72,
74, 78, 90

import_parallel_Vispa2Matrices_interactivdefault_rec_agg_lambdas, 30

49
ISAnalytics, 57
ISAnalytics-deprecated, 58
threshold_filter, 89
unzip_file_system, 100

aggregate_metadata, 4, 6, 24, 29, 42, 67, 68,
72,74, 78, 90
aggregate_values_by_key, 5, 5, 24, 29, 42,
67, 68,72,74,78, 90
annotation_IS_vars (mandatory_IS_vars),
62
annotation_issues, 7, 27, 28, 64, 73
as_sparse_matrix, 8, 19, 31, 32, 34, 36, 37
47,82, 100
association_file, 7
association_file_columns
(mandatory_IS_vars), 62
available_outlier_tests, 9
available_tags, 10

blood_lineages_default, 10

circos_genomic_density, 11, 17, 34, 40, 55,
88, 89, 92, 95
CIS_grubbs, 12, 16, 17,21, 26, 39, 43, 59, 61,
81,97, 99
CIS_grubbs_overtime, 14
CIS_volcano_plot, 12, 16, 34, 40, 55, 88, 89,
92,95
clinical_relevant_suspicious_genes, 18,
62
comparison_matrix, 8, 9, 18, 24, 31, 32, 34,
36, 37,47, 48, 82, 100
compute_abundance, 14, 20, 26, 39, 43, 55,
59,61, 81,97, 99
compute_near_integrations, 5, 6, 21, 29,
67, 68, 72,74, 78, 90
cumulative_count_union, 24
cumulative_is, 14, 21, 25, 39, 43, 58, 59, 61,
81,97, 99

date_formats, 7, 27, 28, 46, 64, 73
default_af_transform, 7, 27,27, 28, 64, 73

default_report_path, 30
default_stats, 31

enable_progress_bars, 9, 19, 31, 32, 34, 36,
37,47,82, 100

export_ISA_settings, 9, 19, 31, 32, 34, 36,
37,47, 82, 100

fisher_scatterplot, 12, 17, 32,40, 55, 88,
89, 92, 95

gene_frequency_fisher, 14, 21, 26, 37, 43,
59,61,81, 97,99

generate_blank_association_file, 8, 9,
19,31, 32,34, 36, 37,47, 82, 100

generate_default_folder_structure, 9,
19,31, 32, 34,35, 37,47, 58, 82, 100

generate_Vispa2_launch_AF, 9, 19, 31, 32,
34, 36, 36,47, 82, 100

glue, 29

glue::glue(), 86

HSC_population_plot, 12, 17, 34, 39, 55, 88,
89, 92, 95

HSC_population_size_estimate, 10, 14, 21,
26, 39, 40, 41, 59, 61, 81, 97, 99

import_association_file, 4, 27,44, 47, 48,
51-53

import_ISA_settings, 9, 19, 31, 32, 34, 36,
37,46, 82, 100

import_parallel_Vispa2Matrices, 19, 46,
47,49, 51, 53, 58

import_parallel_Vispa2Matrices_auto,
27,49, 64,73

import_parallel_Vispa2Matrices_interactive

49,73
import_single_Vispa2Matrix, 46, 48, 50,

53
import_Vispa2_stats, 4, 45, 46, 48, 51, 52
inspect_tags, 53, 63, 69, 79, 85, 86
integration_alluvial_plot, 12, 17, 34, 40,

54,88, 89, 91, 92, 95
integration_matrices, 56

INDEX

is_sharing, 14, 21, 26, 39, 43, 59, 60, 81, 87,
88, 97, 99

ISAnalytics, 57

ISAnalytics-deprecated, 58

ISAnalytics-package (ISAnalytics), 57

iss_source, 14, 21, 26, 39, 43, 58, 61, 81, 97,
99

iss_stats_specs (mandatory_IS_vars), 62

known_clinical_oncogenes, I8, 62

mandatory_IS_vars, 54, 62, 69, 79, 85, 86

matching_options, 7, 27, 28,48, 64, 73

matrix_file_suffixes
(mandatory_IS_vars), 62

NGSdataExplorer, 65

outlier_filter, 5, 6,9, 24, 29, 67,67, 72,
74,78, 90

outliers_by_pool_fragments, 5, 6, 24, 29,
65,68, 72,74, 78, 90

pcr_id_column, 54, 63, 69, 79, 85, 86

proto_oncogenes, 69

purity_filter, 5, 6, 24, 29, 67, 68, 70, 74,
78, 90

quantification_types, 7, 19,27, 28, 47, 64,
72, 82

realign_after_collisions, 5, 6, 24, 29, 67,
68,72,73,78, 90
reduced_AF_columns, 74
refGene_table_cols, 77
refGenes_hg19, 75
refGenes_hg38, 76
refGenes_mm10 (refGenes_hg38), 76
refGenes_mm9 (refGenes_hg19), 75
remove_collisions, 5, 6, 24, 29, 67, 68, 72
74,77, 90
reset_af_columns_def
(reset_mandatory_IS_vars), 79
reset_annotation_IS_vars
(reset_mandatory_IS_vars), 79
reset_dyn_vars_config
(reset_mandatory_IS_vars), 79
reset_iss_stats_specs
(reset_mandatory_IS_vars), 79

103

reset_mandatory_IS_vars, 54, 63, 69, 79,
85, 86

reset_matrix_file_suffixes
(reset_mandatory_IS_vars), 79

sample_statistics, 14, 21, 26, 39, 43, 59,
61, 80, 97, 99
separate_quant_matrices, 9, 19, 31, 32, 34,
36, 37,47, 82, 100
set_af_columns_def
(set_mandatory_IS_vars), 83
set_annotation_IS_vars
(set_mandatory_IS_vars), 83
set_iss_stats_specs
(set_mandatory_IS_vars), 83
set_mandatory_IS_vars, 54, 63, 69, 79, 83,

86
set_matrix_file_suffixes, 54, 63, 69, 79,
85, 86
sharing_heatmap, 12, 17, 34, 40, 55, 61, 87,
89, 92, 95
sharing_venn, 12, 17, 34, 40, 55, 61, 88, 88,
92,95
threshold_filter, 5, 6, 24, 29, 67, 68, 72,
74,78, 89
top_abund_tableGrob, 12, 17, 34, 40, 54, 55,
88, 89,91, 95

top_cis_overtime_heatmap, 12, 17, 34, 40,
55, 88, 89, 92,92
top_integrations, 14, 21, 26, 39, 43, 59, 61,
81, 96, 99
top_targeted_genes, 14, 21, 26, 39, 43, 59,
61,81,97,97
transform_columns, 9, 19, 31, 32, 34, 36, 37,
46, 47,51, 82,99
tumor_suppressors (proto_oncogenes), 69

unzip_file_system, 100

vars_getters (mandatory_IS_vars), 62

vars_resetters
(reset_mandatory_IS_vars), 79

vars_setters (set_mandatory_IS_vars), 83

	aggregate_metadata
	aggregate_values_by_key
	annotation_issues
	association_file
	as_sparse_matrix
	available_outlier_tests
	available_tags
	blood_lineages_default
	circos_genomic_density
	CIS_grubbs
	CIS_grubbs_overtime
	CIS_volcano_plot
	clinical_relevant_suspicious_genes
	comparison_matrix
	compute_abundance
	compute_near_integrations
	cumulative_count_union
	cumulative_is
	date_formats
	default_af_transform
	default_iss_file_prefixes
	default_meta_agg
	default_rec_agg_lambdas
	default_report_path
	default_stats
	enable_progress_bars
	export_ISA_settings
	fisher_scatterplot
	generate_blank_association_file
	generate_default_folder_structure
	generate_Vispa2_launch_AF
	gene_frequency_fisher
	HSC_population_plot
	HSC_population_size_estimate
	import_association_file
	import_ISA_settings
	import_parallel_Vispa2Matrices
	import_parallel_Vispa2Matrices_auto
	import_parallel_Vispa2Matrices_interactive
	import_single_Vispa2Matrix
	import_Vispa2_stats
	inspect_tags
	integration_alluvial_plot
	integration_matrices
	ISAnalytics
	ISAnalytics-deprecated
	iss_source
	is_sharing
	known_clinical_oncogenes
	mandatory_IS_vars
	matching_options
	NGSdataExplorer
	outliers_by_pool_fragments
	outlier_filter
	pcr_id_column
	proto_oncogenes
	purity_filter
	quantification_types
	realign_after_collisions
	reduced_AF_columns
	refGenes_hg19
	refGenes_hg38
	refGene_table_cols
	remove_collisions
	reset_mandatory_IS_vars
	sample_statistics
	separate_quant_matrices
	set_mandatory_IS_vars
	set_matrix_file_suffixes
	sharing_heatmap
	sharing_venn
	threshold_filter
	top_abund_tableGrob
	top_cis_overtime_heatmap
	top_integrations
	top_targeted_genes
	transform_columns
	unzip_file_system
	Index

