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HTqPCR-package Analysis of High-Throughput qPCR data (HTqPCR)

Description

This package is for analysing high-throughput qPCR data. Focus is on data from Taqman Low Den-
sity Arrays, but any kind of qPCR performed across several samples is applicable. Cycle threshold
(Ct) data from different cards (samples) is read in, normalised, processed and the genes are tested
for differential expression across different samples. Results are visualised in various ways.

Details

Package: HTqPCR
Type: Package
Version: 1.0
Date: 2009-07-03
License: Artistic
LazyLoad: yes
Depends: methods

Author(s)

Maintainer: Heidi Dvinge <hdvinge@fredhutch.org> Maintainer: Paul Bertone <bertone@ebi.ac.uk>

cbind Combine qPCRset objects

Description

Functions for combining multiple qPCRset objects into one, by either adding columns (samples) or
rows (features).

Usage

## S3 method for class 'qPCRset'
cbind(..., deparse.level = 1)
## S3 method for class 'qPCRset'
rbind(..., deparse.level = 1)

Arguments

... qPCRset objects that are to be combined.
deparse.level not implemented currently. See cbind.
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Details

In some cases it might be desirable to merge multiple qPCRset objects, that have been read into R
or processed individually. This can be done for either identical samples across multiple different
cards (such as a 384 well plate), or if more samples have been run on cards with the same layout.

cbind combines data assuming that all experiments have been carried out on identical cards, i.e. that
featureNames, featureType, featurePos and featureClass is identical across all the qPCRset
objects. rbind combines data assuming that the same samples have been analysed using different
qPCR cards.

For both functions, the getCtHistory of all the individual objects will be added to the combined
qPCRset.

Value

A combined qPCRset object.

Author(s)

Heidi Dvinge

See Also

cbind

changeCtLayout Changing the dimensions (rows x columns) of qPCRset objects

Description

A function for splitting up the individual qPCR cards, in case there are multiple samples present on
each card. I.e. for cases where the layout isn’t 1 sample x 384 features, but for example 4 samples
x 96 features on each 384 well card.

Usage

changeCtLayout(q, sample.order)

Arguments

q a qPCRset object.

sample.order vector, same length as number of features on each card (e.g. 384). See details.
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Details

The result from each qPCR run of a given card typically gets presented together, such as in a file
with 384 lines, one per feature, for 384 well plates. However, some cards may contain multiple
samples, such as commercial cards that are designed to be loaded with two separate samples and
then include 192 individual features.

Per default, each card is read into the qPCRset object as consisting of a single sample, and hence
one column in the Ct data matrix. When this is not the case, the data can subsequently be split
into the correct features x samples (rows x columns) dimensions using this function. The parameter
sample.order is a vector, that for each feature in the qPCRset indicates what sample it actually
belongs to.

In the new qPCRset the samples (Ct columns) are ordered first by sample.order then by the origi-
nal sampleNames, as shown in the examples below.

Value

A qPCRset object like the input, but with the dimensions changed according to the new layout.

Note

Since the actual biological samples are likely to differ on each card, after applying changeCtLayout
renaming of the samples in qPCRset using sampleNames is advisable.

The features are assumed to be identical for all samples on a given card! I.e. if for example
sample.order=rep(c("A", "B"), each=192), then feature number 1 (the first for sample A) should
be the same as feature number 193 (the first for sample B). The new featureNames are taken for
those features listed as belonging to the first sample in sample.order.

Author(s)

Heidi Dvinge

Examples

# Example data
data(qPCRraw)
# With e.g. 2 or 4 samples per 384 well card.
sample2.order <- rep(c("subSampleA", "subSampleB"), each=192)
sample4.order <- rep(c("subA", "subB", "subC", "subD"), each=96)
# Splitting the data into all individual samples
qPCRnew2 <- changeCtLayout(qPCRraw, sample.order=sample2.order)
show(qPCRnew2)
qPCRnew4 <- changeCtLayout(qPCRraw, sample.order=sample4.order)
show(qPCRnew4)
sampleNames(qPCRnew4)



6 clusterCt

clusterCt Clustering of qPCR Ct values

Description

Hierarchical clustering of samples or genes from high-throughput qPCR experiments, such as the
TaqMan Low Density Array platform. Individual clusters can be selected, and the features within
them listed in the given order.

Usage

clusterCt(q, main = NULL, type = "genes", dist = "pearson", xlab = "Cluster dendrogram", n.cluster, h.cluster, select.cluster = FALSE, ...)

Arguments

q object of class qPCRset.

main character string, plot title.

type character string, either "genes" (default) or "samples", indicating what is to be
clustered.

dist character string, specifying whether to use "pearson" correlation (default) or
"euclidean" distance for the clustering.

xlab character string, label for the x-axis.

n.cluster integer, the number of cluster to divide the dendrogram into. See details.

h.cluster numeric, the height at which to cut the dendrogram into clusters. See details.

select.cluster logical, whether to select clusters interactively. See details.

... any other arguments will be passed to the plot function.

Details

This function may be used to cluster the Ct values and present the result as a dendrogram.

The n.cluster and h.cluster parameters are from the rect.hclust function and can be used
to divide the dendrogram into subclusters based on either number of clusters or height of branch,
drawing boxes around subclusters. The members of each cluster can be returned (see value). If
n.cluster is specified h.cluster will be ignored.

If select.cluster is chosen individual subclusters can be selected and marked by a box by click-
ing on their highest comment branch with the (first) mouse button. Multiple clusters can be selected
until any mouse button other than the first is pressed, and the function can be used in conjunction
with either n.cluster or h.cluster. The members of each cluster will likewise be returned, in the
order they were selected.

Value

A plot is created on the current graphics device. If any subclusters are marked, these will be returned
invisibly in a list, with one component for each subcluster. The individual slots in the list contain
the names of the genes, and their position in the original input data (row number).
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Author(s)

Heidi Dvinge

See Also

hclust, dist, rect.hclust, identify.hclust

Examples

# Load example data
data(qPCRraw)
# Clustering samples
clusterCt(qPCRraw, type="samples")
clusterCt(qPCRraw, type="samples", dist="euclidean")
# Clustering genes
clusterCt(qPCRraw, type="genes", cex=0.5)
clusterCt(qPCRraw, type="genes", h.cluster=1.5, cex=0.5)
cluster.list <- clusterCt(qPCRraw, type="genes", n.cluster=6, cex=0.5)
cluster.list[[1]]

filterCategory Filter Ct values based on their feature categories.

Description

Ct values corresponding to selected feature categories will be replaced by NA. Generally, the feature
categories indicate how reliable the values are.

Usage

filterCategory(q, na.categories = c("Unreliable", "Undetermined"))

Arguments

q a qPCRset object.

na.categories character vector, with the name(s) of the feature categories where Ct values will
be considered NA.

Value

A qPCRset object like the input, but with the selected Ct values replaced by NAs

Author(s)

Heidi Dvinge

See Also

setCategory for adjusting the categories.



8 filterCtData

Examples

data(qPCRraw)
qPCRraw2 <- setCategory(qPCRraw, groups=NULL)
x <- filterCategory(qPCRraw2)
summary(qPCRraw)
summary(x)

filterCtData Filter out features (genes) from qPCR data.

Description

This function is for filtering Ct data from high-throughput qPCR platforms like the TaqMan Low
Density Arrays. This can for example be done prior to analysing the statistical significance of the
data, to remove genes where the results are of low quality, or that are not of interest to the analysis
in question.

Usage

filterCtData(q, remove.type, remove.name, remove.class, remove.category, n.category = 3, remove.IQR, verbose = TRUE)

Arguments

q object of class qPCRset.

remove.type character vector, the feature type(s) to be removed from the data object.

remove.name character vector, the feature name(s) to be removed from the data object.

remove.class character vector, the feature class(es) to be removed from the data object.
remove.category

character vector, the features categories(s) to be assessed across samples.

n.category numeric, all features with more than this number of remove.category across
samples are removed.

remove.IQR numeric, all features with an interquartile range (IQR) below this limit across
samples will be removed.

verbose boolean, should some information be printed to the prompt.

Details

This function may be used to exclude individual or small groups of features that are irrelevant to
a given analysis. However, it can also be used on a more general basis, to for example split the
data into separate qPCRset objects based on features with different characteristics, such as groups
of markers or other gene classes present in featureClass.

remove.IQR can be used to exclude features that show only little variation across the samples.
These are unlikely to be differentially expressed, so including them in downstream analysis such as
limmaCtData or ttestCtData would result in a slight loss of power caused by the adjustment of
p-values required due to multiple testing across all features.
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Value

An object of class qPCRset like the input, but with the required features removed.

Note

After removing features the function plotCtCard will no longer work, since the number of features
is now smaller than the card dimensions.

When using remove.category or remove.IQR and there are replicated features present on the
array, it might no longer be possible to use the ndups parameter of limmaCtData, since the number
of replicates isn’t identical for each feature.

Filtering can be performed either before or after normalization, but in some cases normalization
might be affected by this, for example if many features are removed, making it difficult to identify
rank-invariant genes.

Author(s)

Heidi Dvinge

Examples

# Load some example data
data(qPCRpros)
show(qPCRpros)
# Filter based on different feature type
qFilt <- filterCtData(qPCRpros, remove.type=c("Endogenous Control"))
# Filter based on feature type and name
qFilt <- filterCtData(qPCRpros, remove.type=c("Endogenous Control"), remove.name=c("Gene1", "Gene20", "Gene30"))
# Filter based on feature class
qFilt <- filterCtData(qPCRpros, remove.class="Kinase")
# Filter based on feature categories, using two different cut-offs
qFilt <- filterCtData(qPCRpros, remove.category="Undetermined")
qFilt <- filterCtData(qPCRpros, remove.category="Undetermined", n.category=5)
# Remove features without much variation across samples
iqr <- apply(exprs(qPCRpros), 1, IQR, na.rm=TRUE)
hist(iqr, n=20)
qFilt <- filterCtData(qPCRpros, remove.IQR=2)

heatmapSig Heatmap of deltadeltaCt values from qPCR data.

Description

Heatmap and clustering of deltadeltaCt values from different sample comparisons using qPCR data.

Usage

heatmapSig(qDE, comparison = "all", col, zero.center = TRUE, mar, dist = "pearson", ...)
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Arguments

qDE data.frame or list, as created by ttestCtData or limmaCtData.

comparison integers or the names of the comparisons to include in the plot. Defaults to all
results in the qDE data, but a minimum of two is required.

col colour scheme to use for the plot.

zero.center logical, should the colour scale be centered around 0.

mar vector of length two, the bottom and right side margins mof the heatmap.

dist character string, either "pearson" (default) or "euclidean" indicating what type
of distance is used for the clustering.

... further arguments passed to heatmap.2.

Details

This function can be useful if multiple conditions are compared, for detecting features with similar
behaviour in comparisons, and look at the general level of up and down regulation.

Value

A plot if produced in the current graphics device.

Author(s)

Heidi Dvinge

See Also

heatmap.2 for modifying the plot, and ttestCtData or limmaCtData for generating the data used
for the plotting.

limmaCtData Differentially expressed features with qPCR: limma

Description

Function for detecting differentially expressed genes from high-throughput qPCR Ct values, based
on the framework from the limma package. Multiple comparisons can be performed, and across
more than two groups of samples.

Usage

limmaCtData(q, design = NULL, contrasts, sort = TRUE, stringent = TRUE, ndups = 1, spacing = NULL, dupcor, ...)
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Arguments

q object of class qPCRset.

design matrix, design of the experiment rows corresponding to cards and columns to
coefficients to be estimated. See details.

contrasts matrix, with columns containing contrasts. See details

sort boolean, should the output be sorted by adjusted p-values.

stringent boolean, for flagging results as "Undetermined". See details.

ndups integer, the number of times each feature is present on the card.

spacing integer, the spacing between duplicate spots, spacing=1 for consecutive spots

dupcor list, the output from duplicateCorrelation. See details.

... any other arguments are passed to lmFit, contrasts.fit, eBayes or decideTests.

Details

This function is a wrapper for the functions lmFit, contrasts.fit (if a contrast matrix is supplied)
and eBayes from the limma package. See the help pages for these functions for more information
about setting up the design and contrast matrices.

All results are assigned to a category, either "OK" or "Unreliable" depending on the input Ct values.
If stringent=TRUE any unreliable or undetermined measurements among technical and biological
replicates will result in the final result being "Undetermined". For stringent=FALSE the result will
be "OK" unless at least half of the Ct values for a given gene are unreliable/undetermined.

Note that when there are replicated features in the samples, each feature is assumed to be present
the same number of times, and with regular spacing between replicates. Reordering the sample by
featureNames and setting spacing=1 is recommendable.

If technical sample replicates are available, dupcor can be used. It is a list containing the esti-
mated correlation between replicates. limmaCtData will then take this correlation into account
when fitting a model for each gene. It can be calculate using the function duplicateCorrelation.
Technical replicates and duplicated spots can’t be assessed at the same time though, so if dupcor is
used, ndups should be 1.

Value

A list of data.frames, one for each column in design, or for each comparison in contrasts if this
matrix is supplied. Each component of the list contains the result of the given comparisons, with
one row per gene and has the columns:

genes Feature IDs.

feature.pos The unique feature IDs from featurePos of the q object. Useful if replicates
are not collapsed, in which case there might be several features with identical
names.

t.test The result of the t-test.

p.value The corresponding p.values.

adj.p.value P-values after correcting for multiple testing using the Benjamini-Holm method.

ddCt The deltadeltaCt values.
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FC The fold change; 2^(-ddCt).

meanTest The average Ct across the test samples for the given comparison.

meanReference The average Ct across the reference samples for the given comparison.

categoryTest The category of the Ct values ("OK", "Undetermined") across the test samples
for the given comparison.

categoryReference

The category of the Ct values ("OK", "Undetermined") across the reference sam-
ples for the given comparison.

Also, the last item in the list is called "Summary", and it’s the result of calling decideTests from
limma on the fitted data. This is a data frame with one row per feature and one column per compar-
ison, with down-regulation, no change and up-regulation marked by -1, 0 and 1.

Author(s)

Heidi Dvinge

References

Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397–420.

See Also

lmFit, contrasts.fit and ebayes for more information about the underlying limma functions.
mannwhitneyCtData and ttestCtData for other functions calculating differential expression of Ct
data. plotCtRQ, heatmapSig and plotCtSignificance can be used for visualising the results.

Examples

# Load example preprocessed data
data(qPCRpros)
samples <- read.delim(file.path(system.file("exData", package="HTqPCR"), "files.txt"))
# Define design and contrasts
design <- model.matrix(~0+samples$Treatment)
colnames(design) <- c("Control", "LongStarve", "Starve")
contrasts <- makeContrasts(LongStarve-Control, LongStarve-Starve, Starve-Control, levels=design)
# The actual test
diff.exp <- limmaCtData(qPCRpros, design=design, contrasts=contrasts)
# Some of the results
diff.exp[["LongStarve - Control"]][1:10,]
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mannwhitneyCtData Differentially expressed features with qPCR: Mann-Whitney

Description

Function for calculating p-values across two groups for the features present in high-throughput
qPCR data, such as from TaqMan Low Density Arrays. Also known as two sample Wilcoxon test.

Usage

mannwhitneyCtData(q, groups = NULL, calibrator, alternative = "two.sided", paired = FALSE, replicates = TRUE, sort = TRUE, stringent = TRUE, p.adjust = "BH", ...)

Arguments

q qPCRset object.

groups factor, assigning each sample to one of two groups.

calibrator which of the two groups is to be considered as the reference and not the test?
Defaults to the first group in groups.

alternative character string (first letter is enough), specifying the alternative hypothesis,
"two.sided" (default), "greater" or "less".

paired logical, should a paired t-test be used.

replicates logical, if replicated genes are present on the array, the statistics will be calcu-
lated for all the replicates combined, rather than the individual wells.

sort boolean, should the output be sorted by p-values.

stringent boolean, for flagging results as "Undetermined". See details.

p.adjust character string, which method to use for p-value adjustment for multiple testing.
See details.

... any other arguments will be passed to the wilcox.test function.

Details

Once the Ct values have been normalised, differential expression can be calculated. This function
deals with just the simple case, where there are two types of samples to compare. For a parametric
test see ttestCtData and limmaCtData for more complex studies.

The underlying statistics is calculated by wilcox.test. Due to the high possibility of ties for each
feature between samples, the test is run with exact=FALSE.

All results are assigned to a category, either "OK" or "Undetermined" depending on the input Ct
values. If stringent=TRUE any unreliable or undetermined measurements among technical and
biological replicates will result in the final result being "Undetermined". For stringent=FALSE the
result will be "OK" unless at least half of the Ct values for a given gene are unreliable/undetermined.

The argument p.adjust is passed on to the p.adjust function. Options include e.g. "BH" (Ben-
jamini & Hochberg, the default), "fdr" and "bonferroni". See p.adjust for more information on
the individual methods.
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Value

A data.frame containing the following information:

genes The names of the features on the card.

feature.pos The featurePos of the genes. If replicated genes are used, the feature positions
will be concatenated together.

MB.test The name and value of the test statistic.

p.value The corresponding p-value.

ddCt The delta delta Ct values.

FC The fold change; 2^(-ddCt).

meanCalibrator The average expression level of each gene in the calibrator sample(s).

meanTarget The average expression level of each gene in the target sample(s).
categoryCalibrator

The category of the Ct values ("OK", "Undetermined") across the calibrator.

categoryTarget Ditto for the target.

Author(s)

Heidi Dvinge

See Also

wilcox.test, ttestCtData, limmaCtData. plotCtRQ and plotCtSignificance can be used for
visualising the results.

normalizeCtData Normalization of Ct values from qPCR data.

Description

This function is for normalizing Ct data from high-throughput qPCR platforms like the TaqMan
Low Density Arrays. Normalization can be either within or across different samples.

Usage

normalizeCtData(q, norm = "deltaCt", deltaCt.genes = NULL, scale.rank.samples, rank.type = "pseudo.median", Ct.max = 35, geo.mean.ref, verbose = TRUE)

Arguments

q object of class qPCRset.

norm character string with partial match allowed, the normalisation method to use.
"deltaCt" (default) , "scale.rankinvariant", "norm.rankinvariant", "quantile" and
"geometric.mean" are implemented. See details.
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deltaCt.genes character vector, the gene(s) to use for deltaCt normalization. Must correspond
to some of the featureNames in q or NULL, in which case the endogenous con-
trols from featureType are used.

scale.rank.samples

integer, for the "scale.rankinvariant" method, how many samples should a fea-
ture be rank invariant across to be included. Defaults to number of samples-1.

rank.type string, the reference sample for the rank invariant normalisation. Either "pseudo.median"
or "pseudo.mean" for using the median or mean across samples as a pseudo-
reference sample.

Ct.max numeric, Ct values above this will be ignored when identifying rank invariant
genes.

geo.mean.ref numeric, the reference sample to scale to for the "geometric.mean" method. De-
faults to sample number 1.

verbose boolean, should some information be printed to the prompt.

Details

"quantile" will make the expression distributions across all cards more or less identical. "deltaCt"
calculates the standard deltaCt values, i.e. subtracts the mean of the chosen controls from all other
values on the array. "scale.rankinvariant" sorts features from each sample based on Ct values,
and identifies a set of features that remain rank invariant, i.e. whose ordering is constant. The
average of these rank invariant features is then used to scale the Ct values on each array individually.
"norm.rankinvariant" also identifies rank invariant features between each sample and a reference,
and then uses these features to generate a normalisation curve individually for each sample by
smoothing. "geometric.mean" calculates the geometric mean of all Ct values below Ct.max in each
sample, and scales the Ct values accordingly.

For the rank invariant methods it can make a significant difference whether high Ct values, such as
"40" or something else being used for undetermined Ct values is removed during the normalisation
using the Ct.max parameter. "norm.rankinvariant" also depends on having enough rank invariant
genes for generating a robust smoothing curve.

"quantile" is base on normalizeQuantiles from limma, and the rank invariant normalisations im-
plement methods from normalize.invariantset in package affy.

The distribution of Ct values before/after normalisation can be assessed with the function plotCtDensity.

Value

An object of class qPCRset like the input.

Author(s)

Heidi Dvinge

See Also

normalize.invariantset for the rank invariant normalisations, normalizequantiles and plotCtDensity
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Examples

# Load example data
data(qPCRraw)
# Perform different normalisations
dnorm <- normalizeCtData(qPCRraw, norm="deltaCt", deltaCt.genes="Gene1")
qnorm <- normalizeCtData(qPCRraw, norm="quantile")
nrnorm <- normalizeCtData(qPCRraw, norm="norm.rankinvariant")
srnorm <- normalizeCtData(qPCRraw, norm="scale.rankinvariant")
gnorm <- normalizeCtData(qPCRraw, norm="geometric.mean")
# Normalized versus raw data
cols <- rep(brewer.pal(6, "Spectral"), each=384)
plot(exprs(qPCRraw), exprs(dnorm), pch=20, col=cols, main="deltaCt normalization")
plot(exprs(qPCRraw), exprs(qnorm), pch=20, col=cols, main="Quantile normalization")
plot(exprs(qPCRraw), exprs(nrnorm), pch=20, col=cols, main="norm.rankinvariant")
plot(exprs(qPCRraw), exprs(srnorm), pch=20, col=cols, main="scale.rankinvariant")
plot(exprs(qPCRraw), exprs(gnorm), pch=20, col=cols, main="geometric.mean")
# With or without removing high Ct values
nrnorm <- normalizeCtData(qPCRraw, norm="norm.rankinvariant")
nrnorm2 <- normalizeCtData(qPCRraw, norm="norm.rankinvariant", Ct.max=40)
plot(exprs(nrnorm), exprs(nrnorm2), pch=20, col=cols, xlab="Ct.max = 35", ylab="Ct.max = 40")
# Distribution of the normalised data
par(mfrow=c(2,3), mar=c(3,3,2,1))
plotCtDensity(qPCRraw, main="Raw Ct values")
plotCtDensity(dnorm, main="deltaCt")
plotCtDensity(qnorm, main="quantile")
plotCtDensity(srnorm, main="scale.rankinvariant")
plotCtDensity(nrnorm, main="norm.rankinvariant")
plotCtDensity(gnorm, main="geometric.mean")

plotCtArray Image plot of qPCR Ct values from an array format

Description

Function for plotting high-throughput qPCR Ct values from a platform with a defined spatial layout,
such as Fluidigm Dynamic Arrays (BioMark) or OpenArray from Applied Biosystems. The location
of Ct values in the plot corresponds to the position of each well on the array.

Usage

plotCtArray(q, plot = "Ct", main, col, col.range, na.col = "grey", na.value = 40, chamber.size, ...)

Arguments

q object of class qPCRset.

plot character string indicating what type of plot to produce. Currently only "Ct" is
implemented.

main character string, the title of the plot. Per default "Ct values".
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col the name of a colour scheme.

col.range vector, the range of colours to use.

na.col the colour used for well with NA (undetermined) Ct values.

na.value numeric, if NA has been replaced by an (arbitrary) high Ct value in the data.

chamber.size numeric, for adjusting the size of the reaction chamber on the card.

... any other arguments will be passed to the plot function.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

plotCtCard for plotting data from other high-throughput qPCR platforms.

Examples

# Locate example data
exPath <- system.file("exData", package="HTqPCR")
exFiles <- "BioMark_sample.csv"
# Create qPCRset object
raw <- readCtData(exFiles, path=exPath, n.features=48, n.data=48, format="BioMark")
# Plot
plotCtArray(raw)
# Change colour and range
plotCtArray(raw, col=brewer.pal(11, "Spectral"), col.range=c(10,35))

plotCtBoxes Boxplots for qPCR Ct values.

Description

Function for making boxplots of Ct values from high-throughput qPCR data. The boxes can be
made either using all values on each card, or stratified by different feature information.

Usage

plotCtBoxes(q, cards = TRUE, xlab = "", col, main = NULL, names, stratify = "type", mar = c(7, 4, 3, 1), ...)
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Arguments

q object of class qPCRset.

cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.

xlab character string, label for the x-axis.

col vector of colours to use, defaults to different colour for each card.

main character string, plot title.

names vector, names to plot under the boxes. Defaults to sample names.

stratify character, specifying what to stratify the Ct values by. NULL, the default means
no stratification, "type" is the feature types of the qPCRset, and "class" the fea-
ture class.

mar vector, the size of the margins. See par for details.

... any other arguments will be passed to the boxplot or parfunction.

Details

For the stratified plots all boxes with Ct values from the same card are plotted in identical colours.
"type" and "class" are automatically extracted from the qPCRset using featureType and featureClass.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

boxplot

Examples

# Loading the data
data(qPCRraw)
# Make plot with all samples or just a few
plotCtBoxes(qPCRraw, stratify=NULL)
plotCtBoxes(qPCRraw, cards=c(1,4))
plotCtBoxes(qPCRraw, stratify="class")
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plotCtCard Image plot of qPCR Ct values from a card format

Description

Function for plotting high-throughput qPCR Ct values from a platform with a defined spatial layout,
such as TaqMan Low Density Assay cards. The location of Ct values in the plot corresponds to the
position of each well on the card.

Usage

plotCtCard(q, card = 1, plot = "Ct", main, nrow = 16, ncol = 24, col, col.range, na.col = "grey", na.value = 40, legend.cols, well.size = 3.1, zero.center = FALSE, unR = FALSE, unD = FALSE, ...)

Arguments

q object of class qPCRset.

card integer, the sample number to plot.

plot character string among "Ct", "flag", "type", "class") indicating what type of plot
to produce. See Details for a longer description.

main character string, the title of the plot. Per deault this is the sample name corre-
sponding to card.

nrow integer, the numer of rows on the card (16 for a standard 384 well format).

ncol integer, the numer of columns on the card (24 for a standard 384 well format).

col vector of colors of the same length as the number of different groups for the
categorical data, or the name of a colour scheme for the continuous data.

col.range vector, the range of colours to use.

na.col the colour used for well with NA (undetermined) Ct values.

na.value numeric, if NA has been replaced by an (arbitrary) high Ct value in the data.

legend.cols integer, how many columns should the legend text be split into (defaults to num-
ber of labels).

well.size numeric, for adjusting the size of the wells on the card.

zero.center logical, should the colours be shifted to be zero-centered.

unR logical, should wells from the category "Unreliable" be crossed out.

unD logical, should wells from the category "Undetermined" be crossed out.

... any other arguments will be passed to the plot and points functions.

Details

This function may be used to plot the values of any well-specific information, such as the raw or
normalized Ct values, or categorical data such as flag, gene class etc. The image follows the layout
of an actual HTqPCR card.

If unR=TRUE these will wells will be crossed out using a diagonal cross (X), whereas unD=TRUE will
be marked with a horisontal/vertical cross.
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Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

image, and plotCtArray for plotting data from other high-throughput qPCR platforms (e.g. Flu-
idigm arrays).

Examples

# Load some example data
data(qPCRraw)
# Plot Ct values from first card
plotCtCard(qPCRraw)
plotCtCard(qPCRraw, card=2, col.range=c(10,35))
plotCtCard(qPCRraw, unR=TRUE, unD=TRUE)
# Other examples
plotCtCard(qPCRraw, plot="class")
plotCtCard(qPCRraw, plot="type")
plotCtCard(qPCRraw, plot="flag")

plotCtCategory Summarising the feature categories for Ct values.

Description

This function will provide a summary of the featureCategory for a qPCRset. Focus can either be
on categories across samples, or across features.

Usage

plotCtCategory(q, cards = TRUE, by.feature = FALSE, stratify, col, xlim, main, ...)

Arguments

q object of class qPCRset.

cards integers, the number of the cards (samples) to plot.

by.feature logical, should the categories be summarised for features rather than samples.
See details.

stratify character string, either "type" or "class" indicating if the categories should be
stratified by featureType or featureClass of q. Ignored if by.features is
TRUE.
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col vector with the colours to use for the categories. Default is green for "OK",
yellow for "Unreliable" and red for "Undetermined". See details.

xlim vector, the limits of the x-axis. If by.feature is FALSE, this can be used to
adjust the size of the barplot to fit in the colour legend.

main character string, the title of the plot.

... further arguments passed to barplot or heatmap.

Details

This function is for generating two different types of plot. If by.feature=FALSE the number
of each featureCategory will be counted for each card, and a barplot is made. If however
by.feature=TRUE, then the categories for each feature across the selected cards will be clustered
in a heatmap.

The colours given in col correspond to all the unique categories present in the entire featureCategory
of q, even categories not represented for the samples selected by cards. Categories are sorted al-
phabetically, and colours assigned accordingly.

For by.feature=TRUE the plot can be modified extensively using calls to the underlying heatmap
function, such as setting cexRow to adjust the size of row labels.

Value

A figure is produced on the current graphics device.

Author(s)

Heidi Dvinge

See Also

setCategory, and heatmap for the underlying plotting function for by.feature=TRUE.

Examples

# Load example preprocessed data
data(qPCRpros)
# Plot categories for samples
plotCtCategory(qPCRpros)
plotCtCategory(qPCRpros, cards=1:3, stratify="class")
# Categories for features
plotCtCategory(qPCRpros, by.feature=TRUE)
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plotCtCor Correlation between Ct values from qPCR data

Description

Function for plotting the correlation based on Ct values between samples containing high-throughput
qPCR data.

Usage

plotCtCor(q, col, col.range = c(0, 1), main, mar, ...)

Arguments

q object of class qPCRset.
col vector of colours to use, defaults to a spectrum from red to blue/purple.
col.range vector, the range of colours to use.
main character string, plot title.
mar vector, the size of the borrom and right hand side margins.
... any other arguments will be passed to the heatmap.2 function.

Details

This function may be used to cluster the samples based on Ct values and present the result in a
heatmap. Per default the colours are a rainbow scale from 0 to 1.

The correlation is calculated as 1 - the ’Pearson’ method. Prior to version 1.9.1 the value plotted
was the correlation directly, rather than 1-correlation.

A standard heatmap is drawn, but this can be modified extensively using the arguments available in
the heatmap.2 function.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

heatmap.2

Examples

data(qPCRraw)
plotCtCor(qPCRraw)
plotCtCor(qPCRraw, col.range=c(0,0.6))
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plotCtDensity Distribution plot for qPCR Ct values.

Description

Function for plotting the density distribution of Ct values from high-throughput qPCR data.

Usage

plotCtDensity(q, cards = TRUE, xlab = "Ct", ylab = "Density", col, main = NULL, legend = TRUE, lwd = 2, ...)

Arguments

q object of class qPCRset.

cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.

xlab character string, label for the x-axis.

ylab character string, label for the y-axis.

col vector of colours to use, defaults to different colour for each card.

main character string, plot title.

legend logical, whether to include a colour legend or not.

lwd numeric, the width of the lines.

... any other arguments will be passed to the matplot function.

Details

The distribution of Ct values in the qPCRset q is calculated using density.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

matplot, density

Examples

# Loading the data
data(qPCRraw)
# Make plot with all samples or just a few
plotCtDensity(qPCRraw)
plotCtDensity(qPCRraw, cards=c(1,4))
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plotCtHeatmap Heatmap of qPCR Ct values.

Description

Function for drawing a heatmap of Ct values from high-throughput qPCR experiments such as using
TaqMan Low Density Arrays.

Usage

plotCtHeatmap(q, main = NULL, col, col.range, dist = "pearson", zero.center, mar, gene.names, sample.names, ...)

Arguments

q object of class qPCRset.

main character string, plot title.

col the colours to use. See details.

col.range vector, the range of colours to use.

dist character string, specifying whether to use "pearson" correlation (default) or
"euclidean" distance for the clustering.

zero.center logical, should the colours be shifted to be zero-centered. See details.

mar vector, the size of the borrom and right hand side margins.

gene.names character vector, names to replace the genes (rows) with. See details.

sample.names character vector, names to replace the samples (columns) with. See details.

... any other arguments will be passed to the heatmap.2 function.

Details

This function may be used to cluster the raw or normalized Ct values, and present the result in a
heatmap.

The color range is used to represent the range of values for the statistic. If col==NULL the colour
will be set to a spectrum from red to blue/purple, unless there are negative values in which case
it goes red-yellow-green to reflect up and down regulation of genes. If zero.center=NULL then
zero.center will automatically be set to TRUE to make the colour scale symmetric around 0.

Especially gene names will often not be readable in a standard size plotting device, and might
therefore be removed. If gene.names or sample.names is set to a single character (such as "" for
no naming), then this character will be repeated for all rows or columns.

A standard heatmap is drawn, but this can be modified extensively using the arguments available in
the heatmap.2 function.

Value

A plot is created on the current graphics device.



plotCtHistogram 25

Author(s)

Heidi Dvinge

See Also

heatmap.2

Examples

# Load example data
data(qPCRraw)
# Some standard heatmaps
plotCtHeatmap(qPCRraw, gene.names="")
plotCtHeatmap(qPCRraw, gene.names="", dist="euclidean", col.range=c(10,35))
plotCtHeatmap(qPCRraw, gene.names="", dist="euclidean", col=colorRampPalette(rev(brewer.pal(9, "YlGnBu")))(20))

plotCtHistogram Histrogram of Ct values from qPCR experiments.

Description

The distribution of Ct values for a selected qPCR sample is shown in a histogram.

Usage

plotCtHistogram(q, card = 1, xlab = "Ct", col, main, n = 30, ...)

Arguments

q an object of class qPCRset.

card integer, the number of the card (sample) to plot.

xlab character string, the label for the x-axis.

col integer or character, the colour for the histogram.

main character string, the plot title. Default is the name of the sample.

n integer, number of bins to divide the Ct values into.

... any other arguments are passed to hist.

Value

A figure is generated in the current graphics device.

Author(s)

Heidi Dvinge
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See Also

plotCtDensity or plotCtBoxes for including multiple samples in the same plot.

Examples

# Load example data
data(qPCRraw)
# Create the plots
plotCtHistogram(qPCRraw, card=2)
plotCtHistogram(qPCRraw, card=3, n=50, col="blue")

plotCtLines Plotting Ct values from qPCR across multiple samples.

Description

This function is for displaying a set of features from a qPCRset across multiple samples, such as
a timeseries or different treatments. Values for each feature are connected by lines, and the can be
averaged across groups rather than shown for individual smaples.

Usage

plotCtLines(q, genes, groups, col = brewer.pal(10, "Spectral"), xlab = "Sample", ylab = "Ct", legend = TRUE, lwd = 2, lty, pch, xlim, ...)

Arguments

q object of class qPCRset.
genes numeric or character vector, selected genes to make the plot for.
groups vector, the different groups that the samples in q belong to. See details.
col vector, colours to use for the lines.
xlab character string, label for the x-axis.
ylab character string, label for the y-axis.
legend logical, whether to include a colour legend or not.
lwd numeric, the width of the lines.
lty vector, line types to use. See par or lines for details.
pch vector, if groups is set, the point types that will be used for each feature in

genes.
xlim vector of length two, the limits for the x-axis. Mainly used for adjusting the

position of the legend.
... any other arguments will be passed to the matplot function.

Details

The default plot shows the Ct values across all samples in q, with lines connecting the samples.
However, if groups is set the Ct values will be averaged within groups. Lines connect these aver-
ages, but the individual values are shown with different point types, as chosen in pch.
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Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

matplot

Examples

# Load some example data
data(qPCRraw)
samples <- exFiles <- read.delim(file.path(system.file("exData", package="HTqPCR"), "files.txt"))
# Draw dfferent plots
plotCtLines(qPCRraw, genes=1:10)
plotCtLines(qPCRraw, genes=1:10, groups=samples$Treatment, xlim=c(0,3))
feat <- as.numeric(as.factor(featureType(qPCRraw)[1:10]))
plotCtLines(qPCRraw, genes=1:10, col=feat)

plotCtOverview Overview plot of qPCR Ct values across multiple conditions.

Description

Function for high-throughput qPCR data, for showing the average Ct values for features in a barplot,
either for individual samples or averaged across biological or technical groups. If Ct values are
shown, error bars can be included, or the Ct values can be displayed relative to a calibrator sample.

Usage

plotCtOverview(q, cards = TRUE, genes, groups, calibrator, replicates = TRUE, col, conf.int = FALSE, legend = TRUE, ...)

Arguments

q object of class qPCRset.

cards integer, the cards (samples) to use. Defaults to all.

genes vector selecting the features to show. See Details.

groups vector with groups to average the samples across. If missing all the samples are
displayed individually. See Details.

calibrator the value in groups to use as calibrator sample. See Details.

replicates logical, if should values from replicated features in each sample be collapsed or
kept separate.
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col colours to use for each sample or group. Per default a maximum of 10 colours
are used, so this parameter should be set if more than 10 groups are present.

conf.int logical, should the 95 percent confidence interval be shown. See Details.

legend logical, should a legend be included in the plot.

... further arguments passed to barplot.

Details

If a calibrator is chosen all values will be displayed relative to this, i.e. as Ct(sample)-Ct(calibrator).
If there is no calibrator, the full Ct values are shown, including 95% confidence interval if se-
lected. For confidence intervals when there is a calibrator, it’s the variation across Ct(sample)-
average(Ct(calibrator)) that is shown.

When setting replicates=TRUE it is often better to specify genes by name rather than selecting
for example the first 10 features using 1:10. This literally only takes the first 10 rows of the data,
although some of these features might be replicated elsewhere in the data.

The purpose of group is to tell plotCtOverview if any of the samples should be treated as biological
replicates, in addition to the technical replicates that might be present on each plate. With e.g. 4
samples and groups=c("A", "B", "C", "D") they’re each treated individually, and only replicates
features on each plate are considered. However, groups=c("WT", "WT", "WT", "mutant") means
that the first 3 are treated as biological replicates; hence for each gene in the barplot there’ll be one
bar for WT and one for mutant.

Value

A figure is produced in the current graphics device.

Author(s)

Heidi Dvinge

Examples

# Load example data
data(qPCRraw)
exPath <- system.file("exData", package="HTqPCR")
samples <- read.delim(file.path(exPath, "files.txt"))
# Show all samples for the first 10 genes
g <- featureNames(qPCRraw)[1:10]
plotCtOverview(qPCRraw, genes=g, xlim=c(0,90))
plotCtOverview(qPCRraw, genes=g, xlim=c(0,50), groups=samples$Treatment)
plotCtOverview(qPCRraw, genes=g, xlim=c(0,60), groups=samples$Treatment, conf.int=TRUE, ylim=c(0,55))
# Relative to a calibrator sample
plotCtOverview(qPCRraw, genes=g, groups=samples$Treatment, calibrator="Control")
plotCtOverview(qPCRraw, genes=g, groups=samples$Treatment, calibrator="Control", conf.int=TRUE, ylim=c(-0.5,0.5))
plotCtOverview(qPCRraw, genes=g, groups=samples$Treatment, calibrator="LongStarve")
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plotCtPairs Pairwise scatterplot of multiple sets of Ct values from qPCR data.

Description

Produces a plot of high-throughput qPCR Ct values from N number of samples plotted pairwise
against each other in an N by N plot. The Ct values will be in the upper triangle, and the correlation
between samples in the lower. Features can be marked based on for example feature class or type.

Usage

plotCtPairs(q, cards = TRUE, lower.panel = panel.Ct.cor, upper.panel = panel.Ct.scatter, Ct.max = 35, col = "type", pch = 20, cex.cor = 2, cex.pch = 1, diag = TRUE, ...)

Arguments

q object of class qPCRset.

cards vector, the cards to plot against each other.

lower.panel function, to use for plotting the lower triangle.

upper.panel function, to use for plotting the upper triangle.

Ct.max numeric, Ct values above this limit will be excluded when calculating the corre-
lation.

col vector with the colour(s) to use for the points, or a character string ("type" or
"class") indicating whether points should be coloured according to featureType
or featureClass of q.

pch integer or single character, which plotting symbol to use for the points.

cex.cor numeric, the expansion factor for the text in panel.Ct.cor.

cex.pch numeric, the expansion factor for the points in panel.Ct.scatter.

diag logical, should the diagonal line y=x be plotted.

... any other arguments are passed to the panel function or pairs.

Details

Per default, the lower panels contain the correlations between data sets. For each correlation all
complete pairs are used, i.e. NAs are ignored. If there are no complete observations between two
samples the correlation will be set to NA.

Value

A figure is generated in the current graphics device.

Author(s)

Heidi Dvinge
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See Also

pairs or plotCtScatter for plotting just two samples.

Examples

# Load example data
data(qPCRraw)
# Various types of plot
plotCtPairs(qPCRraw, cards=1:4)
plotCtPairs(qPCRraw, col="black")
plotCtPairs(qPCRraw, Ct.max=40)

plotCtPCA PCA for qPCR Ct values.

Description

Perform and plot a principal component analysis for high-throughput qPCR data from any platform,
for doing clustering.

Usage

plotCtPCA(q, s.names, f.names, scale = TRUE, features = TRUE, col, cex = c(1, 1))

Arguments

q a matrix or an object of class qPCRset containing Ct values.

s.names character vector, names of samples. See details.

f.names character vector, names of features. See details.

scale logical, should the variables be scaled to have unit variance. Passed on to
prcomp.

features logical, should the features be plotted. See details.

col vector, the colours to use for the samples if features=FALSE.

cex vector of length 2, the expansion to use for features and samples respectively if
features=FALSE.

Details

Per default the sample names from the qPCRset are used, however the feature names are replaced
by "*" to avoid cluttering the plot.

If features=TRUE then a biplot including all features is produced, with samples represented by
vectors. I.e. both observations and variables are plotted, which can potentially be used to identify
outliers among the features. For features=FALSE only the samples will be included in the plot.
This might be more useful for clustering.

In case of high-throughput arrays, some samples may be all NAs. These are ignored during the
PCA calculation.



plotCtReps 31

Value

A plot is created on the current graphics device.

Note

This is still a work in progress, and the function is not particularly sophisticated. Suggestions/wishes
are welcome though.

Author(s)

Heidi Dvinge

See Also

prcomp, biplot

Examples

# Load example data
data(qPCRraw)
# Plot
plotCtPCA(qPCRraw)
# Include feature names; make them smaller
plotCtPCA(qPCRraw, f.names=featureNames(qPCRraw), cex=c(0.5,1))
# Plot only the samples
plotCtPCA(qPCRraw, features=FALSE)

plotCtReps Scatter plot of features analysed twice during each qPCR experiment.

Description

In high-throughput qPCR data some features may be present twice on each card (sample). This
function will make a scatter plot of one replicate versus the other for each sample individually, as
well as mark genes with very deviating replicate values.

Usage

plotCtReps(q, card = 1, percent = 20, verbose = TRUE, col = 1, ...)

Arguments

q object of class qPCRset.
card integer, the sample number to plot.
percent numeric, features with replicate values differ more than this percentage from

their average will be marked on the plot.
verbose logical, should the deviating genes and their Ct values be printed to the terminal.
col integer or character; the colour of the points in the scatter plot.
... any other arguments are passed to plot.
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Details

This function will look through the data in the qPCRset, find all genes with are presented twice on
the array, and plot the Ct values of these replicated genes against each other. Whether a genes goes
to the x or y-axis depends on the first occurrence of the gene names.

All genes where abs(rep1-rep2) > percent/100*replicate mean will be marked by an open circle,
and the gene names written in red letters.

Value

An plot is created on the current graphics device. Also, a data.frame with the names and values of
deviating genes is returned invisibly.

Author(s)

Heidi Dvinge

See Also

plot, and par for the plotting parameters.

Examples

# Load example data
data(qPCRraw)
# Plot replicates
plotCtReps(qPCRraw, card=1, percent=30)
plotCtReps(qPCRraw, card=2, percent=10)
reps <- plotCtReps(qPCRraw, card=2, percent=20)
reps

plotCtRQ Plot the relative quantification of Ct values from qPCR experiments.

Description

Function for plotting the relative quantification (RQ) between two groups of data, whose Ct values
have been tested for significant differential expression.

Usage

plotCtRQ(qDE, comparison = 1, genes, transform = "log2", p.val = 0.1, mark.sig = TRUE, p.sig = 0.05, p.very.sig = 0.01, mark.un = TRUE, un.tar = "black", un.cal = "black", col, legend = TRUE, xlim, mar, main, ...)
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Arguments

qDE list or data.frame, the result from ttestCtData or limmaCtData.

comparison integer or character string, indicating which component to use if qDE is a list.

genes numeric or character vector, selected genes to make the plot for.

transform character string, how should the data be displayed. Options are "none", "log2"
or "log10". See details

p.val numeric between 0 and 1, if genes is not supplied all given with (adjusted) p-
value below this threshold will be included.

mark.sig logical, should significant features be marked.

p.sig numeric, the cut-off for significant p-values that will be marked by *.

p.very.sig numeric, the cut-off for very significant p-values that will be marked by ".

mark.un logical, should data with unreliable target or calibrator samples be marked. See
details.

un.tar colour to use for the undetermined targets. See details.

un.cal colour to use for the undetermined calibrators. See details.

col vector, colours to use for the bars.

legend logical, should a legend be included in the barplot.

xlim vector of length 2, the limits on the x-axis. Mainly used for moving the legend
to the left of bars.

mar vector with 4 values, the size of the margins. See par for more info.

main character string, the image title. Default to the name of the chosen comparison.

... any other arguments will be passed to the barplot function.

Details

The relative quantification is calculated as RQ=2^-ddCT, where ddCT is the deltadeltaCt value.

If mark.un=TRUE, those bars where either the calibrator or target sample measurements were unde-
termined are marked using diagonal lines. Whether either of these are called undetermined (includes
unreliable values) or not depends on all the input Ct values in ttestCtData or limmaCtData, and
whether stringent=TRUE was used in these functions.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

ttestCtData and limmaCtData for testing the Ct data for differential expression.
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plotCtScatter Scatterplot of two sets of Ct values from qPCR data.

Description

Produces a plot of Ct values from two samples plotted against each other. Features can be marked
based on for example feature class or type.

Usage

plotCtScatter(q, cards = c(1, 2), col = "class", pch = 20, diag = FALSE, cor = TRUE, Ct.max = 35, legend = TRUE, ...)

Arguments

q object of class qPCRset.
cards vector, the two cards to plot against each other.
col vector with the colour(s) to use for the points, or a character string ("type" or

"class") indicating whether points should be coloured according to featureType
or featureClass of q.

pch integer, the point type to use for the plot.
diag logical, should the diagonal line y=x be plotted.
cor logical, should information about the correlation between the two samples be in-

cluded in the plot. The correlation is calculated both with and without removing
Ct values above Ct.max.

Ct.max numeric, all Ct values above this will be removed for calculating one of the
correlations.

legend logical, if col is either "type" or "class", should a colour legend for these be
included.

... any other arguments are passed to plot.

Value

A figure is generated in the current graphics device.

Author(s)

Heidi Dvinge

Examples

# Load example data
data(qPCRraw)
# Various types of plot
plotCtScatter(qPCRraw, cards=c(1,2))
plotCtScatter(qPCRraw, cards=c(1,4), col="type")
plotCtScatter(qPCRraw, cards=c(1,4), col="black", cor=FALSE, diag=TRUE)



plotCtSignificance 35

plotCtSignificance Barplot with Ct values between genes from qPCR.

Description

Function for producing a barplot of the Ct values from high-throughput qPCR samples. A com-
parison is made between two groups which have been tested for differential expression, and all
individual Ct values are shown, to identify potential outliers.

Usage

plotCtSignificance(qDE, q, comparison = 1, genes, p.val = 0.1, groups, calibrator, target, p.sig = 0.05, p.very.sig = 0.01, mark.sig = TRUE, col, un.col = "#D53E4F", point.col = "grey", legend = TRUE, mar, main, jitter = 0.5, ...)

Arguments

qDE list or data.frame, the result from ttestCtData or limmaCtData.

q the qPCRset data that was used for testing for differential expression.

comparison integer or character string, indicating which component to use if x is a list.

genes numeric or character vector, selected genes to make the plot for.

p.val numeric between 0 and 1, if genes is not supplied all given with (adjusted) p-
value below this threshold will be included.

groups vector, the groups of all the samples in q.

calibrator character string, which of the groups is the calibrator.

target character string, which of the groups is the target.

p.sig numeric, the cut-off for significant p-values that will be marked by *.

p.very.sig numeric, the cut-off for very significant p-values that will be marked by ".

mark.sig logical, should significant features be marked.

col vector, colours to use for the two sets of bars, one per sample type.

un.col integer or character string, the colour to use for all Ct values that are "Unreliable"
or "Undetermined".

point.col integer or character string, the colour to use for all other Ct values.

legend logical, should a legend be included int eh barplot.

mar vector with 4 values, the size of the margins. See par for more info.

main character string, the image title. Default to the name of the chosen comparison.

jitter numeric, between 0 and 1. If Ct values are very similar, the individual points
might lie on top of each other in the bars. This adds a jittering factor along the
x-axis. If 0 the points will all be aligned.

... any other arguments will be passed to the barplot function.
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Details

This function will make a barplot with the average Ct values for the test and reference samples
for the selected genes. All the individual Ct values are plotted on top of the bars though, and
the "Unreliable" or "Undetermined" ones are marked, to do a visual assessment of the impact of
non-valid measurements on the average.

It’s up to the user to specify the correct calibrator and target for the given comparison; no
checking is done.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

barplot and plotCtRQ or plotCtOverview for a plot of the relative quantification between sam-
ples.

plotCtVariation Plot variation in Ct values across replicates

Description

Examine the variation in Ct values, either across features present multiple times on each card, or for
within different groups of samples. The function supports both a summarised and a more detailed
output.

Usage

plotCtVariation(q, cards = TRUE, variation = "var", type = "summary", sample.reps, feature.reps, log = FALSE, add.featurenames = FALSE, ylab, n.col, ...)

Arguments

q object of class qPCRset.

cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.

variation character string indication whether to calculate the variation, "var", or standard
deviation, "sd".

type character string indicating whether to output the results in a summarised box-
plot, "summary" or as a more detailed scatter plot, "detail". See Details and the
examples.

sample.reps a vector grouping the samples (see Details). Overrides feature.reps.

feature.reps a vector grouping the features according to which are replicates. Per default
featureNames(q) are used.
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log logical, should the results be converted into log10 values.
add.featurenames

logical, if type="detail" should the names of each feature be added to the
scatter plot.

ylab character, the label of the y-axis.

n.col integer, if type="detail" how many columns should the scatterplots be pre-
sented in. Defaults to 3, or n.samples(q) if <3.

... further arguments passed to boxplot or plot.

Details

It is often useful to examine the data to determine if some samples are inherently more vari-
able than other, or if the concordance between replicates on each qPCR card is acceptable. Us-
ing type="summary" generates a boxplot with all the variation values, either across genes (if
sample.reps is set) or with each samples (default, or if feature.reps is set). That way the
general distribution of variation or standard deviation values can be compared quickly.

If it looks like there’s an unacceptable (or interesting) difference in the variation, this can be further
investigated using type="detail". This will generate multiple sub-plots, containing a single scat-
terplot of variation versus mean for each gene (if sample.reps is set) or each sample (default, or if
feature.reps is set). Including the mean in the plot can be used to assess heteroskedasticity in the
data.

Value

A plot is created on the current graphics device. The variation and mean across each type of replicate
is returned invisibly in a list with "Var" and "Mean" slots.

Author(s)

Heidi Dvinge

See Also

plotCtReps for cases where the qPCR card only contains two replicates of each feature. plotCVBoxes
for other ways of plotting variation within different groups.

Examples

# Load some example data
data(qPCRraw)

# Detailed summary of variation versus mean Ct value for replicated features within each sample
plotCtVariation(qPCRraw, type="detail", log=TRUE)
plotCtVariation(qPCRraw, type="detail")
# Add feature names to see which the highly varying replicates are.
plotCtVariation(qPCRraw, type="detail", add.featurenames=TRUE, pch=" ", cex=0.8)
# Use different information to indicate which features are replicates
plotCtVariation(qPCRraw, type="detail", feature.reps=paste("test", rep(1:96, each=4)))
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# Examine variation across samples for the first 9 features
plotCtVariation(qPCRraw[1:9,], type="detail", sample.reps=paste("mutant", rep(1:3,2)), add.featurenames=TRUE)

# Examine the output
test <- plotCtVariation(qPCRraw, variation="sd")
names(test)
head(test[["Var"]])

plotCVBoxes Boxplots of CV for qPCR Ct values.

Description

Function that will calculate the coefficients of variation across selected qPCR data, and plot the
results in a boxplot.

Usage

plotCVBoxes(q, cards = TRUE, xlab = "", ylab = "CV", col = brewer.pal(5, "Spectral"), main = NULL, stratify, ...)

Arguments

q object of class qPCRset.

cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.

xlab character string, label for the x-axis.

ylab character string, label for the y-axis.

col vector of colours to use.

main character string, plot title.

stratify character, specifying what to stratify the Ct values by. NULL, the default means
no stratification, "type" is the feature types of the qPCRset, and "class" the fea-
ture class.

... any other arguments will be passed to the boxplot function.

Details

The CV is calculated across all the selected cards based on each well position, without taking
possibly replicated genes on the cards into consideration. "type" and "class" are automatically
extracted from the qPCRset using featureType and featureClass.

Value

A plot is created on the current graphics device. The CV values are returned invisibly.

Author(s)

Heidi Dvinge
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See Also

boxplot

Examples

# Load example data
data(qPCRraw)
# Make plot with all samples or just a few
plotCVBoxes(qPCRraw)
plotCVBoxes(qPCRraw, cards=c(1,4))
plotCVBoxes(qPCRraw, stratify="class")
x <- plotCVBoxes(qPCRraw, stratify="type")
x[1:10]

qPCRpros Example processed qPCR data

Description

Processed version of the raw data in qPCRraw, to be used as example data in the HTqPCR pack-
age. The data has been processed with setCategory to mark the feature categories, and with
normalizeCtData using rank invariant normalisation.

Usage

data(qPCRpros)

Format

The format is: Formal class ’qPCRset’ [package ".GlobalEnv"] with 8 slots ..@ CtHistory :’data.frame’:
3 obs. of 1 variable: .. ..$ history: chr [1:3] "readCtData(files = exFiles$File, path = exPath)"
"setCategory(q = qPCRraw, groups = exFiles$Treatment)" "normalizeCtData(q = qPCRpros, norm
= \"norm.rankinvariant\")" ..@ assayData :<environment: 0x1180c9400> ..@ phenoData :Formal
class ’AnnotatedDataFrame’ [package "Biobase"] with 4 slots .. .. ..@ varMetadata :’data.frame’: 1
obs. of 1 variable: .. .. .. ..$ labelDescription: chr "Sample numbering" .. .. ..@ data :’data.frame’:
6 obs. of 1 variable: .. .. .. ..$ sample: int [1:6] 1 2 3 4 5 6 .. .. ..@ dimLabels : chr [1:2] "sample-
Names" "sampleColumns" .. .. ..@ .__classVersion__:Formal class ’Versions’ [package "Biobase"]
with 1 slots .. .. .. .. ..@ .Data:List of 1 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ featureData :Formal class
’AnnotatedDataFrame’ [package "Biobase"] with 4 slots .. .. ..@ varMetadata :’data.frame’: 4 obs.
of 1 variable: .. .. .. ..$ labelDescription: chr [1:4] NA NA NA NA .. .. ..@ data :’data.frame’:
384 obs. of 4 variables: .. .. .. ..$ featureNames: Factor w/ 191 levels "Gene1","Gene10",..: 1
104 115 126 137 148 159 170 181 2 ... .. .. .. ..$ featureType : Factor w/ 2 levels "Endogenous
Control",..: 1 2 2 2 2 2 2 2 2 2 ... .. .. .. ..$ featurePos : Factor w/ 384 levels "A1","A10","A11",..:
1 12 18 19 20 21 22 23 24 2 ... .. .. .. ..$ featureClass: Factor w/ 3 levels "Kinase","Marker",..:
1 2 1 3 2 2 2 3 1 2 ... .. .. ..@ dimLabels : chr [1:2] "featureNames" "featureColumns" .. .. ..@
.__classVersion__:Formal class ’Versions’ [package "Biobase"] with 1 slots .. .. .. .. ..@ .Data:List
of 1 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ experimentData :Formal class ’MIAME’ [package "Biobase"]



40 qPCRraw

with 13 slots .. .. ..@ name : chr "" .. .. ..@ lab : chr "" .. .. ..@ contact : chr "" .. .. ..@ title : chr
"" .. .. ..@ abstract : chr "" .. .. ..@ url : chr "" .. .. ..@ pubMedIds : chr "" .. .. ..@ samples : list()
.. .. ..@ hybridizations : list() .. .. ..@ normControls : list() .. .. ..@ preprocessing : list() .. .. ..@
other : list() .. .. ..@ .__classVersion__:Formal class ’Versions’ [package "Biobase"] with 1 slots ..
.. .. .. ..@ .Data:List of 2 .. .. .. .. .. ..$ : int [1:3] 1 0 0 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ annotation
: chr(0) ..@ protocolData :Formal class ’AnnotatedDataFrame’ [package "Biobase"] with 4 slots
.. .. ..@ varMetadata :’data.frame’: 0 obs. of 1 variable: .. .. .. ..$ labelDescription: chr(0) ..
.. ..@ data :’data.frame’: 6 obs. of 0 variables .. .. ..@ dimLabels : chr [1:2] "sampleNames"
"sampleColumns" .. .. ..@ .__classVersion__:Formal class ’Versions’ [package "Biobase"] with 1
slots .. .. .. .. ..@ .Data:List of 1 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ .__classVersion__:Formal class
’Versions’ [package "Biobase"] with 1 slots .. .. ..@ .Data:List of 3 .. .. .. ..$ : int [1:3] 2 14 0 .. .. ..
..$ : int [1:3] 2 14 0 .. .. .. ..$ : int [1:3] 1 3 0

Examples

data(qPCRpros)

qPCRraw Example raw qPCR data.

Description

Six qPCR samples, performed on the TaqMan Low Density Arrays from Applied Biosystem. Each
sample contains 384 PCR reactions, and there are 3 different samples with 2 replicates each. To be
used as example data in the HTqPCR package.

Usage

data(qPCRraw)

Format

The format is: Formal class ’qPCRset’ [package ".GlobalEnv"] with 8 slots ..@ CtHistory :’data.frame’:
1 obs. of 1 variable: .. ..$ history: chr "readCtData(files = exFiles$File, path = exPath)" ..@ assay-
Data :<environment: 0x118094e30> ..@ phenoData :Formal class ’AnnotatedDataFrame’ [package
"Biobase"] with 4 slots .. .. ..@ varMetadata :’data.frame’: 1 obs. of 1 variable: .. .. .. ..$ labelDe-
scription: chr "Sample numbering" .. .. ..@ data :’data.frame’: 6 obs. of 1 variable: .. .. .. ..$
sample: int [1:6] 1 2 3 4 5 6 .. .. ..@ dimLabels : chr [1:2] "sampleNames" "sampleColumns" ..
.. ..@ .__classVersion__:Formal class ’Versions’ [package "Biobase"] with 1 slots .. .. .. .. ..@
.Data:List of 1 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ featureData :Formal class ’AnnotatedDataFrame’
[package "Biobase"] with 4 slots .. .. ..@ varMetadata :’data.frame’: 4 obs. of 1 variable: .. .. ..
..$ labelDescription: chr [1:4] NA NA NA NA .. .. ..@ data :’data.frame’: 384 obs. of 4 variables:
.. .. .. ..$ featureNames: Factor w/ 191 levels "Gene1","Gene10",..: 1 104 115 126 137 148 159
170 181 2 ... .. .. .. ..$ featureType : Factor w/ 2 levels "Endogenous Control",..: 1 2 2 2 2 2 2 2
2 2 ... .. .. .. ..$ featurePos : Factor w/ 384 levels "A1","A10","A11",..: 1 12 18 19 20 21 22 23
24 2 ... .. .. .. ..$ featureClass: Factor w/ 3 levels "Kinase","Marker",..: 1 2 1 3 2 2 2 3 1 2 ... ..
.. ..@ dimLabels : chr [1:2] "featureNames" "featureColumns" .. .. ..@ .__classVersion__:Formal
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class ’Versions’ [package "Biobase"] with 1 slots .. .. .. .. ..@ .Data:List of 1 .. .. .. .. .. ..$ :
int [1:3] 1 1 0 ..@ experimentData :Formal class ’MIAME’ [package "Biobase"] with 13 slots .. ..
..@ name : chr "" .. .. ..@ lab : chr "" .. .. ..@ contact : chr "" .. .. ..@ title : chr "" .. .. ..@
abstract : chr "" .. .. ..@ url : chr "" .. .. ..@ pubMedIds : chr "" .. .. ..@ samples : list() .. .. ..@
hybridizations : list() .. .. ..@ normControls : list() .. .. ..@ preprocessing : list() .. .. ..@ other :
list() .. .. ..@ .__classVersion__:Formal class ’Versions’ [package "Biobase"] with 1 slots .. .. .. ..
..@ .Data:List of 2 .. .. .. .. .. ..$ : int [1:3] 1 0 0 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ annotation
: chr(0) ..@ protocolData :Formal class ’AnnotatedDataFrame’ [package "Biobase"] with 4 slots
.. .. ..@ varMetadata :’data.frame’: 0 obs. of 1 variable: .. .. .. ..$ labelDescription: chr(0) ..
.. ..@ data :’data.frame’: 6 obs. of 0 variables .. .. ..@ dimLabels : chr [1:2] "sampleNames"
"sampleColumns" .. .. ..@ .__classVersion__:Formal class ’Versions’ [package "Biobase"] with 1
slots .. .. .. .. ..@ .Data:List of 1 .. .. .. .. .. ..$ : int [1:3] 1 1 0 ..@ .__classVersion__:Formal class
’Versions’ [package "Biobase"] with 1 slots .. .. ..@ .Data:List of 3 .. .. .. ..$ : int [1:3] 2 14 0 .. .. ..
..$ : int [1:3] 2 14 0 .. .. .. ..$ : int [1:3] 1 3 0

Examples

data(qPCRraw)

qPCRset-class Class "qPCRset"

Description

This is a class for containing the raw or normalized cycle threshold (Ct) values and some related
quality information. It is suitable for TaqMan Low Density Arrays or any other type of (high-
throughput) qPCR data, where gene expression is measured for any number of genes, across several
samples/conditions. It inherits from eSet for microarray data.

Objects from the Class

Objects can be created by calls of the form new("qPCRset", assayData, phenoData, featureData,
experimentData, annotation, protocolData, ...) or using readCtData.

Slots

CtHistory: Object of class "data.frame" indicating how the data has been read in, normalized,
filtered etc. Gives the exact commands used during these operations.

assayData: Object of class "AssayData", containing the Ct values.

phenoData: Object of class "AnnotatedDataFrame", where information about samples can be
added.

featureData: Object of class "AnnotatedDataFrame", where information about features can be
added. If the object is from readCtData, the featureData will contain the columns ’feature-
Name’, ’featurePos’ and ’featureType’.

experimentData: Object of class "MIAxE", where details about the experiment can be stored.

annotation: Object of class "character", where the name of the qPCR assay can be stored.
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protocolData: Object of class "AnnotatedDataFrame", where details of the protocol can be
stored.

.__classVersion__: Object of class "Versions".

Furthermore, the following information is contained within the object.

flag: Object of class "data.frame" containing the flag for each Ct value, as supplied by the input
files.

featureCategory: Object of class "data.frame" representing the quality of the measurement for
each Ct value, such as "OK", "Undetermined" or "Unreliable" if the Ct value is considered too
high.

Extends

Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned",
by class "eSet", distance 3.

Methods

[ signature(x = "qPCRset"): Subsets by genes or samples.

exprs signature(object = "qPCRset"): Extracts the Ct matrix. Is identical to getCt

exprs<- signature(object = "qPCRset", value = "matrix"): Replaces the Ct matrix. Is iden-
tical to setCt<-

getCt signature(object = "qPCRset"): Extracts the Ct matrix. Is identical to exprs.

setCt<- signature(object = "qPCRset", value = "matrix"): Replaces the Ct matrix. Is iden-
tical to exprs<-.

featureNames signature(object = "qPCRset"): Extracts the features (gene names) on the card.

featureNames<- signature(object = "qPCRset", value = "character"): Replaces the features
(gene names) on the card.

sampleNames signature(object = "qPCRset"): Extracts the sample names.

sampleNames<- signature(object = "qPCRset", value = "character"): Replaces the sam-
ple names.

featureType signature(object = "qPCRset"): Extracts the different types of features on the
card, such as controls and target genes.

featureType<- signature(object = "qPCRset", value = "factor"): Replaces the feature type
for each gene.

featurePos signature(object = "qPCRset"): Extracts the position of each feature (gene) on the
assay, representing the location "well" (such as well A1, A2, ...). If data does not come from
a card format, the positions will be given consecutive names.

featurePos<- signature(object = "qPCRset", value = "character"): Replaces the position
of each feature (gene) on the card.

featureClass signature(object = "qPCRset"): Extracts the feature class for each gene.

featureClass<- signature(object = "qPCRset", value = "factor"): Replaces the feature class
for each gene, for example if it is a marker, transcription factor or similar.

featureCategory signature(object = "qPCRset"): Extracts the category of each Ct value.
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featureCategory<- signature(object = "qPCRset", value = "data.frame"): Replaces the cat-
egory of each Ct value.

flag signature(object = "qPCRset"): Extracts the flag of each Ct value.

flag<- signature(object = "qPCRset"): Replaces the flag of each Ct value.

n.wells signature(object = "qPCRset"): Extracts information about the number of wells on the
card.

n.samples signature(object = "qPCRset"): Extracts information about the number of samples
in the set.

getCtHistory signature(object = "qPCRset"): Extracts data frame containing information about
the history of the object (which operations have been performed on it).

setCtHistory<- signature(object = "qPCRset"): Add information about the history of the ob-
ject.

show signature(object = "qPCRset"): Displays some abbreviated information about the data
object.

summary signature(object = "qPCRset"): Displays a summary of the Ct values from each
sample.

Author(s)

Heidi Dvinge

Examples

# The data format
data(qPCRraw)
show(qPCRraw)
getCtHistory(qPCRraw)
showClass("qPCRset")
str(qPCRraw)
# Information about samples
phenoData(qPCRraw)
pData(qPCRraw)
pData(qPCRraw)[,"Rep"] <- c(1,1,2,2,3,3)
# Information about features
featureData(qPCRraw)
head(fData(qPCRraw))

readCtData Reading Ct values from qPCR experiments data into a qPCRset

Description

This function will read tab separated text files with Ct values and feature meta-data from high-
throughput qPCR experiments into a qPCRset containing all the relevant information.
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Usage

readCtData(files, path = NULL, n.features = 384, format="plain", column.info, flag, feature, type, position, Ct, header = FALSE, SDS = FALSE, n.data = 1, samples, na.value = 40, sample.info, ...)

Arguments

files character vector with the names of the files to be read.

path character string with the path to the folder containing the data files.

n.features integer, number of features present on each array (e.g. 384). See details.

format character, the format of the input file. Options are "plain", "SDS", "LightCy-
cler", "CFX", "OpenArray" and "BioMark". See Details.

column.info list, indicating which column number or name the information of interest is in. It
is set automatically by format, but this can be overridden manually. The names
list slots can be ’flag’, ’feature’, ’position’, ’type and ’Ct’. See Details. Note
than when indicating column names, these are sometimes changed by R to be
syntactically valid, so replacing e.g. brackets by dots.

flag, feature, Ct, type, position
deprecated, use column.info instead.

header logical, does the file contain a header row or not. Only used for format="plain".

SDS deprecated, use format="SDS" instead.

n.data integer vector, same length as files. Indicates the number of samples that are
present in each file. For each file in files, n.data*n.features lines will be read.

samples character vector with names for each sample. Per default the file names are used.

na.value integer, a Ct value that will be assigned to all undetermined/NA wells.

sample.info object of class AnnotatedDataFrame, given the phenoData of the object. Can
be added later.

... any other arguments are passed to read.table or read.csv.

Details

This is the main data input function for the HTqPCR package for analysing qPCR data. It extracts
the threshold cycle, Ct value, of each well on the card, as well as information about the quality
(e.g.~passed/failed) of the wells. The function is tuned for data from TaqMan Low Density Array
cards, but can be used for any kind of qPCR data.

The information to be extracted is:

• flag integer indicating the number of column containing information about the flags.

• feature integer indicating the number of column containing information about the individual
features (typically gene names).

• type integer indicating the number of column containing information about the type of each
feature.

• position integer indicating the number of column containing information about the position
of features on the card.

• Ct integer indicating the number of column containing information about the Ct values. Per
default, this information is assumed to be in certain columns depending on the input format.
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featureNames, featureType and featurePos will be extracted from the first file. If flag, type
or position are not included into column.info, this means that this information is not available in
the file. flag will then be set to "Passed", type to "Target" and position to "feature1", "feature2",
... etc until the end of the file. Especially position might not be available in case the data does not
come from a card format, but it is required in subsequent functions in order to disambiguate in case
some features are present multiple times.

format indicates the format of the input file. The options currently implemented are:

• plain A tab-separated text file, containing no header unless header=TRUE. The informa-
tion extracted defaults to column.info=list(flag=4, feature=6, type=7, position=3,
Ct=8).

• SDS An output file from the SDS Software program. This is often used for the TaqMan Low
Density Arrays from Applied Biosystems, but can also be used for assays from other vendors,
such as Exiqon. column.info is the same as for "plain".

• OpenArray The TaqMan OpenArray Real-Time PCR Plates. The information extracted de-
faults to column.info=list(flag="ThroughHole.Outlier", feature="Assay.Assay.ID",
type="Assay.Assay.Type", position="ThroughHole.Address", Ct="ThroughHole.Ct").

• BioMark The BioMark HD System from Fluidigm, currently including the 48.48 and 96.96 as-
says. The information extracted defaults to column.info=list(flag="Call", feature="Name.1",
position="ID", Ct="Value").

• CFX The CFX Automation System from Bio-Rad. The information extracted defaults to
column.info=list(feature="Content", position="Well", Ct="Cq.Mean").

• LightCycler The LightCycler System from Roche Applied Science. The information ex-
tracted defaults to column.info=list(feature="Name", position="Pos", Ct="Cp").

The BioMark and OpenArray assays always contain information multiple samples on each as-
say, such as 48 features for 48 samples for the BioMark 48.48. The results across these sam-
ples are always present in a single file, e.g. with 48x48=2304 rows. Setting n.features=2304
will read in all the information and create a qPCRset object with dimensions 2304x1. Setting
n.data=48 and n.features=48 will however automatically convert this into a 48x48 qPCRset. See
openVignette(package="HTqPCR") for examples. The samples are being read in the order in
which they’re present in the file, i.e. from row 1 onwards, regardless of how they’re loaded onto the
particular platform.

If the data was analysed using for example SDS Software it may contain a variable length header
specifying parameters for files that were analysed at the same time. If format="SDS" then readCtData
will scan through the first 100 lines of each file, and skip all lines until (and including) the line begin-
ning with "#", which is the header. The end of the file might also contain some plate ID information,
but only the number of lines specified in n.features will be read.

n.features indicates the number of features present on each array. For example, for a 384 well
plate with just 1 sample, the number would be 382. For a plate with 2 individual samples loaded onto
it, n.features=196 and n.data=2. For 1 file with 5 plates and 2 samples per plate, the numbers are
n.features=196 and n.data=10. n.features*n.data must correspond to the total number of lines
to be read from each file.

Value

A "qPCRset" object.
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Warnings

The files are all assumed to belong to the same design, i.e.~have the same features (genes) in them
and in identical order.

Author(s)

Heidi Dvinge

See Also

read.delim for further information about reading in data, and "qPCRset" for a definition of the
resulting object.

Examples

# Locate example data and create qPCRset object
exPath <- system.file("exData", package="HTqPCR")
exFiles <- read.delim(file.path(exPath, "files.txt"))
raw <- readCtData(files=exFiles$File, path=exPath)
# Example of adding missing information (random data in this case)
featureClass(raw) <- factor(rep(c("A", "B", "C"), each=384/3))
pData(raw)[,"rep"] <- c(1,1,2,2,3,3)

## See the package vignette for more examples, including different input formats.

setCategory Assign categories to Ct values from qPCR data.

Description

Data in qPCRset objects will have feature categories ("Unreliable", "Undetermined") assigned to
them based on different Ct criteria.

Usage

setCategory(q, Ct.max = 35, Ct.min = 10, replicates = TRUE, quantile = 0.9, groups, flag = TRUE, flag.out = "Failed", verbose = TRUE, plot = FALSE, ...)

Arguments

q qPCRset object.

Ct.max numeric, the maximum tolerated Ct value. Everything above this will be "Un-
determined".

Ct.min numeric, the minimum tolerated Ct value. Everything below this will be "Unre-
liable".

replicates logical, should Ct values from genes replicated within each sample be collapsed
for the standard deviation.
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quantile numeric from 0 to 1, the quantile interval accepted for standard deviations. See
details. NULL means that variation between replicates is not used for setting the
categories.

groups vector, grouping of cards, for example biological or technical replicates. NULL
means that variation between groups os samples is not assessed, same as for
setting quantile=NULL.

flag logical, should categories also be set to "Unreliable" according to the content of
flag(q).

flag.out character vector, if flag=TRUE, what are the flag(s) to be set as "Unreliable".

verbose logical, should a summary about category counts per sample be printed to the
prompt.

plot logical, should some plots of the standard deviations be created.

... any other arguments are passed to plot.

Details

Categories can be assigned to the featureCategory of the qPCRset using either just simple criteria
(max/min of Ct values or flag of q) or by looking at the standard deviation of Ct values across
biological and technical replicates for each gene.

When looking at replicates, the standard deviation and mean are calculated and a normal distribution
following these parameters is generated. Individual Ct values that are outside the interval set by
quantile are set as "Unreliable". So if e.g. quantile=90 the values outside the top 5% and lower
5% of the normal distribution with the given mean and standard deviation are removed.

"Undetermined" has priority over "Unreliable", so if a value is outside quantile but also above
Ct.max it will be "Undetermined".

NB: When setting categories based on replicates, the Ct values are assumed to follow a normal
distribution. This might not be the case if the number of samples within each group is small, and
there are no replicates on the genes within each sample.

If the number of replicates vary significantly between biological groups, this will influence the
thresholds used for determining the range of "OK" Ct values.

Value

If plot=TRUE one figure per sample group is returned to the current graphics device. A qPCRset
with the new feature categories is returned invisibly.

Note

It’s adviced to try several different values for quantile, depending on the input data set. Using the
function PlotCtCategory(..., by.feature=FALSE) or plotCtCategory(..., by.feature=TRUE)
might help assess the result of different quantile choices.

Author(s)

Heidi Dvinge
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See Also

filterCategory, plotCtCategory

Examples

# Load example data
data(qPCRraw)
exFiles <- read.delim(file.path(system.file("exData", package="HTqPCR"), "files.txt"))
# Set categories in various ways

setCategory(qPCRraw, flag=FALSE, quantile=NULL)

ttestCtData Differentially expressed features with qPCR: t-test

Description

Function for calculating t-test and p-values across two groups for the features present in high-
throughput qPCR data, such as from TaqMan Low Density Arrays.

Usage

ttestCtData(q, groups = NULL, calibrator, alternative = "two.sided", paired = FALSE, replicates = TRUE, sort = TRUE, stringent = TRUE, p.adjust = "BH", ...)

Arguments

q qPCRset object.

groups factor, assigning each sample to one of two groups.

calibrator which of the two groups is to be considered as the reference and not the test?
Defaults to the first group in groups.

alternative character string (first letter is enough), specifying the alternative hypothesis,
"two.sided" (default), "greater" or "less".

paired logical, should a paired t-test be used.

replicates logical, if replicated genes are present on the array, the statistics will be calcu-
lated for all the replicates combined, rather than the individual wells.

sort boolean, should the output be sorted by p-values.

stringent boolean, for flagging results as "Undetermined". See details.

p.adjust character string, which method to use for p-value adjustment for multiple testing.
See details.

... any other arguments will be passed to the t.test function.
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Details

Once the Ct values have been normalised, differential expression can be calculated. This function
deals with just the simple case, where there are two types of samples to compare. For more complex
studies, see limmaCtData.

All results are assigned to a category, either "OK" or "Undetermined" depending on the input Ct
values. If stringent=TRUE any unreliable or undetermined measurements among technical and
biological replicates will result in the final result being "Undetermined". For stringent=FALSE the
result will be "OK" unless at least half of the Ct values for a given gene are unreliable/undetermined.

The argument p.adjust is passed on to the p.adjust function. Options include e.g. "BH" (Ben-
jamini & Hochberg, the default), "fdr" and "bonferroni". See p.adjust for more information on
the individual methods.

Value

A data.frame containing the following information:

genes The names of the features on the card.

feature.pos The featurePos of the genes. If replicated genes are used, the feature positions
will be concatenated together.

t.test The value of the t-test.

p.value The corresponding p-value.

ddCt The delta delta Ct values.

FC The fold change; 2^(-ddCt).

meanCalibrator The average expression level of each gene in the calibrator sample(s).

meanTarget The average expression level of each gene in the target sample(s).
categoryCalibrator

The category of the Ct values ("OK", "Undetermined") across the calibrator.

categoryTarget Ditto for the target.

Author(s)

Heidi Dvinge

See Also

t.test, limmaCtData, mannwhitneyCtData. plotCtRQ and plotCtSignificance can be used for
visualising the results.
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