Package ‘GenomicDistributions’

October 24, 2025

Version 1.17.1
Date 2025-04-23

Title GenomicDistributions: fast analysis of genomic intervals with
Bioconductor

Description If you have a set of genomic ranges, this package can help you with
visualization and comparison. It produces several kinds of plots, for example:
Chromosome distribution plots, which visualize how your regions are distributed
over chromosomes; feature distance distribution plots, which visualizes how
your regions are distributed relative to a feature of interest, like
Transcription Start Sites (TSSs); genomic partition plots, which visualize
how your regions overlap given genomic features such as promoters, introns,
exons, or intergenic regions. It also makes it easy to compare one set of
ranges to another.

Depends R (>=4.0), IRanges, GenomicRanges

Imports data.table, ggplot2, reshape2, methods, utils, Biostrings,
plyr, dplyr, scales, broom, GenomelnfoDb, stats

Suggests AnnotationFilter, rtracklayer, testthat, knitr, BiocStyle,
rmarkdown, GenomicDistributionsData

Enhances BSgenome, extrafont, ensembldb, GenomicFeatures
LazyData true

VignetteBuilder knitr

License BSD_2 clause + file LICENSE

biocViews Software, GenomeAnnotation, GenomeAssembly,
DataRepresentation, Sequencing, Coverage, FunctionalGenomics,
Visualization

RoxygenNote 7.3.2
URL http://code.databio.org/GenomicDistributions

BugReports http://github.com/databio/GenomicDistributions
Encoding UTF-8
git_url https://git.bioconductor.org/packages/GenomicDistributions

1

http://code.databio.org/GenomicDistributions
http://github.com/databio/GenomicDistributions

2 Contents

git_branch devel
git_last_commit 981f02c
git_last_commit_date 2025-04-23
Repository Bioconductor 3.23
Date/Publication 2025-10-24

Author Kristyna Kupkova [aut, cre],
Jose Verdezoto [aut],
Tessa Danehy [aut],
John Lawson [aut],

Jose Verdezoto [aut],
Michal Stolarczyk [aut],
Jason Smith [aut],
Bingjie Xue [aut],
Sophia Rogers [aut],
John Stubbs [aut],
Nathan C. Sheffield [aut]

Maintainer Kristyna Kupkova <kristynakupkova@gmail.com>

Contents
GenomicDistributions-package L L 3
requireAndReturno 4
JalidateInputs L L L e e 5
binBSGenome L e 6
binChroms e e e e 6
binRegion 7
BSdtToGRanges e e e e 8
calcChromBins e e 8
calcChromBinsRef 9
calcChromBinsRefSlow 10
calcCumulativePartitions 10
calcCumulativePartitionsRef 11
calcDinuclFreq 12
calcDinuclFreqRef 12
calcExpectedPartitions 13
calcExpectedPartitionsRef oL 14
calcFeatureDist e 15
calcFeatureDistRefTSS e 16
calcGCCoNtent v e e e e e e e e 16
calcGCContentRef e 17
calcNearestNeighbors L 18
calcNeighborDist 18
calcPartitions L e e e e e e e 19
calcPartitionsRef 20
calcSummarySignal 21

calcWidth e 21

GenomicDistributions-package 3

Index

cellTypeMetadata 0 e 22
chromSizes_hgl9 23
dtToGr e 23
dtToGrInternal e 24
exampleOpenSignalMatrix_hgl9 oo L. 25
geneModels_hgl9 26
genomePartitionlist 26
getChromSizes e e e e 27
getChromSizesFromFasta 28
getGeneModels 29
getGeneModelsFromGTFo Lo 29
getGenomeBins 30
getReferenceData 31
getTssFromGTF 31
grToDt e e e 32
labelCuts e 33
loadBSgenome 34
loadEnsDb L 34
neighbordt 35
nliSt . . . e 35
plotChromBins e e 36
plotCumulativePartitions e 37
plotDinuclFreq e e 37
plotExpectedPartitions 38
plotFeatureDist 39
plotGCContent e 40
plotNeighborDist L 41
plotPartitions e e e e e 41
PlotQTHiSt e e e e 42
plotSummarySignal 43
retrieveFile 44
setB_100 e 45
splitDataTable e 45
theme_blank_facet_label e 46
TSS_hglO . . . e 46
vistaEnhancers e 47

48

GenomicDistributions-package

Produces summaries and plots of features distributed across genomes

4 .requireAndReturn

Description

If you have a set of genomic ranges, the GenomicDistributions R package can help you with some
simple visualizations. Currently, it can produce two kinds of plots: First, the chromosome distri-
bution plot, which visualizes how your regions are distributed over chromosomes; and second, the
feature distribution plot, which visualizes how your regions are distributed relative to a feature of
interest, like Transcription Start Sites (TSSs).

Author(s)

Maintainer: Kristyna Kupkova <kristynakupkova@gmail.com>

Authors:

* Jose Verdezoto

* Tessa Danehy

* John Lawson

* Jose Verdezoto

* Michal Stolarczyk

* Jason Smith

* Bingjie Xue

* Sophia Rogers

* John Stubbs

¢ Nathan C. Sheffield <nathan@code.databio.org>

See Also
Useful links:

* http://code.databio.org/GenomicDistributions

* Report bugs at http://github.com/databio/GenomicDistributions

.requireAndReturn Checks to make sure a package object is installed, and if so, returns it.
If the library is not installed, it issues a warning and returns NULL.

Description
Checks to make sure a package object is installed, and if so, returns it. If the library is not installed,
it issues a warning and returns NULL.

Usage

.requireAndReturn(BSgenomeString)

http://code.databio.org/GenomicDistributions
http://github.com/databio/GenomicDistributions

.validateInputs 5

Arguments

BSgenomeString A BSgenome compatible genome string.

Value

A BSgenome object if installed.

.validateInputs Checks class of the list of variables. To be used in functions

Description

Checks class of the list of variables. To be used in functions

Usage

.validateInputs(checkList)

Arguments
checkList list of object to check, e.g. list(varname=c("data.frame", "numeric")). Multiuple
strings in the vector are treated as OR.
Value

A warning if the wrong input class is provided.

Examples

x = function(varl) {
cl = list(varl=c("numeric”,"character”))
.validateInputs(cl)
return(vari”2)

6 binChroms

binBSGenome Bins a BSgenome object.

Description

Given a BSgenome object (to be loaded via loadBSgenome), and a number of bins, this will bin that
genome. It is a simple wrapper of the binChroms function

Usage

binBSGenome (genome, binCount)

Arguments
genome A UCSC-style string denoting reference assembly (e.g. ’hg38’)
binCount number of bins per chromosome

Value

A data.table object showing the region and bin IDs of the reference genome.

Examples

Not run:
binCount = 1000
refGenomeBins = binBSGenome("hg19", binCount)

End(Not run)

binChroms Naively splits a chromosome into bins

Description

Given a list of chromosomes with corresponding sizes, this script will produce (roughly) evenly-
sized bins across the chromosomes. It does not account for assembly gaps or the like.

Usage

binChroms(binCount, chromSizes)

Arguments

binCount number of bins (total; *not* per chromosome)

chromSizes a named list of size (length) for each chromosome.

binRegion 7

Value

A data.table object assigning a bin ID to each chromosome region.

Examples

chromSizes = c(chr1=249250621, chr2=243199373, chr3=198022430)
cBins = binChroms (1000, chromSizes)

binRegion Divide regions into roughly equal bins

Description

Given a start coordinate, end coordinate, and number of bins to divide, this function will split the
regions into that many bins. Bins will be only approximately the same size, due to rounding. (they
should not be more than 1 different).

Usage

binRegion(start, end, binSize = NULL, binCount = NULL, indicator = NULL)

Arguments
start The starting coordinate
end The ending coordinate
binSize The size of bin to divide the genome into. You must supply either binSize (pri-
ority) or binCount.
binCount The number of bins to divide. If you do not supply binSize, you must supply
binCount, which will be used to calculate the binSize.
indicator A vector with identifiers to keep with your bins, in case you are doing this on a
long table with multiple segments concatenated
Details

Use case: take a set of regions, like CG islands, and bin them; now you can aggregate signal scores
across the bins, giving you an aggregate signal in bins across many regions of the same type.

In theory, this just runs on 3 values, but you can run it inside a data.table j expression to divide a
bunch of regions in the same way.
Value

A data.table, expanded to nrow = number of bins, with these id columns: id: region ID binlD:
repeating ID (this is the value to aggregate across) ubinID: unique bin IDs

8 calcChromBins

Examples

Rbins = binRegion(1, 3000, 100, 1000)

BSdtToGRanges Converts a list of data.tables (From BSreadbeds) into GRanges.

Description

Converts a list of data.tables (From BSreadbeds) into GRanges.

Usage

BSdtToGRanges (dtList)

Arguments

dtList A list of data.tables

Value

A GRangesList object.

calcChromBins Calculates the distribution of a query set over the genome

Description

Returns a data.table showing counts of regions from the query that overlap with each bin. In other
words, where on which chromosomes are the ranges distributed? You must provide binned regions.
Only the midpoint of each query region is used to test for overlap with the bin regions.

Usage

calcChromBins(query, bins)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
bins Pre-computed bins (as a GRangesList object) to aggregate over; for example,
these could be genome bins
Value

A data.table showing where on which chromosomes ranges are distributed.

calcChromBinsRef 9

Examples

chromSizes = getChromSizes("hgl19")
genomeBins = getGenomeBins(chromSizes)
chromDistribution = calcChromBins(vistaEnhancers, genomeBins)

vistaSftd = GenomicRanges: :shift(vistaEnhancers, 100000)
vistaSftd2 = GenomicRanges::shift(vistaEnhancers, 200000)
calcChromBins(vistaEnhancers, GRangesList(vistaSftd, vistaSftd2))

calcChromBinsRef Returns the distribution of query over a reference assembly Given a
query set of elements (a GRanges object) and a reference assembly
(*e.g. 'hg38’), this will aggregate and count the distribution of the
query elements across bins of the reference genome. This is a helper
function to create features for common genomes. It is a wrapper of
calcChromBins, which is more general.

Description

Returns the distribution of query over a reference assembly Given a query set of elements (a
GRanges object) and a reference assembly (*e.g. *hg38’), this will aggregate and count the dis-
tribution of the query elements across bins of the reference genome. This is a helper function to
create features for common genomes. It is a wrapper of calcChromBins, which is more general.

Usage

calcChromBinsRef (query, refAssembly, binCount = 3000)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector that will be used to grab chromosome sizes with getChromSizes
binCount Number of bins to divide the chromosomes into

Value

A data.table showing the distribution of regions across bins of the reference genome.

Examples

ChromBins = calcChromBinsRef (vistaEnhancers, "hgl9")

10 calcCumulativePartitions

calcChromBinsRefSlow Returns the distribution of query over a reference assembly Given a
query set of elements (a GRanges object) and a reference assembly
(*e.g. 'hg38’), this will aggregate and count the distribution of the
query elements across bins of the reference genome. This is a helper
function to create features for common genomes. It is a wrapper of
calcChromBins, which is more general.

Description

Returns the distribution of query over a reference assembly Given a query set of elements (a
GRanges object) and a reference assembly (*e.g. *hg38’), this will aggregate and count the dis-
tribution of the query elements across bins of the reference genome. This is a helper function to
create features for common genomes. It is a wrapper of calcChromBins, which is more general.

Usage

calcChromBinsRefSlow(query, refAssembly, binCount = 3000)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector that will be used to grab chromosome sizes with getChromSizes
binCount Number of bins to divide the chromosomes into

Value

A data.table showing the distribution of regions across bins of the reference genome.

Examples

ChromBins = calcChromBinsRef (vistaEnhancers, "hgl19")

calcCumulativePartitions

Calculates the cumulative distribution of overlaps between query and
arbitrary genomic partitions

Description

Takes a GRanges object, then assigns each element to a partition from the provided partitionList,
and then tallies the number of regions assigned to each partition. A typical example of partitions is
promoter, exon, intron, etc; this function will yield the number of each for a query GRanges object
There will be a priority order to these, to account for regions that may overlap multiple genomic
partitions.

calcCumulativePartitionsRef 11

Usage

calcCumulativePartitions(query, partitionList, remainder = "intergenic")
Arguments

query GRanges or GRangesList with regions to classify.

partitionList An ORDERED and NAMED list of genomic partitions GRanges. This list must
be in priority order; the input will be assigned to the first partition it overlaps.

remainder Which partition do you want to account for ’everything else’?

Value

A data.frame assigning each element of a GRanges object to a partition from a previously provided
partitionList.

Examples

partitionList = genomePartitionList(geneModels_hgl19%$genesGR,
geneModels_hg19%exonsGR,
geneModels_hg19$threeUTRGR,
geneModels_hg19$fiveUTRGR)

calcCumulativePartitions(vistaEnhancers, partitionList)

calcCumulativePartitionsRef
Calculates the cumulative distribution of overlaps for a query set to a
reference assembly

Description
This function is a wrapper for calcCumulativePartitions that uses built-in partitions for a given
reference genome assembly.

Usage

calcCumulativePartitionsRef (query, refAssembly)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector specifying the reference genome assembly (*e.g.* "hgl9’).
This will be used to grab chromosome sizes with getTSSs.
Value

A data.frame indicating the number of query region overlaps in several genomic partitions.

12 calcDinuclFreqRef

Examples

calcCumulativePartitionsRef (vistaEnhancers, "hgl19")

calcDinuclFreq Calculate Dinuclotide content over genomic ranges

Description
Given a reference genome (BSgenome object) and ranges on the reference, this function returns a
data.table with counts of dinucleotides within the GRanges object.

Usage

calcDinuclFreq(query, ref, rawCounts = FALSE)

Arguments
query A GRanges object with query sets
ref Reference genome BSgenome object
rawCounts a logical indicating whether the raw numbers should be displayed, rather than
percentages (optional).
Value

A data.table with counts of dinucleotides across the GRanges object

Examples

Not run:
bsg = loadBSgenome('hgl19"')
DNF = calcDinuclFreq(vistaEnhancers, bsg)

End(Not run)

calcDinuclFregRef Calculate dinucleotide content over genomic ranges

Description
Given a reference genome (BSgenome object) and ranges on the reference, this function returns a
data.table with counts of dinucleotides within the GRanges object.

Usage

calcDinuclFreqRef (query, refAssembly, rawCounts = FALSE)

calcExpectedPartitions 13

Arguments
query A GRanges object with query sets
refAssembly A character vector specifying the reference genome assembly (*e.g.* "hgl9’).
This will be used to grab chromosome sizes with getTSSs.
rawCounts a logical indicating whether the raw numbers should be displayed, rather than
percentages (optional).
Value

A numeric vector or list of vectors with the GC percentage of the query regions.

Examples
Not run:
query = system.file("extdata"”, "vistaEnhancers.bed.gz", package="GenomicDistributions")

GRquery = rtracklayer::import(query)
refAssembly = 'hg19'
DNF = calcDinuclFreqRef(GRquery, refAssembly)

End(Not run)

calcExpectedPartitions
Calculates expected partiton overlap based on contribution of each
feature (partition) to genome size. Expected and observed overlaps
are then compared.

Description

Calculates expected partiton overlap based on contribution of each feature (partition) to genome
size. Expected and observed overlaps are then compared.

Usage

calcExpectedPartitions(
query,
partitionList,
genomeSize = NULL,
remainder = "intergenic”,
bpProportion = FALSE

14

Arguments

query

partitionList

genomeSize

remainder

bpProportion

Value

calcExpectedPartitionsRef

GRanges or GRangesList with regions to classify.

An ORDERED (if bpProportion=FALSE) and NAMED list of genomic parti-
tions GRanges. This list must be in priority order; the input will be assigned to
the first partition it overlaps. However, if bpProportion=TRUE, the list does not
need ordering.

The number of bases in the query genome. In other words, the sum of all chro-
mosome sizes.

Which partition do you want to account for ’everything else’?

logical indicating if overlaps should be calculated based on number of base pairs
overlapping with each partition. bpProportion=FALSE does overlaps in priority
order, bpProportion=TRUE counts number of overlapping base pairs between
query and each partition.

A data.frame assigning each element of a GRanges object to a partition from a previously provided
partitionList. The data.frame also contains Chi-square p-values calculated for observed/expected
overlaps on each individual partition.

Examples

partitionList = genomePartitionList(geneModels_hgl19%$genesGR,

geneModels_hg19%exonsGR,
geneModels_hg19$threeUTRGR,
geneModels_hg19$fiveUTRGR)

chromSizes = getChromSizes('hg19')
genomeSize = sum(chromSizes)
calcExpectedPartitions(vistaEnhancers, partitionList, genomeSize)

calcExpectedPartitionsRef

Calculates the distribution of observed versus expected overlaps for a
query set to a reference assembly

Description

This function is a wrapper for calcExpectedPartitions that uses built-in partitions for a given
reference genome assembly.

Usage

calcExpectedPartitionsRef (query, refAssembly, bpProportion = FALSE)

calcFeatureDist 15

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector specifying the reference genome assembly (*e.g.* "hgl9’).

This will be used to grab annotation models with getGeneModels, and chromo-
some sizes withgetChromSizes

bpProportion logical indicating if overlaps should be calculated based on number of base pairs
overlapping with each partition. bpProportion=FALSE does overlaps in priority
order, bpProportion=TRUE counts number of overlapping base pairs between
query and each partition.

Value

A data.frame indicating the number of query region overlaps in several genomic partitions.

Examples

calcExpectedPartitionsRef(vistaEnhancers, "hgl19")

calcFeatureDist Find the distance to the nearest genomic feature

Description

For a given query set of genomic regions, and a given feature set of regions, this function will return
the distance for each query region to its closest feature. It ignores strand and returns the distance as
positive or negative, depending on whether the feature is upstream or downstream

Usage

calcFeatureDist(query, features)

Arguments
query A GRanges or GRangesList object with query sets
features A GRanges object with features to test distance to
Details

This function is similar to the bioconductor distanceToNearest function, but returns negative values
for downstream distances instead of absolute values. This allows you to assess the relative location.
Value

A vector of genomic distances for each query region relative to its closest feature.

Examples

vistaSftd = GenomicRanges: :shift(vistaEnhancers, 100000)
calcFeatureDist(vistaEnhancers, vistaSftd)

16 calcGCContent

calcFeatureDistRefTSS Calculates the distribution of distances from a query set to closest TSS

Description

Given a query GRanges object and an assembly string, this function will grab the TSS list for the
given reference assembly and then calculate the distance from each query feature to the closest TSS.
It is a wrapper of calcFeatureDist that uses built-in TSS features for a reference assembly

Usage

calcFeatureDistRefTSS(query, refAssembly)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector specifying the reference genome assembly (*e.g.* "hgl9’).
This will be used to grab chromosome sizes with getTSSs.
Value

A vector of distances for each query region relative to TSSs.

Examples

calcFeatureDistRefTSS(vistaEnhancers, "hgl19")

calcGCContent Calculate GC content over genomic ranges

Description
Given a reference genome as a BSgenome object and some ranges on that reference, this function
will return a vector of the same length as the granges object, with percent of Cs and Gs.

Usage

calcGCContent (query, ref)

Arguments

query A GenomicRanges or GenomicRangesList object with query regions.

ref Reference genome BSgenome object.

calcGCContentRef 17

Value

A numeric vector of list of vectors with the GC percentage of the query regions.

Examples

Not run:
bsg = loadBSgenome('hg19')
gcvec = calcGCContent(vistaEnhancers, bsg)

End(Not run)

calcGCContentRef Calculate GC content over genomic ranges

Description
Given a reference genome as a BSgenome object and some ranges on that reference, this function
will return a vector of the same length as the granges object, with percent of Cs and Gs.

Usage

calcGCContentRef (query, refAssembly)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector specifying the reference genome assembly (*e.g.* "hgl9’).
This will be used to grab chromosome sizes with getTSSs.
Value

A numeric vector or list of vectors with the GC percentage of the query regions.

Examples

Not run:
refAssembly = 'hgl9'
GCcontent = calcGCContentRef (vistaEnhancers, refAssembly)

End(Not run)

18 calcNeighborDist

calcNearestNeighbors Group regions from the same chromosome together and compute the
distance of a region to its nearest neighbor. Distances are then lumped
into a numeric vector.

Description

Group regions from the same chromosome together and compute the distance of a region to its
nearest neighbor. Distances are then lumped into a numeric vector.

Usage
calcNearestNeighbors(query, correctRef = "None")
Arguments
query A GRanges or GRangesList object.
correctRef A string indicating the reference genome to use if Nearest neighbor distances
are corrected for the number of regions in a regionSet.
Value

A numeric vector or list of vectors containing the distance of regions to their nearest neighbors.

Examples

Nneighbors = calcNearestNeighbors(vistaEnhancers)

calcNeighborDist Group regions from the same chromosome together and calculate the
distances of a region to its upstream and downstream neighboring re-
gions. Distances are then lumped into a numeric vector.

Description

Group regions from the same chromosome together and calculate the distances of a region to its
upstream and downstream neighboring regions. Distances are then lumped into a numeric vector.

Usage
calcNeighborDist(query, correctRef = "None")
Arguments
query A GRanges or GRangesL.ist object.
correctRef A string indicating the reference genome to use if distances are corrected for the

number of regions in a regionSet.

calcPartitions 19

Value
A numeric vector or list with different vectors containing the distances of regions to their up-
stream/downstream neighbors.

Examples

dist = calcNeighborDist(vistaEnhancers)

calcPartitions Calculates the distribution of overlaps between query and arbitrary
genomic partitions

Description

Takes a GRanges object, then assigns each element to a partition from the provided partitionList,
and then tallies the number of regions assigned to each partition. A typical example of partitions is
promoter, exon, intron, etc; this function will yield the number of each for a query GRanges object
There will be a priority order to these, to account for regions that may overlap multiple genomic
partitions.

Usage

calcPartitions(
query,
partitionList,
remainder = "intergenic”,
bpProportion = FALSE

Arguments

query GRanges or GRangesList with regions to classify

partitionList an ORDERED (if bpProportion=FALSE) and NAMED list of genomic parti-
tions GRanges. This list must be in priority order; the input will be assigned to
the first partition it overlaps. bpProportion=TRUE, the list does not need order-
ing.

remainder A character vector to assign any query regions that do not overlap with anything
in the partitionList. Defaults to "intergenic"

bpProportion logical indicating if overlaps should be calculated based on number of base pairs
overlapping with each partition. bpProportion=FALSE does overlaps in priority
order, bpProportion=TRUE counts number of overlapping base pairs between
query and each partition.

Value

A data.frame assigning each element of a GRanges object to a partition from a previously provided
partitionList.

20 calcPartitionsRef

Examples

partitionList = genomePartitionList(geneModels_hgl19%$genesGR,
geneModels_hg19%exonsGR,
geneModels_hg19$threeUTRGR,
geneModels_hg19$fiveUTRGR)

calcPartitions(vistaEnhancers, partitionList)

calcPartitionsRef Calculates the distribution of overlaps for a query set to a reference
assembly

Description

This function is a wrapper for calcPartitions and calcPartitionPercents that uses built-in
partitions for a given reference genome assembly.

Usage

calcPartitionsRef(query, refAssembly, bpProportion = FALSE)

Arguments
query A GenomicRanges or GenomicRangesList object with query regions
refAssembly A character vector specifying the reference genome assembly (*e.g.* "hgl9’).

This will be used to grab annotation models with getGeneModels

bpProportion logical indicating if overlaps should be calculated based on number of base pairs
overlapping with each partition. bpProportion=FALSE does overlaps in priority
order, bpProportion=TRUE counts number of overlapping base pairs between
query and each partition.

Value

A data.frame indicating the number of query region overlaps in several genomic partitions.

Examples

calcPartitionsRef (vistaEnhancers, "hg19")

21

calcSummarySignal
calcSummarySignal The function calcSummarySignal takes the input BED file(s) in form

of GRanges or GRangesList object, overlaps it with all defined open
chromatin regions across conditions (e.g. cell types) and returns a
matrix, where each row is the input genomic region (if overlap was
found), each column is a condition, and the value is a meam signal
from regions where overlap was found.

Description

The function calcSummarySignal takes the input BED file(s) in form of GRanges or GRangesList
object, overlaps it with all defined open chromatin regions across conditions (e.g. cell types) and
returns a matrix, where each row is the input genomic region (if overlap was found), each column
is a condition, and the value is a meam signal from regions where overlap was found.

Usage

calcSummarySignal (query, signalMatrix)

Arguments
query Genomic regions to be analyzed. Can be GRanges or GRangesList object.

signalMatrix Matrix with signal values in predfined regions, where rows are predefined ge-
nomic regions, columns are conditions (e.g. cell types in which the signal was
measured). First column contains information about the genomic region in fol-
lowing form: chr_start_end. Can be either data.frame or data.table object.

Value

A list with named components: signalSummaryMatrix - data.table with cell specific open chromatin
signal values for query regions matrixStats - data.frame containing boxplot stats for individual cell

type

Examples

signalSummarylList = calcSummarySignal(vistaEnhancers, exampleOpenSignalMatrix_hg19)

calcWidth Calculate the widths of regions

Description

The length of a genomic region (the distance between the start and end) is called the width When
given a query set of genomic regions, this function returns the width

22 cellTypeMetadata

Usage

calcWidth(query)
Arguments

query A GRanges or GRangesList object with query sets
Value

A vector of the widths (end-start coordinates) of GRanges objects.

Examples

regWidths = calcWidth(vistaEnhancers)

cellTypeMetadata Table the maps cell types to tissues and groups

Description

Table the maps cell types to tissues and groups

Usage

data(cellTypeMetadata)

Format

data.table with 3 columns (cellType, tissue and group) and 74 rows (one per cellType)

Source

self-curated dataset

chromSizes_hg19 23

chromSizes_hg19 hg19 chromosome sizes

Description

A dataset containing chromosome sizes for Homo Sapiens hg38 genome assembly

Usage

data(chromSizes_hg19)

Format

A named vectors of lengths with one item per chromosome

Source

BSgenome.Hsapiens.UCSC.hg19 package

dtToGr Converts a data.table (DT) object to a GenomicRanges (GR) object.
Tries to be intelligent, guessing chr and start, but you have to supply
end or other columns if you want them to be carried into the GR.

Description

Converts a data.table (DT) object to a GenomicRanges (GR) object. Tries to be intelligent, guessing
chr and start, but you have to supply end or other columns if you want them to be carried into the
GR.

Usage

dtToGr(
DT,
chr = "chr”,
start = "start",
end = NA,
strand = NA,
name = NA,
splitFactor = NA,
metaCols = NA

24 dtToGrInternal

Arguments
DT A data.table representing genomic regions.
chr A string representing the chromosome column.
start A string representing the name of the start column.
end A string representing the name of the end column.
strand A string representing the name of the strand column.
name A string representing the name of the name column.
splitFactor A string representing the name of the column to use to split the data.table into
multiple data.tables.
metaCols A string representing the name of the metadata column(s) to include in the re-
turned GRanges object.
Value
A GRanges object.
Examples

startl = c(seq(from=1, to = 2001, by = 1000), 800)

chrStringl = c(rep("chr1”, 3), "chr2")

dt = data.table::data.table(chr=chrStringi,
start=starti,
end=startl + 250)

newGR = dtToGr(dt)

dtToGrInternal Two utility functions for converting data.tables into GRanges objects

Description

Two utility functions for converting data.tables into GRanges objects

Usage

dtToGrInternal (DT, chr, start, end = NA, strand = NA, name = NA, metaCols = NA)

Arguments
DT A data.table representing genomic regions.
chr A string representing the chromosome column.
start A string representing the name of the start column.
end A string representing the name of the end column.
strand A string representing the name of the strand column.
name A string representing the name of the name column.
metaCols A string representing the name of the metadata column(s) to include in the re-

turned GRanges object.

exampleOpenSignalMatrix_hg19 25

Value

A GRanges object.

exampleOpenSignalMatrix_hg19
A dataset containing a subset of open chromatin regions across all cell
types defined by ENCODE for Homo Sapiens hgl9

Description

Preparation steps:

1. made a universe of regions by merging regions across cell types defined as opened in EN-
CODE

2. took bigwig files from ENCODE for individual cell types, merged replicates, filtered out
blacklisted sites

3. evaluated the signal above regions defined by previous step
4. performed quantile normalization

5. subsetted it

Usage

data(exampleOpenSignalMatrix_hg19)

Format

data.frame, rows represent whole selection of open chromatin regions across all cell types defined
by ENCODE, columns are individual cell types and values are normalized open chromatin signal
values.

Source

http://big.databio.org/open_chromatin_matrix/openSignalMatrix_hg19_quantileNormalized_
round4.txt.gz

http://big.databio.org/open_chromatin_matrix/openSignalMatrix_hg19_quantileNormalized_round4.txt.gz
http://big.databio.org/open_chromatin_matrix/openSignalMatrix_hg19_quantileNormalized_round4.txt.gz

26 genomePartitionList

geneModels_hgl19 hg38 gene models

Description

A dataset containing gene models for Homo Sapiens hg38 genome assembly.

Usage

data(geneModels_hg19)

Format

A list of two GRanges objects, with genes and exons locations

Source

EnsDb.Hsapiens.v75 package

genomePartitionList Create a basic genome partition list of genes, exons, introns, UTRs,
and intergenic

Description

Given GRanges for genes, and a GRanges for exons, returns a list of GRanges corresponding to
various breakdown of the genome, based on the given annotations; it gives you proximal and core
promoters, exons, and introns.

Usage

genomePartitionlList(
genesGR,
exonsGR,
threeUTRGR = NULL,
fiveUTRGR = NULL,
getCorePromoter = TRUE,
getProxPromoter = TRUE,
corePromSize = 100,
proxPromSize = 2000

getChromSizes 27

Arguments
genesGR a GRanges object of gene coordinates
exonsGR a GRanges object of exons coordinates
threeUTRGR a GRanges object of 3’ UTRs
fiveUTRGR a GRanges object of 5 UTRs
getCorePromoter
option specifying if core promoters should be extracted defeaults to TRUE
getProxPromoter

option specifying if proximal promoters should be extracted defeaults to TRUE
corePromSize size of core promoter (in bp) upstrem from TSS default value = 100

proxPromSize size of proximal promoter (in bp) upstrem from TSS default value = 2000

Details

To be used as a partitionList for calcPartitions.

Value

A list of GRanges objects, each corresponding to a partition of the genome. Partitions include
proximal and core promoters, exons and introns.

Examples

partitionList = genomePartitionList(geneModels_hgl19%genesGR,
geneModels_hg19%exonsGR,
geneModels_hg19$threeUTRGR,
geneModels_hg19%$fiveUTRGR)

getChromSizes Returns built-in chrom sizes for a given reference assembly

Description

Returns built-in chrom sizes for a given reference assembly

Usage

getChromSizes(refAssembly)

Arguments

refAssembly A string identifier for the reference assembly

Value

A vector with the chromosome sizes corresponding to a specific genome assembly.

28 getChromSizesFromFasta

Examples

getChromSizes("hgl19")

getChromSizesFromFasta
Get gene models from a remote or local FASTA file

Description

Get gene models from a remote or local FASTA file

Usage

getChromSizesFromFasta(source, destDir = NULL, convertEnsemblUCSC = FALSE)

Arguments
source a string that is either a path to a local or remote FASTA
destDir a string that indicates the path to the directory where the downloaded FASTA
file should be stored
convertEnsemblUCSC
a logical indicating whether Ensembl style chromosome annotation should be
changed to UCSC style (add chr)
Value

a named vector of sequence lengths

Examples

CElegansFasteCropped = system.file("extdata”,
"C_elegans_cropped_example.fa.gz",
package="GenomicDistributions”)

CElegansChromSizes = getChromSizesFromFasta(CElegansFasteCropped)

getGeneModels 29

getGeneModels Returns built-in gene models for a given reference assembly

Description

Some functions require gene models, which can obtained from any source. This function allows
you to retrieve a few common built-in ones.

Usage

getGeneModels(refAssembly)

Arguments

refAssembly A string identifier for the reference assembly

Value

A list containing the gene models corresponding to a specific reference assembly.

Examples

getGeneModels("hgl19")

getGeneModelsFromGTF Get gene models from a remote or local GTF file

Description

Get gene models from a remote or local GTF file

Usage

getGeneModelsFromGTF (
source,
features,
convertEnsemblUCSC = FALSE,
destDir = NULL,
filterProteinCoding = TRUE

30 getGenomeBins

Arguments
source a string that is either a path to a local or remote GTF
features a vector of strings with feature identifiers that to include in the result list
convertEnsemblUCSC
a logical indicating whether Ensembl style chromosome annotation should be
changed to UCSC style
destDir a string that indicates the path to the directory where the downloaded GTF file
should be stored
filterProteinCoding
a logical indicating if TSSs should be only protein-coding genes (default =
TRUE)
Value

a list of GRanges objects

Examples

CElegansGtfCropped = system.file("extdata”,
"C_elegans_cropped_example.gtf.gz",
package="GenomicDistributions")

features = c("gene”, "exon"”, "three_prime_utr"”, "five_prime_utr")

CElegansGeneModels = getGeneModelsFromGTF(CElegansGtfCropped, features, TRUE)

getGenomeBins Returns bins used in ‘calcChromBins* function Given a named vec-
tor of chromosome sizes, the function returns GRangesList object with
bins for each chromosome.

Description

Returns bins used in ‘calcChromBins‘ function Given a named vector of chromosome sizes, the
function returns GRangesList object with bins for each chromosome.

Usage

getGenomeBins(chromSizes, binCount = 10000)

Arguments

chromSizes a named list of size (length) for each chromosome.

binCount number of bins (total; *not* per chromosome), defaults to 10,000
Value

A GRangesList object with bins that separate chromosomes into equal parts.

getReferenceData 31

Examples

chromSizes = getChromSizes("hg19")

chromBins = getGenomeBins(chromSizes)
getReferenceData Get reference data for a specified assembly
Description

This is a generic getter function that will return a data object requested, if it is included in the built-
in data with the GenomicDistributions package or GenomicDistributionsData package (if installed).
Data objects can be requested for different reference assemblies and data types (specified by a
tagline, which is a unique string identifying the data type).

Usage

getReferenceData(refAssembly, tagline)

Arguments

refAssembly Reference assembly string (e.g. *hg38”)

tagline The string that was used to identify data of a given type in the data building
step. It’s used for the filename so we know what to load, and is what makes this
function generic (so it can load different data types).

Value

A requested and included package data object.

getTssFromGTF Get transcription start sites (TSSs) from a remote or local GTF file

Description

Get transcription start sites (TSSs) from a remote or local GTF file

Usage

getTssFromGTF (
source,
convertEnsemblUCSC = FALSE,
destDir = NULL,
filterProteinCoding = TRUE
)

32 grToDt
Arguments
source a string that is either a path to a local or remote GTF
convertEnsemblUCSC
a logical indicating whether Ensembl style chromosome annotation should be
changed to UCSC style
destDir a string that indicates the path to the directory where the downloaded GTF file
should be stored
filterProteinCoding
a logical indicating if TSSs should be only protein-coding genes (default =
TRUE)
Value
a list of GRanges objects
Examples
CElegansGtfCropped = system.file("extdata”,
"C_elegans_cropped_example.gtf.gz",
package="GenomicDistributions")
CElegansTss = getTssFromGTF (CElegansGtfCropped, TRUE)
grToDt Convert a GenomicRanges into a data.table.
Description
Convert a GenomicRanges into a data.table.
Usage
grToDt (GR)
Arguments
GR A Granges object
Value

A data.table object.

labelCuts 33

labelCuts Creates labels based on a discretization definition.

Description

If you are building a histogram of binned values, you want to have labels for your bins that corre-
spond to the ranges you used to bin. This function takes the breakpoints that define your bins and
produces nice-looking labels for your histogram plot.

Usage

labelCuts(
breakPoints,
round_digits = 1,
signif_digits = 3,

collapse = "-",
infBins = FALSE
)
Arguments
breakPoints The exact values you want as boundaries for your bins

round_digits Number of digits to cut round labels to.

signif_digits Number of significant digits to specify.

collapse Character to separate the labels
infBins use >/< as labels on the edge bins
Details

labelCuts will take a cut group, (e.g., a quantile division of some signal), and give you clean labels
(similar to the cut method).

Value

A vector of histogram axis labels.

34 loadEnsDb

loadBSgenome Loads BSgenome objects from UCSC-style character vectors.

Description

This function will let you use a simple character vector (e.g. ’hgl9’) to load and then return
BSgenome objects. This lets you avoid having to use the more complex annotation for a complete
BSgenome object (e.g. BSgenome.Hsapiens.UCSC.hg38.masked)

Usage
loadBSgenome (genomeBuild, masked = TRUE)

Arguments
genomeBuild One of "hgl19’, ’hg38’, 'mm10’, 'mm9’, or ’grch38’
masked Should we used the masked version? Default: TRUE

Value

A BSgenome object corresponding to the provided genome build.

Examples

Not run:
bsg = loadBSgenome('hg19')

End(Not run)

loadEnsDb Load selected EnsDb library

Description

Load selected EnsDb library

Usage
loadEnsDb(genomeBuild)

Arguments

genomeBuild string, genome identifier

Value

loaded library

neighbordt 35

Examples

Not run:
loadEnsDb("hg19")

End(Not run)

neighbordt Internal helper function to calculate distance between neighboring re-
gions.

Description

Internal helper function to calculate distance between neighboring regions.

Usage

neighbordt (querydt)
Arguments

querydt A data table with regions grouped according to chromosome.
Value

A numeric vector with the distances in bp

nlist Nathan’s magical named list function. This function is a drop-in re-
placement for the base list() function, which automatically names your
list according to the names of the variables used to construct it. It
seamlessly handles lists with some names and others absent, not over-
writing specified names while naming any unnamed parameters. Took
me awhile to figure this out.

Description

Nathan’s magical named list function. This function is a drop-in replacement for the base list()
function, which automatically names your list according to the names of the variables used to con-
struct it. It seamlessly handles lists with some names and others absent, not overwriting specified
names while naming any unnamed parameters. Took me awhile to figure this out.

Usage

nlist(...)

36

Arguments

arguments passed to list()

Value

A named list object.

Examples

x=5

y=10

nlist(x,y) # returns list(x=5, y=10)
list(x,y) # returns unnamed list(5, 10)

plotChromBins

plotChromBins Plot distribution over chromosomes

Description

Plots result from genomicDistribution calculation

Usage
plotChromBins(
genomeAggregate,
plotTitle = "Distribution over chromosomes”,
ylim = "max"”
)
Arguments
genomeAggregate
The output from the genomicDistribution function
plotTitle Title for plot.
ylim Limit of y-axes. Default "max" sets limit to N of biggest bin.
Value

A ggplot object showing the distribution of the query regions over bins of the reference genome.

Examples

agg = data.frame("regionID"=1:5, "chr"=rep(c("chri"), 5),
"withinGroupID”=1:5, "N"=c(1,3,5,7,9))
ChromBins = plotChromBins(agg)

plotCumulativePartitions 37

plotCumulativePartitions
Plot the cumulative distribution of regions in features

Description

This function plots the cumulative distribution of regions across a feature set.

Usage

plotCumulativePartitions(assignedPartitions, feature_names = NULL)

Arguments

assignedPartitions
Results from calcCumulativePartitions

feature_names An optional character vector of feature names, in the same order as the Genom-
icRanges or GenomicRangesList object.
Value

A ggplot object of the cumulative distribution of regions in features.

Examples

p = calcCumulativePartitionsRef (vistaEnhancers, "hgl19")
cumuPlot = plotCumulativePartitions(p)

plotDinuclFreq Plot dinuclotide content within region set(s)

Description
Given calcDinuclFreq or calcDinuclFreqRef results, this function generates a violin plot of
dinucleotide frequency

Usage

plotDinuclFreq(DNFDataTable)

Arguments

DNFDataTable A data.table, data.frame, or a list of dinucleotide counts - results from calcDinuclFreq
or calcDinuclFregRef

38 plotExpectedPartitions

Value

A ggplot object plotting distribution of dinucleotide content in query regions

Examples

DNFDataTable = data.table::data.table(GC = rnorm(400, mean=0.5, sd=0.1),
CG = rnorm(400, mean=0.5, sd=0.5),

AT = rnorm(400, mean=0.5, sd=1),

TA = rnorm(400, mean=0.5, sd=1.5))

DNFPlot = plotDinuclFreq(DNFDataTable)

Not run:

query = system.file("extdata”, "vistaEnhancers.bed.gz", package="GenomicDistributions")
GRquery = rtracklayer::import(query)

refAssembly = 'hgl9'

DNF = calcDinuclFreqRef(GRquery, refAssembly)

DNFPlot2 = plotDinuclFreq(DNF)

End(Not run)

plotExpectedPartitions
Produces a barplot showing how query regions of interest are dis-
tributed relative to the expected distribution across a given partition
list

Description

Produces a barplot showing how query regions of interest are distributed relative to the expected
distribution across a given partition list

Usage

plotExpectedPartitions(expectedPartitions, feature_names = NULL, pval = FALSE)

Arguments

expectedPartitions
A data.frame holding the frequency of assignment to each of the partitions, the
expected number of each partition, and the log10 of the observed over expected.
Produced by calcExpectedPartitions.

feature_names Character vector with labels for the partitions (optional). By default it will use
the names from the first argument.

pval Logical indicating whether Chi-square p-values should be added for each parti-
tion.

plotFeatureDist

Value

39

A ggplot object using a barplot to show the distribution of the query regions across a given partition

list.

Examples

p = calcExpectedPartitionsRef (vistaEnhancers, "hgl19")

expectedPlot = plotExpectedPartitions(p)
plotFeatureDist Plots a histogram of distances to genomic features
Description

Given the results from featureDistribution, plots a histogram of distances surrounding the fea-
tures of interest

Usage
plotFeatureDist(
dists,
bgdists = NULL,
featureName = "features”,
numbers = FALSE,
nbins = 50,
size = le+0@5,
infBins = FALSE,
tile = FALSE,
labelOrder = "default”
)
Arguments
dists Results from featureDistribution
bgdists Background distances. If provided, will plot a background distribution of ex-
pected distances
featureName Character vector for plot labels (optional).
numbers a logical indicating whether the raw numbers should be displayed, rather than
percentages (optional).
nbins Number of bins on each side of the center point.
size Number of bases to include in plot on each side of the center point.
infBins Include catch-all bins on the sides?
tile Turn on a tile mode, which plots a tiled figure instead of a histogram.
labelOrder — Enter "default" to order by order of user input (default); Enter "center" to order

by value in tile in the closest proximity to the center of features (in case TSS is
used - center is TSS) (center).

40 plotGCContent

Value

A ggplot2 plot object

Examples

TSSdist = calcFeatureDistRefTSS(vistaEnhancers, "hg19")
f = plotFeatureDist(TSSdist, featureName="TSS")

plotGCContent Plots a density distribution of GC vectors Give results from the
calcGCContent function, this will produce a density plot

Description

Plots a density distribution of GC vectors Give results from the calcGCContent function, this will
produce a density plot

Usage

plotGCContent(gcvectors)

Arguments

gcvectors A numeric vector or list of numeric vectors of GC contents.

Value

A ggplot object plotting distribution of GC content in query regions.

Examples

numVector = rnorm(400, mean=0.5, sd=0.1)

GCplot = plotGCContent(numVector)

vecs = list(examplel = rnorm(400, mean=0.5, sd=0.1),
example2 = rnorm(600, mean=0.5, sd=0.1))

GCplot = plotGCContent(vecs)

plotNeighborDist 41

plotNeighborDist Plot the distances from regions to their upstream/downstream neigh-
bors or nearest neighbors. Distances can be passed as either raw bp
or corrected for the number of regions (logl10(obs/exp)), but this has
to be specified in the function parameters.

Description

Plot the distances from regions to their upstream/downstream neighbors or nearest neighbors. Dis-
tances can be passed as either raw bp or corrected for the number of regions (log10(obs/exp)), but
this has to be specified in the function parameters.

Usage
plotNeighborDist(dcvec, correctedDist = FALSE, Nneighbors = FALSE)

Arguments

dcvec A numeric vector or list of vectors containing distances to upstream/downstream
neighboring regions or to nearest neighbors. Produced by calcNeighborDist
or calcNearestNeighbors

correctedDist A logical indicating if the plot axis should be adjusted to show distances cor-
rected for the number of regions in a regionset.

Nneighbors A logical indicating whether legend should be adjusted if Nearest neighbors are
being plotted. Default legend shows distances to upstream/downstream neigh-
bors.

Value

A ggplot density object showing the distribution of raw or corrected distances.

Examples

numVector = rnorm(400, mean=5, sd=0.1)
d = plotNeighborDist(numVector)

plotPartitions Produces a barplot showing how query regions of interest are dis-
tributed across a given partition list

Description

This function can be used to test a GRanges object against any arbitrary list of genome partitions.
The partition list is a priority-ordered list of GRanges objects. Each region in the query will be
assigned to a given partition that it overlaps with the highest priority.

42 plotQTHist

Usage

plotPartitions(assignedPartitions, numbers = FALSE, stacked = FALSE)

Arguments
assignedPartitions
A table holding the frequency of assignment to each of the partitions. Produced
by calcPartitions
numbers logical indicating whether raw overlaps should be plotted instead of the default
percentages
stacked logical indicating that data should be plotted as stacked bar plot
Value

A ggplot object using a barplot to show the distribution of the query regions across a given partition
list.

Examples

p = calcPartitionsRef(vistaEnhancers, "hgl19")
partPlot = plotPartitions(p)

partCounts = plotPartitions(p, numbers=TRUE)
partPlot = plotPartitions(p, stacked=TRUE)

plotQTHist Plot quantile-trimmed histogram

Description

Given the results from calcWidth, plots a histogram with outliers trimmed.

Usage

plotQTHist(
X,
EndBarColor = "gray57",
MiddleBarColor = "gray27",
quantThresh = NULL,
bins = NULL,
indep = FALSE,
numbers = FALSE

plotSummarySignal 43

Arguments

X Data values to plot - vector or list of vectors
EndBarColor Color for the quantile bars on both ends of the graph (optional)
MiddleBarColor Color for the bars in the middle of the graph (optional)

guantThresh Quantile of data to be contained in each end bar (optional) quantThresh values
must be under .2, optimal size is under .1

bins The number of bins for the histogram to allocate data to. (optional)

indep logical value which returns a list of plots that have had their bins calculated

independently; the normal version will plot them on the same x and y axis.

numbers a logical indicating whether the raw numbers should be displayed, rather than
percentages (optional).
Details
x-axis breaks for the frequency calculations are based on the "divisions" results from helper function
calcDivisions.
Value

A ggplot2 plot object

Examples

regWidths = calcWidth(vistaEnhancers)
gtHist = plotQTHist(regWidths)
gtHist2 = plotQTHist(regWidths, quantThresh=0.1)

plotSummarySignal The function plotSummarySignal visualizes the signalSummaryMatrix
obtained from calcSummarySignal.

Description

The function plotSummarySignal visualizes the signalSummaryMatrix obtained from calcSummarySignal.

Usage

plotSummarySignal(
signalSummarylList,
plotType = "barPlot",
metadata = NULL,
colorColumn = NULL,
filterGroupColumn = NULL,
filterGroup = NULL

44 retrieveFile
Arguments
signalSummarylList
Output list from calcSummarySignal function.
plotType Options are: "jitter" - jitter plot with box plot on top, "boxPlot" - box plot with-
out individual points and outliers, "barPlot" (default) - bar height represents the
median signal value for a given cell type, "violinPlot" - violin plot with medians.
metadata (optional) data.table used for grouping columns from ’signalMatrix’ into cate-
gories, that are then plotted with different colors. Must contain variable ’col-
Name’ that contains all the condition column names from ’signaMatrix’.
colorColumn (optional only if metadata provided) columns name from ’metadata’ table that
will be used as grouping variable for coloring.
filterGroupColumn
(optional only if metadata provided and ’filterGroup’ specified) allows user to
plot specified subgroups only. String specifying the column name in metadata’
from which groups will be filtered (groups are specified in as *filterGroups)
filterGroup (optional only if metadata’ and ’filterGroupColumn’ provided) - string (or vec-
tor of strings) of groups from ’filterGroupColumn’ to be plottted.
Value
A ggplot object.
Examples

signalSummaryList = calcSummarySignal(vistaEnhancers, exampleOpenSignalMatrix_hg19)
metadata = cellTypeMetadata
plotSignal = plotSummarySignal(signalSummarylList)

plotSignalTissueColor = plotSummarySignal(signalSummaryList = signalSummarylList,
plotType = "jitter”, metadata = metadata, colorColumn = "tissueType")

plotSignalFiltered = plotSummarySignal(signalSummaryList = signalSummaryList,
plotType = "violinPlot”, metadata = metadata, colorColumn = "tissueType”,
filterGroupColumn = "tissueType"”, filterGroup = c("skin", "blood"))

retrieveFile

Read local or remote file

Description

Read local or remote file

Usage

retrieveFile(source, destDir = NULL)

setB_100 45

Arguments
source a string that is either a path to a local or remote GTF
destDir a string that indicates the path to the directory where the downloaded GTF file
should be stored. If not provided, a temporary directory will be used.
Value

data.frame retrieved file path

Examples

CElegansGtfCropped = system.file("extdata”,
"C_elegans_cropped_example.gtf.gz",
package="GenomicDistributions")

CElegansGtf = retrieveFile(CElegansGtfCropped)

setB_100 Example BED file read with rtracklayer::import

Description

Example BED file read with rtracklayer::import

Usage
data(setB_100)

Format

GenomicRanges::GRanges

splitDataTable Efficiently split a data.table by a column in the table

Description

Efficiently split a data.table by a column in the table

Usage
splitDataTable(DT, split_factor)

Arguments

DT Data.table to split

split_factor Column to split, which can be a character vector or an integer.

46 TSS_hgl9

Value

List of data.table objects, split by column

theme_blank_facet_label
Clear ggplot face label.

Description

Usually ggplot2 facets are labeled with boxes surrounding the label. This function removes the box,
so it’s a simple label for each facet.

Usage
theme_blank_facet_label()

Value

A ggplot theme

TSS_hg19 hgl9 TSS locations

Description

A dataset containing chromosome sizes for Homo Sapiens hg38 genome assembly

Usage

data(TSS_hgl19)

Format

A named vectors of lengths with one item per chromosome

Source

EnsDb.Hsapiens.v75 package

vistaEnhancers

47

vistaEnhancers Example BED file read with rtracklayer: :import

Description

Example BED file read with rtracklayer::import

Usage

data(vistaEnhancers)

Format

GenomicRanges::GRanges

Index

+ datasets
cellTypeMetadata, 22
chromSizes_hg19, 23
exampleOpenSignalMatrix_hg19, 25
geneModels_hg19, 26
setB_100, 45
TSS_hg19, 46
vistaEnhancers, 47
.requireAndReturn, 4
.validateInputs, 5

binBSGenome, 6
binChroms, 6
binRegion, 7
BSdtToGRanges, 8

calcChromBins, 8
calcChromBinsRef, 9
calcChromBinsRefSlow, 10
calcCumulativePartitions, 10
calcCumulativePartitionsRef, 11
calcDinuclFreq, 12
calcDinuclFreqgRef, 12
calcExpectedPartitions, 13
calcExpectedPartitionsRef, 14
calcFeatureDist, 15
calcFeatureDistRefTSS, 16
calcGCContent, 16
calcGCContentRef, 17
calcNearestNeighbors, 18
calcNeighborDist, 18
calcPartitions, 19
calcPartitionsRef, 20
calcSummarySignal, 21
calcWidth, 21
cellTypeMetadata, 22
chromSizes_hg19, 23

dtToGr, 23
dtToGrInternal, 24

48

exampleOpenSignalMatrix_hg19, 25

geneModels_hg19, 26
genomePartitionList, 26
GenomicDistributions
(GenomicDistributions-package),
3
GenomicDistributions-package, 3
getChromSizes, 27
getChromSizesFromFasta, 28
getGeneModels, 29
getGeneModelsFromGTF, 29
getGenomeBins, 30
getReferenceData, 31
getTssFromGTF, 31
grToDt, 32

labelCuts, 33
loadBSgenome, 34
loadEnsDb, 34

neighbordt, 35
nlist, 35

plotChromBins, 36
plotCumulativePartitions, 37
plotDinuclFreq, 37
plotExpectedPartitions, 38
plotFeatureDist, 39
plotGCContent, 40
plotNeighborDist, 41
plotPartitions, 41
plotQTHist, 42
plotSummarySignal, 43

retrievefFile, 44

setB_100, 45
splitDataTable, 45

theme_blank_facet_label, 46

INDEX

TSS_hg19, 46

vistaEnhancers, 47

49

	GenomicDistributions-package
	.requireAndReturn
	.validateInputs
	binBSGenome
	binChroms
	binRegion
	BSdtToGRanges
	calcChromBins
	calcChromBinsRef
	calcChromBinsRefSlow
	calcCumulativePartitions
	calcCumulativePartitionsRef
	calcDinuclFreq
	calcDinuclFreqRef
	calcExpectedPartitions
	calcExpectedPartitionsRef
	calcFeatureDist
	calcFeatureDistRefTSS
	calcGCContent
	calcGCContentRef
	calcNearestNeighbors
	calcNeighborDist
	calcPartitions
	calcPartitionsRef
	calcSummarySignal
	calcWidth
	cellTypeMetadata
	chromSizes_hg19
	dtToGr
	dtToGrInternal
	exampleOpenSignalMatrix_hg19
	geneModels_hg19
	genomePartitionList
	getChromSizes
	getChromSizesFromFasta
	getGeneModels
	getGeneModelsFromGTF
	getGenomeBins
	getReferenceData
	getTssFromGTF
	grToDt
	labelCuts
	loadBSgenome
	loadEnsDb
	neighbordt
	nlist
	plotChromBins
	plotCumulativePartitions
	plotDinuclFreq
	plotExpectedPartitions
	plotFeatureDist
	plotGCContent
	plotNeighborDist
	plotPartitions
	plotQTHist
	plotSummarySignal
	retrieveFile
	setB_100
	splitDataTable
	theme_blank_facet_label
	TSS_hg19
	vistaEnhancers
	Index

