Package ‘GLAD’

October 24, 2025

Version 2.73.0

Date 2020-04-15

Title Gain and Loss Analysis of DNA
Depends R (>=2.10)

SystemRequirements gsl. Note: users should have GSL installed. Windows
users: 'consult the README file available in the inst directory
of the source distribution for necessary configuration
instructions'.

Imports aws
Author Philippe Hupe
Maintainer Philippe Hupe <glad@curie. fr>

Description Analysis of array CGH data : detection of breakpoints in
genomic profiles and assignment of a status (gain, normal or
loss) to each chromosomal regions identified.

License GPL-2

URL http://bioinfo.curie.fr

biocViews Microarray, CopyNumber Variation
RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/GLAD
git_branch devel

git_last_commit 62827b2

git_last_commit_date 2025-04-15

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Contents

AITAY © « v v v v e e e e e e e e e e e e e e e e e
arrayCGH e

http://bioinfo.curie.fr

2 array
arrayPersp e e 4
arrayPlot L 6
as.data.frame.profileCGH 8
as.profileCGH 9
ChrNumeric e e 11
ColorBar e 11
cytoband L 12
daglad e e 13
glad . . .o e 18
GLAD-internal 22
helustglad o o 22
kernelpen e e 25
myPalette 25
plotProfile L 26
profileCGH e e e 29
SNijders e e 30
veltman 31

Index 32

array Bladder cancer CGH data

Description

Bladder cancer data from 3 arrays CGH (Comparative Genomic Hybridyzation). Arrays dimension
are 4 blocs per column, 4 blocs per row, 21 columns per bloc and 22 rows by blocs.

Usage

data(arrayCGH)

Format

A data frame composed of the following elements :

Log2Rat Log 2 ratio.

Position BAC position on the genome.
CHROMOSOME Chromosome.

Col

Column location on the array.

Row Row location on the array.

Source

Institut Curie, <glad@curie. fr>.

arrayCGH 3

Examples

data(arrayCGH)
data <- arrayl #arrayl to array3

arrayCGH Object of Class arrayCGH

Description

Description of the object arrayCGH.

Value

The object arrayCGH is a list with at least a data.frame named arrayValues and a vector named
arrayDesign. The data.frame arrayValues must contain the following fields :

Col Vector of columns coordinates.
Row Vector of rows coordinates.

Other elements can be added.

The vector arrayDesign is composed of 4 values : c(arrayCol, arrayRow, SpotCol, SpotRow). The
array CGH is represented by arrayRow*arrayCol blocs and each bloc is composed of SpotRow*SpotCol
spots.

N.B.: Col takes the values in 1:arrayRow*SpotRow and Row takes the values in 1:arrayCol*SpotCol

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)
Philippe HupA®©, <glad@curie.fr>.

See Also

glad.
Examples
data(arrayCGH)
object of class arrayCGH

array <- list(arrayValues=array2, arrayDesign=c(4,4,21,22))
class(array) <- "arrayCGH"

http://bioinfo.curie.fr
http://bioinfo.curie.fr

4 arrayPersp

arrayPersp Perspective image of microarray spots statistic

Description

The function arrayPersp creates perspective images of shades of gray or colors that correspond to
the values of a statistic for each spot on the array. The statistic can be the intensity log-ratio, a spot
quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore
whether there are any spatial effects in the data, for example, print-tip or cover-slip effects.

Usage

Default S3 method:

arrayPersp(Statistic, Col, Row,
ArrCol, ArrRow, SpotCol, SpotRow,
mediancenter=FALSE,

col=myPalette("green”,"red","yellow"),
zlim=zlim, bar=TRUE, ...)

S3 method for class 'arrayCGH'
arrayPersp(arrayCGH, variable,
mediancenter=FALSE,

n on

col=myPalette("green”,"red”,"yellow"),

zlim=zlim, bar=TRUE, ...)
Arguments

arrayCGH Object of class arrayCGH.
variable Variable to be plotted
Statistic Statistic to be plotted.
Col Vector of columns coordinates.
Row Vector of rows coordinates.
ArrCol Number of columns for the blocs.
ArrRow Number of rows for the blocs.
SpotCol Number of column for each bloc.
SpotRow Number of rows for each bloc.

mediancenter If mediancenter=TRUE, values of Statistic are median-centered.

col List of colors such as that generated by Palettes. In addition to these color
palettes functions, a new function myPalette was defined to generate color
palettes from user supplied low, middle, and high color values.

arrayPersp 5

zlim Numerical vector of length 2 giving the extreme values of z to associate with
colors low and high of myPalette. By default z1im is the range of z. Any
values of z outside the interval z1im will be truncated to the relevant limit.

bar If bar=TRUE, a calibration color bar is shown to the right of the image.
Graphical parameters can be given as arguments to function persp.

N.B. : Col takes the values in 1:arrayRow*SpotRow and Row takes the values in 1:arrayCol*SpotCol

Value

An image is created on the current graphics device.

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)

Philippe HupA©, <glad@curie.fr>.

See Also

persp, arrayPlot, myPalette.

Examples

Not run:
data(arrayCGH)
object of class arrayCGH

array <- list(arrayValues=array2, arrayDesign=c(4,4,21,22))
class(array) <- "arrayCGH"

arrayPersp(array, "Log2Rat"”, main="Perspective image of array CGH",
box=FALSE, theta=110, phi=40)

End(Not run)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

arrayPlot

arrayPlot

Spatial image of microarray spots statistic

Description

The function arrayPlot creates spatial images of shades of gray or colors that correspond to the
values of a statistic for each spot on the array. The statistic can be the intensity log-ratio, a spot
quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore
whether there are any spatial effects in the data, for example, print-tip or cover-slip effects.

Usage

Default S3 method:
arrayPlot(Statistic, Col, Row,

ArrCol, ArrRow, SpotCol, SpotRow,
mediancenter=FALSE,

col=myPalette("green”, "red"”, "yellow"),
contour=FALSE, nlevels=5,

zlim=NULL, bar=c("none"”, "horizontal”, "vertical"),
layout=TRUE, ...)

S3 method for class 'arrayCGH'
arrayPlot(arrayCGH, variable,

Arguments

arrayCGH
variable
Statistic
Col

Row

ArrCol
ArrRow
SpotCol
SpotRow
mediancenter

col

mediancenter=FALSE,

col=myPalette("green”, "red”, "yellow"),
contour=FALSE, nlevels=5,

zlim=NULL, bar=c("none”, "horizontal”, "vertical”),
layout=TRUE, ...)

Object of class arrayCGH.
Variable to be plotted

Statistic to be plotted.

Vector of columns coordinates.
Vector of rows coordinates.
Number of columns for the blocs.
Number of rows for the blocs.
Number of column for each bloc.
Number of rows for each bloc.

If mediancenter=TRUE, values of Statistic are median-centered.

List of colors such as that generated by Palettes. In addition to these color
palettes functions, a new function myPalette was defined to generate color

palettes from user supplied low, middle, and high color values.

arrayPlot 7

contour If contour=TRUE, contour are plotted, otherwise they are not shown.
nlevels Numbers of levels added by contour if contour=TRUE.
zlim Numerical vector of length 2 giving the extreme values of z to associate with

colors low and high of myPalette. By default z1im is the range of z. Any
values of z outside the interval z1im will be truncated to the relevant limit.

bar If bar=="horizontal' (resp. 'vertical'), an horizontal (resp. vertical) cali-
bration color bar is shown to the right of the image.

layout If 1ayout==TRUE plot layout is automatically set when a color bar is asked for
Graphical parameters can be given as arguments to function image.

N.B.: Col takes the values in 1:arrayRow*SpotRow and Row takes the values in 1:arrayCol*SpotCol

Details

This function is very similar to the maImage written by Sandrine Dudoit (available in marrayPlots
package) with added options z1im, mediancenter and layout.

Value

An image is created on the current graphics device.

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)
Philippe HupA©, <glad@curie.fr>.

See Also
image, contour, arrayPersp, myPalette.
Examples
data(arrayCGH)
pdf (file="arrayCGH.pdf",height=21/cm(1),width=29.7/cm(1))
arrayPlot(array2$Log2Rat, array2$Col, array2$Row, 4,4,21,22, main="Spatial Image of array CGH")
dev.off()

object of class arrayCGH

array <- list(arrayValues=array2, arrayDesign=c(4,4,21,22))
class(array) <- "arrayCGH"

arrayPlot(array, "Log2Rat”, main="Spatial Image of array CGH")

http://bioinfo.curie.fr
http://bioinfo.curie.fr

8 as.data.frame.profileCGH

as.data.frame.profileCGH
profileCGH consercion

Description

Convert a profileCGH object into a data.frame.

Usage
S3 method for class 'profileCGH'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
X The object to converted into data.frame.
row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.

optional logical. If "TRUE’, setting row names and converting column names (to syntac-
tic names) is optional.

Details

The attributes profileValues and profileValuesNA are binded into a data.frame.

Value

A data.frame object

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)

Philippe HupA®©, <gladecurie.fr>

See Also

as.profileCGH

http://bioinfo.curie.fr
http://bioinfo.curie.fr

as.profileCGH 9

Examples

data(snijders)

Creation of "profileCGH" object
profileCGH <- as.profileCGH(gm13330)

HHHHHHAAHEAE A
H#HiH#

glad function as described in HupAe et al. (2004)

fizizd

AR R R

res <- glad(profileCGH, mediancenter=FALSE,
smoothfunc="lawsglad"”, bandwidth=10, round=2,
model="Gaussian"”, lkern="Exponential”, glambda=0.999,
base=FALSE,
lambdabreak=8, lambdacluster=8, lambdaclusterGen=40,
type="tricubic”, param=c(d=6),
alpha=0.001, msize=5,
method="centroid”, nmax=8,
verbose=FALSE)

res <- as.data.frame(res)

as.profileCGH Create an object of class profileCGH

Description

Create an object of class profileCGH.

Usage

as.profileCGH(object,...)
S3 method for class 'data.frame'
as.profileCGH(object, infaction=c("value”,"empty"),

value=20, keepSmoothing=FALSE, ...)
Arguments
object A data.frame to be convert into profileCGH.
infaction If "value" then the LogRatio with infinite values (-Inf, Inf) are replace by + or -

value according to the sign. If "empty" then NAs are put instead.

10 as.profileCGH

value replace Inf by value if infaction is "value".

keepSmoothing if TRUE the smoothing value in object is kept

Details

The data.frame to be convert must at least contain the following fields: LogRatio, PosOrder, and
Chromosome. If the field Chromosome is of mode character, it is automatically converted into
a numeric vector (see ChrNumeric); a field ChromosomeChar contains the character labels. The
data.frame to be converted into a profileCGH objet is split into two data.frame: profileValuesNA
contains the rows for which there is at least a missing value for either LogRatio, PosOrder or
Chromosome; profileValues contains the remaining rows.

Value

A list with the following attributes

profileValues A data.frame

profileValuesNA
A data.frame
Note
People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.
Author(s)

Philippe HupA®©, <glad@curie.fr>

See Also

as.data.frame.profileCGH

Examples

data(snijders)

#i## Creation of "profileCGH"” object
profileCGH <- as.profileCGH(gm13330)

attributes(profileCGH)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

ChrNumeric 11

ChrNumeric Convert chromosome into numeric values

Description

Convert chromosome into numeric values.

Usage

ChrNumeric(Chromosome)

Arguments

Chromosome A vector with chromosome labels.

Details

For sexual chromosome, labels must contains X or Y which are coded by 23 and 24 respectively.

Note
People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)
Philippe HupA®©, <glad@curie.fr>

Examples

Chromosome <- c("1","X","Y","chr X", "ChrX", "chrX", "Chr Y")
ChrNumeric(Chromosome)

ColorBar Calibration bar for color images

Description

This function produces a color image (color bar) which can be used for the legend to another color
image obtained from the functions image or arrayPlot.

Usage

ColorBar(x, horizontal=TRUE, col=heat.colors(50), scale=1:1length(x), k=10, ...)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

12

Arguments

X

horizontal

col

scale

Author(s)

cytoband

If "numeric", a vector containing the "z" values in the color image, i.e., the
values which are represented in the color image. Otherwise, a "character” vector
representing colors.

If TRUE, the values of x are represented as vertical color strips in the image, else,
the values are represented as horizontal color strips.

Vector of colors such as that generated by rainbow, heat.colors, topo.colors, ter-
rain.colors, or similar functions. In addition to these color palette functions, a
new function myPalette was defined to generate color palettes from user sup-
plied low, middle, and high color values.

A "numeric" vector specifying the "z" values in the color image. This is used
when the argument x is a "character" vector representing color information.
Object of class "numeric", for the number of labels displayed on the bar.

Optional graphical parameters, see par.

Sandrine Dudoit, Yee Hwa (Jean) Yang.

See Also

image, arrayPlot myPalette.

Examples

par(mfrow=c(3,1))

Rcol <- myPalette(low="white", high="red"”, k=10)
Gcol <- myPalette(low="white", high="green"”, k=50)
RGcol <- myPalette(low="green"”, high="red"”, k=100)

ColorBar(Rcol)

ColorBar(Gecol, scale=c(-5,5))
ColorBar(1:50, col=RGcol)

par(mfrow=c(1,3))

x<-seq(-1, 1, by=0.01)

ColorBar(x, col=Gcol, horizontal=FALSE, k=11)
ColorBar(x, col=Gcol, horizontal=FALSE, k=21)
ColorBar(x, col=Gcol, horizontal=FALSE, k=51)

cytoband

Cytogenetic banding

Description

Cytogenetic banding

daglad 13

Usage

data(cytoband)

Examples

data(cytoband)
cytoband

daglad Analysis of array CGH data

Description

This function allows the detection of breakpoints in genomic profiles obtained by array CGH tech-
nology and affects a status (gain, normal or lost) to each clone.

Usage

S3 method for class 'profileCGH'
daglad(profileCGH, mediancenter=FALSE,
normalrefcenter=FALSE, genomestep=FALSE,
OnlySmoothing = FALSE, OnlyOptimCall = FALSE,
smoothfunc="lawsglad”, lkern="Exponential”,
model="Gaussian", qlambda=0.999, bandwidth=10,
sigma=NULL, base=FALSE, round=2,
lambdabreak=8, lambdaclusterGen=40, param=c(d=6),
alpha=0.001, msize=2, method="centroid”, nmin=1, nmax=8, region.size=2,
amplicon=1, deletion=-5, deltaN=0.10, forceGL=c(-0.15,0.15),
nbsigma=3, MinBkpWeight=0.35, DelBkpInAmp=TRUE, DelBkpInDel=TRUE,
CheckBkpPos=TRUE, assignGNLOut=TRUE,
breaksFdrQ = 0.0001, haarStartLevel = 1,
haarEndLevel = 5, weights.name = NULL,

verbose=FALSE, ...)
Arguments
profileCGH Object of class profileCGH

mediancenter If TRUE, LogRatio are center on their median.

genomestep If TRUE, a smoothing step over the whole genome is performed and a "clustering
throughout the genome" allows to identify a cluster corresponding to the Nor-
mal DNA level. The threshold used in the daglad function (deltaN, forceGL,
amplicon, deletion) and then compared to the median of this cluster.
normalrefcenter
If TRUE, the LogRatio are centered through the median of the cluster identified
during the genomestep.

14

daglad

OnlySmoothing If TRUE, only segmentation is performed without optimization of breakpoints
and calling.

OnlyOptimCall If TRUE, the user can provide data which have been already segmented. In this
case, profileCGH\$profileValues must contain a field with the name "Smooth-
ing". The daglad function skip the smoothing step but bith the optimization of
breakpoints and calling are performed.

smoothfunc Type of algorithm used to smooth LogRatio by a piecewise constant function.
Choose either lawsglad, haarseg, aws or laws (aws package).

lkern Ikern determines the location kernel to be used (see laws in aws package for
details).

model model determines the distribution type of LogRatio (see laws in aws package
for details).

glambda glambda determines the scale parameter qlambda for the stochastic penalty (see
laws in aws package for details).

base If TRUE, the position of clone is the physical position onto the chromosome,
otherwise the rank position is used.

sigma Value to be passed to either argument sigma2 of aws (see aws package) function
or shape of laws (see aws package). If NULL, sigma is calculated from the data.

bandwidth Set the maximal bandwidth hmax in the aws or laws functions in aws package.
For example, if bandwidth=10 then the hmax value is set to 10* Xy where X
is the position of the last clone.

round The smoothing results of either aws or laws functions (in aws package) are
rounded or not depending on the round argument. The round value is passed to
the argument digits of the round function.

lambdabreak Penalty term (\") used during the "Optimization of the number of breakpoints"
step.

lambdaclusterGen
Penalty term (\+) used during the "clustering throughout the genome" step.

param Parameter of kernel used in the penalty term.

alpha Risk alpha used for the "Outlier detection” step.

msize The outliers MAD are calculated on regions with a cardinality greater or equal
to msize.

method The agglomeration method to be used during the "clustering throughout the
genome" steps.

nmin Minimum number of clusters (N*max) allowed during the "clustering through-
out the genome" clustering step.

nmax Maximum number of clusters (N*max) allowed during the "clustering through-

region.size

amplicon

out the genome" clustering step.

The breakpoints which define regions with a number of probes lower or equal to
this value are discared.

Level (and outliers) with a smoothing value (log-ratio value) greater than this
threshold are consider as amplicon. Note that first, the data are centered on the
normal reference value computed during the "clustering throughout the genome"
step.

daglad

deletion

deltaN

forceGL

nbsigma

MinBkpWeight

DelBkpInAmp

DelBkpInDel

CheckBkpPos
assignGNLOut
breaksFdrQ
haarStartLevel
haarEndLevel

weights.name

verbose

Details

15

Level (and outliers) with a smoothing value (log-ratio value) lower than this
threshold are consider as deletion. Note that first, the data are centered on the
normal reference value computed during the "clustering throughout the genome"
step.

Region with smoothing values in between the interval [-deltaN,+deltaN] are sup-
posed to be normal.

Level with smoothing value greater (lower) than rangeGL[1] (rangeGL[2]) are
considered as gain (lost). Note that first, the data are centered on the normal
reference value computed during the "clustering throughout the genome" step.
For each breakpoints, a weight is calculated which is a function of absolute
value of the Gap between the smoothing values of the two consecutive regions.
Weight = 1- kernelpen(abs(Gap),param=c(d=nbsigma*Sigma)) where Sigma is
the standard deviation of the LogRatio.

Breakpoints which GNLchange==0 and Weight less than MinBkpWeight are dis-
carded.

If TRUE, the breakpoints identified inside amplicon regions are deleted. For
amplicon, the log-ratio values are highly variable which lead to identification of
false positive breakpoints.

If TRUE, the breakpoints identified inside deletion regions are deleted. For dele-
tion, the log-ratio values are highly variable which lead to identification of false
positive breakpoints.

If TRUE, the accuracy position of each breakpoints is checked.

If FALSE the status (gain/normal/loss) is not assigned for outliers.

breaksFdrQ for HaarSeg algorithm.

haarStartLevel for HaarSeg algorithm.

haarEndLevel for HaarSeg algorithm.

The name of the fields which contains the weights used for the haarseg algo-

rithm. By default, the value is set to NULL meaning that all the observations
have the same weights. If provided, the field must contain positive values.

If TRUE some information are printed.

The function daglad implements a slightly modified version of the methodology described in the
article : Analysis of array CGH data: from signal ratio to gain and loss of DNA regions (HupA© et
al., Bioinformatics, 2004). For smoothing, it is possible to use either the AWS algorithm (Polzehl
and Spokoiny, 2002) or the HaarSeg algorithm (Ben-Yaacov and Eldar, Bioinformatics, 2008). The
daglad function allows to choose some threshold to help the algorithm to identify the status of the
genomic regions. The threshodls are given in the following parameters:

e deltaN
e forceGL
¢ deletion

e amplicon

16

Value

daglad

An object of class "profileCGH" with the following attributes:

profileValues is a data.frame with the following information:

SmoothingThe smoothing values correspond to the median of each Level
BreakpointsThe last position of a region with identical amount of DNA is
flagged by 1 otherwise it is 0. Note that during the "Optimization of the
number of breakpoints" step, removed breakpoints are flagged by -1.
LevelEach position with equal smoothing value are labelled the same way
with an integer value starting from one. The label is incremented by one
when a new level occurs or when moving to the next chromosome.
OutliersAwsEach AWS outliers are flagged -1 (if it is in the /2 lower tail
of the distribution) or 1 (if it is in the «/2 upper tail of the distribution)
otherwise it is 0.

OutliersMadEach MAD outliers are flagged -1 (if it is in the «/2 lower
tail of the distribution) or 1 (if it is in the /2 upper tail of the distribution)
otherwise it is 0.

OutliersTotOutliersAws + OutliersMad.

NormalRefClusters which have been used to set the normal reference dur-
ing the "clustering throughout the genome" step are code by 0. Note that if
genomestep=FALSE, all the value are set to 0.

ZoneGNLStatus of each clone: Gain is coded by 1, Loss by -1, Amplicon
by 2, deletion by -10 and Normal by O.

BkpInfo is a data.frame sum up the information for each breakpoint:

ChromosomeChromosome name.

SmoothingSmoothing value for the breakpoint.

Gapabsolute value of the gap between the smoothing values of the two
consecutive regions.

SigmaThe estimation of the standard-deviation of the chromosome.
Weightl - kernelpen(Gap, type, param=c(d=nbsigma*Sigma))
ZoneGNLStatus of the level where is the breakpoint.

GNLchangeTakes the value 1 if the ZoneGNL of the two consecutive re-
gions are different.

LogRatioTest over Reference log-ratio.

NormalRef If genomestep=TRUE and normalrefcenter=FALSE, then NormalRef is the me-
dian of the cluster which has been used to set the normal reference during the
"clustering throughout the genome" step. Otherwise NormalRef is 0.

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.

curie.fr.

Author(s)

Philippe HupA®©, <glad@curie.fr>.

http://bioinfo.curie.fr
http://bioinfo.curie.fr

daglad 17

References

HupAO© et al. (Bioinformatics, 2004): Analysis of array CGH data: from signal ratio to gain and
loss of DNA regions.

Polzehl and Spokoiny (WIAS-Preprint 787, 2002): Local likelihood modelling by adaptive weights
smoothing.

Ben-Yaacov and Eldar (Bioinformatics, 2008): A fast and flexible method for the segmentation of
aCGH data.

See Also
glad.

Examples

data(snijders)
gm13330$Clone <- gm13330$BAC
profileCGH <- as.profileCGH(gm13330)

B s
H#iH#

daglad function

fizizd

HHHEHHHEEEE A A

res <- daglad(profileCGH, mediancenter=FALSE, normalrefcenter=FALSE, genomestep=FALSE,
smoothfunc="lawsglad"”, lkern="Exponential”, model="Gaussian",
gqlambda=0.999, bandwidth=10, base=FALSE, round=1.5,
lambdabreak=8, lambdaclusterGen=40, param=c(d=6), alpha=0.001, msize=2,
method="centroid”, nmin=1, nmax=8,
amplicon=1, deletion=-5, deltaN=0.10, forceGL=c(-0.15,0.15), nbsigma=3,
MinBkpWeight=0.35, CheckBkpPos=TRUE)

data for cytoband
data(cytoband)

Genomic profile on the whole genome
plotProfile(res, unit=3, Bkp=TRUE, labels=FALSE, Smoothing="Smoothing",
main="Breakpoints detection: DAGLAD analysis”, cytoband = cytoband)

###Genomic profile for chromosome 1
plotProfile(res, unit=3, Bkp=TRUE, labels=TRUE, Chromosome=1,
Smoothing="Smoothing"”, main="Chromosome 1: DAGLAD analysis"”, cytoband = cytoband)

The standard-deviation of LogRatio are:
res$SigmaC

18

glad

The list of breakpoints is:

res$BkpInfo

glad

Analysis of array CGH data

Description

This function allows the detection of breakpoints in genomic profiles obtained by array CGH tech-
nology and affects a status (gain, normal or lost) to each clone.

Usage

S3 method for class 'profileCGH'
glad(profileCGH, mediancenter=FALSE,

Arguments

profileCGH
mediancenter

smoothfunc

bandwidth

round
model

lkern

glambda

smoothfunc="lawsglad”, bandwidth=10, round=1.5,
model="Gaussian"”, lkern="Exponential”, glambda=0.999,
base=FALSE, sigma,

lambdabreak=8, lambdacluster=8, lambdaclusterGen=40,
type="tricubic"”, param=c(d=6),

alpha=0.001, msize=5,

method="centroid”, nmax=8, assignGNLOut=TRUE,

breaksFdrQ = ©.0001, haarStartLevel = 1, haarEndLevel = 5,
verbose=FALSE, ...)

Object of class profileCGH
If TRUE, LogRatio are centered on their median.

Type of algorithm used to smooth LogRatio by a piecewise constant function.
Choose either lawsglad, haarseg, aws or laws in aws package.

Set the maximal bandwidth hmax in the aws or laws functions in aws package.
For example, if bandwidth=10 then the hmax value is set to 10* X 5 where X
is the position of the last clone.

The smoothing results are rounded or not depending on the round argument.
The round value is passed to the argument digits of the round function.

Determines the distribution type of the LogRatio. Keep always the model as
"Gaussian" (see laws in aws package).

Determines the location kernel to be used (see aws or laws in aws package).

Determines the scale parameter for the stochastic penalty (see aws or laws in
aws package)

glad

19

base If TRUE, the position of clone is the physical position on the chromosome, oth-
erwise the rank position is used.

sigma Value to be passed to either argument sigma2 ofaws function or shape of laws
(see aws package). If NULL, sigma is calculated from the data.

lambdabreak Penalty term (\’) used during the Optimization of the number of breakpoints
step.

lambdacluster Penalty term (Ax) used during the MSHR clustering by chromosome step.

lambdaclusterGen
Penalty term (Ax) used during the HCSR clustering throughout the genome
step.

type Type of kernel function used in the penalty term during the Optimization of the
number of breakpoints step, the MSHR clustering by chromosome step and
the HCSR clustering throughout the genome step.

param Parameter of kernel used in the penalty term.

alpha Risk alpha used for the Outlier detection step.

msize The outliers MAD are calculated on regions with a cardinality greater or equal
to msize.

method The agglomeration method to be used during the MSHR clustering by chro-
mosome and the HCSR clustering throughout the genome clustering steps.

nmax Maximum number of clusters (N*max) allowed during the the MSHR cluster-
ing by chromosome and the HCSR clustering throughout the genome clus-
tering steps.

assignGNLOut If FALSE the status (gain/normal/loss) is not assigned for outliers.

breaksFdrQ breaksFdrQ for HaarSeg algorithm.

haarStartLevel haarStartLevel for HaarSeg algorithm.

haarEndLevel for HaarSeg algorithm.

verbose If TRUE some information are printed

Details

The function glad implements the methodology which is described in the article: Analysis of array
CGH data: from signal ratio to gain and loss of DNA regions (HupA®© et al., Bioinformatics, 2004).

The principles of the GLAD algorithm: First, the detection of breakpoints is based on the estimation
of a piecewise constant function with the Adaptive Weights Smoothing (AWS) procedure (Polzehl
and Spokoiny, 2002). Alternatively, it is possible to use the HaarSeg algorithm (Ben-Yaacov and
Eldar, Bioinformatics, 2008). Then, a procedure based on penalyzed maximum likelihood optimizes
the number of breakpoints and removes the undesirable breakpoints. Finally, based on the regions

previously identified, a two-step unsupervised classification (MSHR clustering by chromosome

and the HCSR clustering throughout the genome) with model selection criteria allows a status to

be assigned for each region (gain, loss or normal).

Main parameters to be tuned:

20

glambda
bandwidth
lambdabreak
lambdacluster
lambdaclusterGen

Value

profileValues:

BkpInfo:

SigmaC:

Note

glad

if you want the smoothing to fit some very local effect, choose a smaller qlambda.

choose a bandwidth not to small otherwise you will have a lot of little discontinuities.

The higher the parameter is, the higher the number of undesirable breakpoints is.

The higher the parameter is, the higher is the number of the regions within a chromosome which belong
More the parameter is high more the regions over the whole genome are supposed to belong to the sam

An object of class "profileCGH" with the following attributes:

a data.frame with the following added information:

* SmoothingThe smoothing values correspond to the median of each MSHR
(i.e. Region).

* BreakpointsThe last position of a region with identical amount of DNA is
flagged by 1 otherwise it is 0. Note that during the "Optimization of the
number of breakpoints" step, removed breakpoints are flagged by -1.

* RegionEach position between two breakpoints are labelled the same way
with an integer value starting from one. The label is incremented by one
when a new breakpoint is found or when moving to the next chromosome.
The variable region is what we call MSHR.

* LevelEach position with equal smoothing value is labelled the same way
with an integer value starting from one. The label is incremented by one
when a new level is found or when moving to the next chromosome.

* OutliersAwsEach AWS outliers are flagged -1 or 1 otherwise it is 0.

* OutliersMadEach MAD outliers are flagged -1 (if it is in the «/2 lower
tail of the distribution) or 1 (if it is in the /2 upper tail of the distribution)
otherwise it is 0.

* OutliersTotOutliersAws + OutliersMad.

* ZoneChrClusters identified after MSHR (i.e. Region) clustering by chro-
mosome.

* ZoneGenClusters identified after HCSR clustering throughout the genome.

» ZoneGNLStatus of each clone : Gain is coded by 1, Loss by -1 and Normal
by 0.

the data.frame attribute BkpInfo which gives the list of breakpoints:

* PosOrderThe rank position of each clone on the genome.
* PosBaseThe base position of each clone on the genome.
* ChromosomeChromosome name.

the data.frame attribute SigmaC gives the estimation of the LogRatio standard-
deviation for each chromosome:

* ChromosomeChromosome name.
* ValueThe estimation is based on the Inter Quartile Range.

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.

curie.fr.

http://bioinfo.curie.fr
http://bioinfo.curie.fr

glad 21

Author(s)
Philippe HupA©, <glad@curie.fr>.

References

» HupAO et al. (Bioinformatics, 2004) Analysis of array CGH data: from signal ratio to gain
and loss of DNA regions.

* Polzehl and Spokoiny (WIAS-Preprint 787, 2002)Local likelihood modelling by adaptive
weights smoothing.

* Ben-Yaacov and Eldar (Bioinformatics, 2008)A fast and flexible method for the segmentation
of aCGH data.

See Also

profileCGH, as.profileCGH, plotProfile.

Examples

data(snijders)

Creation of "profileCGH" object
gm13330$Clone <- gm13330$BAC
profileCGH <- as.profileCGH(gm13330)

S
H#iH#

glad function as described in HupAe et al. (2004)

H#iH
S

res <- glad(profileCGH, mediancenter=FALSE,
smoothfunc="lawsglad"”, bandwidth=10, round=1.5,
model="Gaussian"”, lkern="Exponential”, glambda=0.999,
base=FALSE,
lambdabreak=8, lambdacluster=8, lambdaclusterGen=40,
type="tricubic”, param=c(d=6),
alpha=0.001, msize=5,
method="centroid"”, nmax=8,
verbose=FALSE)

cytoband data to plot chromosomes
data(cytoband)

Genomic profile on the whole genome
plotProfile(res, unit=3, Bkp=TRUE, labels=FALSE, Smoothing="Smoothing",

main="Breakpoints detection: GLAD analysis”, cytoband = cytoband)

###Genomic profile for chromosome 1

22 hclustglad

plotProfile(res, unit=3, Bkp=TRUE, labels=TRUE, Chromosome=1,
Smoothing="Smoothing"”, main="Chromosome 1: GLAD analysis”, cytoband = cytoband)

The standard-deviation of LogRatio are:
res$SigmaC

#i## The list of breakpoints is:
res$BkpInfo

GLAD-internal GLAD-internal

Description

Internal functions

Usage

n o n

Value

non

Author(s)

Philippe HupA®©, glad@curie. fr.

See Also

non

hclustglad Hierarchical Clustering

Description

Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

Usage

hclustglad(d, method = "complete”, members=NULL)

glad@curie.fr

hclustglad 23

Arguments
d a dissimilarity structure as produced by dist.
method the agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward"”, "single”, "complete”, "average”, "mcquitty”,
"median” or "centroid”.
members NULL or a vector with length size of d.
Details

This function performs a hierarchical cluster analysis using a set of dissimilarities for the n objects
being clustered. Initially, each object is assigned to its own cluster and then the algorithm pro-
ceeds iteratively, at each stage joining the two most similar clusters, continuing until there is just
a single cluster. At each stage distances between clusters are recomputed by the Lance—Williams
dissimilarity update formula according to the particular clustering method being used.

A number of different clustering methods are provided. Ward’s minimum variance method aims at
finding compact, spherical clusters. The complete linkage method finds similar clusters. The single
linkage method (which is closely related to the minimal spanning tree) adopts a ‘friends of friends’
clustering strategy. The other methods can be regarded as aiming for clusters with characteristics
somewhere between the single and complete link methods.

If members!=NULL, then d is taken to be a dissimilarity matrix between clusters instead of dissim-
ilarities between singletons and members gives the number of observations per cluster. This way
the hierarchical cluster algorithm can be “started in the middle of the dendrogram”, e.g., in order to
reconstruct the part of the tree above a cut (see examples). Dissimilarities between clusters can be
efficiently computed (i.e., without hclustglad itself) only for a limited number of distance/linkage
combinations, the simplest one being squared Euclidean distance and centroid linkage. In this case
the dissimilarities between the clusters are the squared Euclidean distances between cluster means.

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree should
go on the left and which on the right. Since, for n observations there are n — 1 merges, there
are 2("~1) possible orderings for the leaves in a cluster tree, or dendrogram. The algorithm used
in hclustglad is to order the subtree so that the tighter cluster is on the left (the last, i.e. most
recent, merge of the left subtree is at a lower value than the last merge of the right subtree). Single
observations are the tightest clusters possible, and merges involving two observations place them in
order by their observation sequence number.

Value

An object of class helust which describes the tree produced by the clustering process. The object is
a list with components:

merge an n — 1 by 2 matrix. Row ¢ of merge describes the merging of clusters at step ¢
of the clustering. If an element j in the row is negative, then observation —j was
merged at this stage. If j is positive then the merge was with the cluster formed
at the (earlier) stage j of the algorithm. Thus negative entries in merge indicate
agglomerations of singletons, and positive entries indicate agglomerations of
non-singletons.

height a set of n — 1 non-decreasing real values. The clustering height: that is, the
value of the criterion associated with the clustering method for the particular
agglomeration.

24 hclustglad

order a vector giving the permutation of the original observations suitable for plotting,
in the sense that a cluster plot using this ordering and matrix merge will not have
crossings of the branches.

labels labels for each of the objects being clustered.

call the call which produced the result.

method the cluster method that has been used.

dist.method the distance that has been used to create d (only returned if the distance object

has a "method” attribute).

Author(s)

The hclustglad function is based an Algorithm contributed to STATLIB by F. Murtagh.

References

Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.

Hartigan, J. A. (1975). Clustering Algorithms. New York: Wiley.

Sneath, P. H. A. and R. R. Sokal (1973). Numerical Taxonomy. San Francisco: Freeman.
Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.
Gordon, A. D. (1999). Classification. Second Edition. London: Chapman and Hall / CRC

Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, in COMPSTAT Lectures 4. Wuerzburg:
Physica-Verlag (for algorithmic details of algorithms used).

Examples

data(USArrests)

hc <- hclustglad(dist(USArrests), "ave")
plot(hc)

plot(hc, hang = -1)

Do the same with centroid clustering and squared Euclidean distance,
cut the tree into ten clusters and reconstruct the upper part of the
tree from the cluster centers.
hc <- hclustglad(dist(USArrests)*2, "cen")
memb <- cutree(hc, k = 10)
cent <- NULL
for(k in 1:10){

cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))
3
hc1l <- hclustglad(dist(cent)”*2, method = "cen", members = table(memb))
opar <- par(mfrow = c(1, 2))
plot(hc, 1labels = FALSE, hang = -1, main = "Original Tree")
plot(hcl, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")
par(opar)

kernelpen 25

kernelpen Kernelpen function

Description

Kernel function used in the penalty term.

Usage

kernelpen(x, type="tricubic"”, param)

Arguments
X Real Value.
type Type of kernelpen to be used
param a named vector.

Details

The only kernel available is the "tricubic" kernel which takes the values (1 — (z/d)?)3. The value
of d is given by param=c(d=6) for example.

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)

Philippe HupA®©, <glad@curie.fr>

myPalette Microarray color palette

Description

This function returns a vector of color names corresponding to a range of colors specified in the
arguments.

Usage

myPalette(low = "white”, high = c("green”, "red"), mid=NULL, k =50)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

26 plotProfile

Arguments

low Color for the lower end of the color palette, specified using any of the three kinds
of R colors, i.e., either a color name (an element of colors), a hexadecimal
string of the form "#rrggbb”, or an integer i meaning palette()[il.

high Color for the upper end of the color palette, specified using any of the three kinds
of R colors, i.e., either a color name (an element of colors), a hexadecimal
string of the form "#rrggbb”, or an integer i meaning palette()[i].

mid Color for the middle portion of the color palette, specified using any of the three
kinds of R colors, i.e., either a color name (an element of colors), a hexadeci-
mal string of the form "#rrggbb”, or an integer i meaning palette()[i].

k Number of colors in the palette.

Value

A "character" vector of color names. This can be used to create a user-defined color palette for
subsequent graphics by palette, in a col= specification in graphics functions, or in par.

Author(s)

Sandrine Dudoit, Yee Hwa (Jean) Yang.

See Also

palette, rgb, colors, col2rgb, image, ColorBar, arrayPlot.

Examples

par(mfrow=c(1,4))

pal <- myPalette(low="red", high="green")
ColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
pal <- myPalette(low="red"”, high="green”, mid="yellow")
ColorBar(seq(-2,2, ©0.2), col=pal, horizontal=FALSE, k=21)
pal <- myPalette()

ColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
pal <- myPalette(low="purple"”, high="purple"”,mid="white")
ColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)

plotProfile Plot genomic profile and cytogenetic banding

Description

Plot genomic profile with breakpoints, outliers, smoothing line and cytogenetic banding.

plotProfile 27

Usage

S3 method for class 'profileCGH'
plotProfile(profileCGH, variable="LogRatio"”, Chromosome=NULL,

Arguments

profileCGH
variable

Chromosome

Smoothing
GNL

Bkp
labels
plotband

unit

colDAGLAD
pchSymbol

colCytoBand
colCentro
text
cytoband
main

ylim

Details

non

Smoothing=NULL, GNL="ZoneGNL", Bkp=FALSE,
labels=TRUE, plotband=TRUE, unit=0,
colDAGLAD=c("black"”,"blue”,"red","green”,"yellow"),
pchSymbol=c(20,13),

colCytoBand=c("white", "darkblue”),

colCentro="red"”, text=NULL,

cytoband = NULL, main="", ylim=NULL, ...)

Object of class profileCGH
The variable to be plot.

A numeric vector with chromosome number to be plotted. Use 23 and 24 for
chromosome X and Y respectively. If NULL, all the genome is plotted.

The variable used to plot the smoothing line. If NULL, nothing is plotted.
The variable used to plot the Gain, Normal and Loss color code.

If TRUE, the breakpoints are represented by a vertical red dashed line.

If TRUE, the labels of the cytogenetic banding are written.

If TRUE, the cytogenetic banding are plotted.

Give the unit of the PosBase. For example if unit=3, PosBase are in Kb, if
unit=6, PosBase are in Mb, ...

Color code to plot Deletion, Amplification, Gain, Lost and Normal status.

A vector of two elements to specify the symbol tu be used for plotting point.
pchSymbol[2] is the symbol for outliers.

Color code for cytogenetic banding.

Color code for centromere.

A list with the parameters to be passed to the function text.

cytodand data. For human, cytoband data are avaibale using data(cytoband).
title of the plot.

range of the y-axis

28 plotProfile

Value

A plot

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

Author(s)
Philippe HupA®©, <glad@curie.fr>.

See Also

non

Examples

Cytogenetic banding information
data(cytoband)

H#HH#
data(snijders)

Creation of "profileCGH" object
profileCGH <- as.profileCGH(gm13330)

HHHEHHAREEE R A
H#HH

glad function as described in HupAe et al. (2004)

fizizd

HHHEHHHEHEE AR

res <- glad(profileCGH, mediancenter=FALSE,
smoothfunc="lawsglad"”, bandwidth=10, round=2,
model="Gaussian", lkern="Exponential”, glambda=0.999,
base=FALSE,
lambdabreak=8, lambdacluster=8, lambdaclusterGen=40,
type="tricubic"”, param=c(d=6),
alpha=0.001, msize=5,
method="centroid”, nmax=8,
verbose=FALSE)

#i## cytoband data to plot chromosome
data(cytoband)

Genomic profile on the whole genome
plotProfile(res, unit=3, Bkp=TRUE, labels=FALSE,
Smoothing="Smoothing"”, plotband=FALSE, cytoband = cytoband)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

profileCGH 29

Genomic profile on the whole genome and cytogenetic banding
plotProfile(res, unit=3, Bkp=TRUE, labels=FALSE, Smoothing="Smoothing",
cytoband = cytoband)

Genomic profile for chromosome 1

text <- list(x=c(90000,200000),y=c(0.15,0.3),labels=c(”"NORMAL","GAIN"), cex=2)
plotProfile(res, unit=3, Bkp=TRUE, labels=TRUE, Chromosome=1,
Smoothing="Smoothing"”, plotband=FALSE, text=text, cytoband = cytoband)

Genomic profile for chromosome 1 and cytogenetic banding with labels

text <- list(x=c(90000,200000),y=c(0.15,0.3),labels=c("NORMAL","GAIN"), cex=2)
plotProfile(res, unit=3, Bkp=TRUE, labels=TRUE, Chromosome=1,
Smoothing="Smoothing", text=text, main="Chromosome 1", cytoband = cytoband)

profileCGH Objects of Class profileCGH and profileChr

Description
Description of the objects profileCGH and profileChr. The last object corresponds to data of
only one chromosome.

Details

LogRatio, Chromosome and PosOrder are compulsory.

Value

Objects profileCGH and profileChr are composed of a list with the first element profileValues
which is a data. frame with the following columns names:

LogRatio Test over Reference log-ratio.

PosOrder The rank position of each clone on the genome.
PosBase The base position of each clone on the genome.
Chromosome Chromosome name.

Clone The name of the corresponding clone.

Other elements can be added.

Note

People interested in tools dealing with array CGH analysis can visit our web-page http://bioinfo.
curie.fr.

http://bioinfo.curie.fr
http://bioinfo.curie.fr

30 snijders

Author(s)
Philippe HupA©, <glad@curie.fr>.

See Also

glad, as.profileCGH.

Examples

data(snijders)

gm13330$Clone <- gm13330$BAC
profileCGH <- as.profileCGH(gm13330)
class(profileCGH) <- "profileCGH"

profileChr <- as.profileCGH(gm13330[which(gm13330$Chromosome==1),1)
class(profileChr) <- "profileChr"

snijders Public CGH data of Snijders

Description

The data consist of 15 human cell strains with known karyotype (12 fibroblast cell strains, 2 chori-
onic villus cell strains, 1 lymploblast cell strain) from the NIGMS Human Genetics Cell Repository
(http://locus.umdnj.edu/nigms). Each cell strain has been hybridized onto a CGH-array of 2276
BAC’s spotted in triplicate.

Usage

data(snijders)

Source

http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html

References

A M Snijders, N Nowak, R Segraves, S Blackwood, N Brown, J Conroy, G Hamilton, A K Hindle,
B Huey, K Kimura, S Law, K Myambo, J Palmer, B Ylstra, J P Yue, J W Gray, A N Jain, D Pinkel
& D G Albertson , Assembly of microarrays for genome-wide measurement of DNA copy number,
Nature Genetics 29, pp 263 - 264 (2001) Brief Communications.

Examples

data(snijders)
array <- gm13330

http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html

veltman 31

veltman Public CGH data of Veltman

Description

The data consist of 2 bladder cancer tumors obtained by Veltman et al (2003).

Usage

data(veltman)

Source

http://cancerres.aacrjournals.org/cgi/content/full/63/11/2872

References

Joris A. Veltman, Jane Fridlyand, Sunanda Pejavar, Adam B. Olshen, James E. Korkola, Sandy
DeVries, Peter Carroll, Wen-Lin Kuo, Daniel Pinkel, Donna Albertson, Carlos Cordon-Cardo, Ajay
N. Jain and Frederic M. Waldman. Array-based Comparative Genomic Hybridization for Genome-
Wide Screening of DNA Copy Number in Bladder Tumors. Cancer Research 63, 2872-2880, 2003.

Examples

data(veltman)
P9

http://cancerres.aacrjournals.org/cgi/content/full/63/11/2872

Index

* classes
arrayCGH, 3
profileCGH, 29

* cluster
hclustglad, 22

* color
myPalette, 25

+ datasets
array, 2
cytoband, 12
snijders, 30
veltman, 31

+ hplot
arrayPersp, 4
arrayPlot, 6
ColorBar, 11
plotProfile, 26

* internal
GLAD-internal, 22

* manip
as.data.frame.profileCGH, 8
as.profileCGH, 9
ChrNumeric, 11

+« math
kernelpen, 25

+ models
daglad, 13
glad, 18

+« multivariate
hclustglad, 22

affectationGNL (GLAD-internal), 22

array, 2

arrayl (array), 2

array?2 (array), 2

array3 (array), 2
arrayCGH, 3,4, 6
arrayPersp, 4,7
arrayPlot, 5,6, 11, 12, 26
as.data.frame.profileCGH, 8, 10

as.profileCGH, 8, 9, 21, 30
BkpInfo (GLAD-internal), 22

CheckData (GLAD-internal), 22
chrBreakpoints (GLAD-internal), 22
ChrNumeric, 10, 11

cluster (GLAD-internal), 22
clusterglad (GLAD-internal), 22
ColorBar, 11, 26

cytoband, 12

daglad, 13

DelRegionTooSmall (GLAD-internal), 22
detectOutliers (GLAD-internal), 22
dogenomestep (GLAD-internal), 22

FDRThres (GLAD-internal), 22
filterBkp (GLAD-internal), 22
filterBkpStep (GLAD-internal), 22
findCluster (GLAD-internal), 22

glad, 3, 17, 18, 30

GLAD-internal, 22

gmo0143 (snijders), 30
gm@1524 (snijders), 30
gm@1535 (snijders), 30
gm@1750 (snijders), 30
gme2948 (snijders), 30
gmo3134 (snijders), 30
gm@3563 (snijders), 30
gme3576 (snijders), 30
gmo4435 (snijders), 30
gme5296 (snijders), 30
gmo@7081 (snijders), 30
gmo7408 (snijders), 30
gm10315 (snijders), 30
gm13031 (snijders), 30
gm13330 (snijders), 30

HaarSeg (GLAD-internal), 22

INDEX

HaarSegGLAD (GLAD-internal), 22
HaarSegGLADCPP (GLAD-internal), 22
hclustglad, 22

image, 11, 12,26
kernelpen, 25

lawsglad (GLAD-internal), 22
loopRemove (GLAD-internal), 22

MoveBkp (GLAD-internal), 22
MoveBkpStep (GLAD-internal), 22
myPalette, 4-7, 12, 25

OptimBkpFindCluster (GLAD-internal), 22
OutliersGNL (GLAD-internal), 22

P20 (veltman), 31

P9 (veltman), 31

par, 12, 26

plotCytoBand (GLAD-internal), 22

plotProfile, 21,26

prepare.output.daglad (GLAD-internal),
22

profileCGH, 13, 18, 21, 27,29

profileChr (profileCGH), 29

RecomputeGNL (GLAD-internal), 22
removeBreakpoints (GLAD-internal), 22
removelLevel (GLAD-internal), 22

SegmentByPeaks (GLAD-internal), 22
selectindex (GLAD-internal), 22
snijders, 30

testBkpToMove (GLAD-internal), 22
text, 27

veltman, 31

33

	array
	arrayCGH
	arrayPersp
	arrayPlot
	as.data.frame.profileCGH
	as.profileCGH
	ChrNumeric
	ColorBar
	cytoband
	daglad
	glad
	GLAD-internal
	hclustglad
	kernelpen
	myPalette
	plotProfile
	profileCGH
	snijders
	veltman
	Index

