
Package ‘ClassifyR’
October 24, 2025

Type Package

Title A framework for cross-validated classification problems, with
applications to differential variability and differential
distribution testing

Version 3.13.8

Date 2025-10-08

VignetteBuilder knitr

Encoding UTF-8

biocViews Classification, Survival

Depends R (>= 4.1.0), generics, methods, S4Vectors,
MultiAssayExperiment, BiocParallel, survival

Imports grid, genefilter, utils, dplyr, tidyr, rlang, ranger, ggplot2
(>= 3.5.0), ggpubr, reshape2, ggupset, broom, dcanr

Suggests limma, edgeR, car, Rmixmod, gridExtra (>= 2.0.0), cowplot,
BiocStyle, pamr, PoiClaClu, knitr, htmltools, gtable, scales,
e1071, rmarkdown, IRanges, robustbase, glmnet, class,
randomForestSRC, MatrixModels, xgboost, data.tree, ggnewscale,
TOP, BiocNeighbors

Description The software formalises a framework for classification and survival model evaluation
in R. There are four stages; Data transformation, feature selection, model training,
and prediction. The requirements of variable types and variable order are
fixed, but specialised variables for functions can also be provided.
The framework is wrapped in a driver loop that reproducibly carries out a
number of cross-validation schemes. Functions for differential mean, differential variability,
and differential distribution are included. Additional functions
may be developed by the user, by creating an interface to the framework.

License GPL-3

RoxygenNote 7.3.3

NeedsCompilation yes

Collate 'ROCplot.R' 'available.R' 'classes.R' 'calcPerformance.R'
'constants.R' 'crissCrossValidate.R' 'crossValidate.R' 'data.R'
'distribution.R' 'edgesToHubNetworks.R' 'featureSetSummary.R'

1



2 Contents

'getLocationsAndScales.R' 'interactorDifferences.R'
'interfaceClassify.R' 'interfaceCoxPH.R' 'interfaceCoxnet.R'
'interfaceDLDA.R' 'interfaceFisherDiscriminant.R'
'interfaceGLM.R' 'interfaceKNN.R' 'interfaceKTSPclassifier.R'
'interfaceMerge.R' 'interfaceMixModels.R' 'interfaceNSC.R'
'interfaceNaiveBayesKernel.R' 'interfacePCA.R'
'interfacePenalisedGLM.R' 'interfacePrevalidation.R'
'interfaceRandomForest.R' 'interfaceRandomForestSurvival.R'
'interfaceSVM.R' 'interfaceXGB.R' 'performancePlot.R'
'plotFeatureClasses.R' 'precisionPathways.R' 'prepareData.R'
'previousSelection.R' 'previousTrained.R' 'randomSelection.R'
'rankingBartlett.R' 'rankingCoxPH.R' 'rankingDMD.R'
'rankingDifferentMeans.R' 'rankingEdgeR.R'
'rankingKolmogorovSmirnov.R' 'rankingKullbackLeibler.R'
'rankingLevene.R' 'rankingLikelihoodRatio.R' 'rankingLimma.R'
'rankingPairsDifferences.R' 'rankingPlot.R' 'runTest.R'
'runTests.R' 'samplesMetricMap.R' 'selectMulti.R'
'selectionPlot.R' 'simpleParams.R' 'subtractFromLocation.R'
'utilities.R'

URL https://sydneybiox.github.io/ClassifyR/

git_url https://git.bioconductor.org/packages/ClassifyR

git_branch devel

git_last_commit ecbb2eb

git_last_commit_date 2025-10-07

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Author Dario Strbenac [aut, cre],
Ellis Patrick [aut],
Sourish Iyengar [aut],
Harry Robertson [aut],
Andy Tran [aut],
John Ormerod [aut],
Graham Mann [aut],
Jean Yang [aut]

Maintainer Dario Strbenac <dario.strbenac@sydney.edu.au>

Contents
asthma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calcCostsAndPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calcExternalPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ClassifyResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
colCoxTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
crissCrossPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

https://sydneybiox.github.io/ClassifyR/


asthma 3

crissCrossValidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
crossValidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CrossValParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
edgesToHubNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FeatureSetCollection-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
featureSetSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
HuRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
interactorDifferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
METABRICclinical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ModellingParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
performancePlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
plotFeatureClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
precisionPathwaysTrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PredictParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
prepareData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
rankingPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ROCplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
runTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
runTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
samplesMetricMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
samplesSplits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
selectionPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SelectParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
TrainParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
TransformParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Index 60

asthma Asthma RNA Abundance and Patient Classes

Description

Data set consists of a matrix of abundances of 2000 most variable gene expression measurements
for 190 samples and a factor vector of classes for those samples.

Format

measurements has a row for each sample and a column for each gene. classes is a factor vector
with values No and Yes, indicating if a particular person has asthma or not.

Source

A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal
RNA Sequence Data, Scientific Reports, 2018. Webpage: http://www.nature.com/articles/
s41598-018-27189-4

http://www.nature.com/articles/s41598-018-27189-4
http://www.nature.com/articles/s41598-018-27189-4


4 calcCostsAndPerformance

available List Available Feature Selection and Classification Approaches

Description

Prints a list of keywords to use with crossValidate

Usage

available(what = c("classifier", "selectionMethod", "multiViewMethod"))

Arguments

what Default: "classifier". Either "classifier", "selectionMethod" or "multiViewMethod".

Author(s)

Dario Strbenac

Examples

available()

calcCostsAndPerformance

Various Functions for Evaluating Precision Pathways

Description

These functions tabulate or plot various aspects of precision pathways, such as accuracies and costs.

Usage

calcCostsAndPerformance(precisionPathways, costs = NULL)

## S3 method for class 'PrecisionPathways'
summary(object, weights = c(accuracy = 0.5, cost = 0.5), ...)

bubblePlot(precisionPathways, ...)

## S3 method for class 'PrecisionPathways'
bubblePlot(precisionPathways, pathwayColours = NULL, ...)

flowchart(precisionPathways, ...)



calcExternalPerformance 5

## S3 method for class 'PrecisionPathways'
flowchart(
precisionPathways,
pathway,
orientation = c("horizontal", "vertical"),
nodeColours = c(assay = "snow3", class1 = "#3F48CC", class2 = "#880015"),
...

)

strataPlot(precisionPathways, ...)

## S3 method for class 'PrecisionPathways'
strataPlot(
precisionPathways,
pathway,
classColours = c(class1 = "#3F48CC", class2 = "#880015"),
...

)

Arguments

precisionPathways

A pathway of class PrecisionPathways.

costs A named vector of assays with the cost of each one.

object A set of pathways of class PrecisionPathways.

weights A numeric vector of length two specifying how to weight the predictive accuracy
and the cost during ranking. Must sum to 1.

... Not used but just following the S3 requirement of the generic template.

pathwayColours A named vector of colours with names being the names of pathways. If none is
specified, a default colour scheme will automatically be chosen.

pathway A character vector of length 1 specifying which pathway to plot, e.g. "clinical-
mRNA".

orientation Default: "horizontal". Either "horizontal" or "vertical". Specifies the
layout of the flowchart.

nodeColours A named vector of colours with names being "assay", "class1","class2". a
default colour scheme will automatically be chosen.

classColours A named vector of colours with names being "class1","class2", and "accuracy".
a default colour scheme will automatically be chosen.

calcExternalPerformance

Add Performance Calculations to a ClassifyResult Object or Calculate
for a Pair of Factor Vectors



6 calcExternalPerformance

Description

If calcExternalPerformance is used, such as when having a vector of known classes and a vector
of predicted classes determined outside of the ClassifyR package, a single metric value is calcu-
lated. If calcCVperformance is used, annotates the results of calling crossValidate, runTests
or runTest with one of the user-specified performance measures.

Usage

## S4 method for signature 'factor,factor'
calcExternalPerformance(
actualOutcome,
predictedOutcome,
performanceTypes = "auto"

)

## S4 method for signature 'Surv,numeric'
calcExternalPerformance(
actualOutcome,
predictedOutcome,
performanceTypes = "auto"

)

## S4 method for signature 'factor,tabular'
calcExternalPerformance(
actualOutcome,
predictedOutcome,
performanceTypes = "auto"

)

## S4 method for signature 'ClassifyResult'
calcCVperformance(
result,
performanceTypes = "auto",
grouping = c("permutation", "fold")

)

performanceTable(
resultsList,
performanceTypes = "auto",
aggregate = c("median", "mean")

)

## S4 method for signature 'MultiAssayExperimentOrList'
easyHard(
measurements,
result,
assay = "clinical",
useFeatures = NULL,



calcExternalPerformance 7

performanceType = "auto",
fitMode = c("single", "full")

)

Arguments

actualOutcome A factor vector or survival information specifying each sample’s known out-
come.

predictedOutcome

A factor vector or survival information of the same length as actualOutcome
specifying each sample’s predicted outcome.

performanceTypes

Default: "auto" A character vector. If "auto", Balanced Accuracy will be used
for a classification task and C-index for a time-to-event task. If using easyHard,
the default is "Sample Accuracy" for a classification task and "Sample C-index"
for a time-to-event task. Must be one of the following options:

• "Error": Ordinary error rate.
• "Accuracy": Ordinary accuracy.
• "Balanced Error": Balanced error rate.
• "Balanced Accuracy": Balanced accuracy.
• "Sample Error": Error rate for each sample in the data set.
• "Sample Accuracy": Accuracy for each sample in the data set.
• "Micro Precision": Sum of the number of correct predictions in each

class, divided by the sum of number of samples in each class.
• "Micro Recall": Sum of the number of correct predictions in each class,

divided by the sum of number of samples predicted as belonging to each
class.

• "Micro F1": F1 score obtained by calculating the harmonic mean of micro
precision and micro recall.

• "Macro Precision": Sum of the ratios of the number of correct predictions
in each class to the number of samples in each class, divided by the number
of classes.

• "Macro Recall": Sum of the ratios of the number of correct predictions in
each class to the number of samples predicted to be in each class, divided
by the number of classes.

• "Macro F1": F1 score obtained by calculating the harmonic mean of macro
precision and macro recall.

• "Matthews Correlation Coefficient": Matthews Correlation Coefficient
(MCC). A score between -1 and 1 indicating how concordant the predicted
classes are to the actual classes. Only defined if there are two classes.

• "AUC": Area Under the Curve. An area ranging from 0 to 1, under the ROC.
• "C-index": For survival data, the concordance index, for models which

produce risk scores. Ranges from 0 to 1.
• "Sample C-index": Per-individual C-index.

result An object of class ClassifyResult.



8 calcExternalPerformance

grouping Default: "permutation". If the cross-validation was k-fold, then this deter-
mines whether the metric will be calculated for samples grouped by permuta-
tion or by fold, if the value is "fold". For small sample sizes, "permutation"
would suit. But, for large sample sizes, "fold" would be preferable, as class
membership probabilities or risk scores are not directly comparable between
folds. This setting makes no difference to error or accuracy metrics, apart from
their variability.

resultsList A list of modelling results. Each element must be of type ClassifyResult.

aggregate Default: "median". Can also be "mean". If there are multiple values, such as
for repeated cross-validation, then they are summarised to a single number using
either mean or median.

measurements For easyHard only. Either a DataFrame, data.frame, matrix, MultiAssayExperiment
or a list of the basic tabular objects containing the data.

assay For easyHard only. The assay to use to look for associations to the per-sample
metric.

performanceType

For easyHard only. One of the valid values shown for performanceType pa-
rameter of calcCVperformance.

useFeatures For easyHard only. Default: NULL (i.e. use all provided features). A vector
of features to consider of the assay specified. This allows for the avoidance of
variables such spike-in RNAs, sample IDs, sample acquisition dates, etc. which
are not relevant for outcome prediction.

fitMode For easyHard only. Default:"single". Either "single" or "full". If "single",
an ordinary GLM model is fitted for each covariate separately. If "full", elastic
net is used to automatically tune the non-zero model coefficients.

Details

All metrics except Matthews Correlation Coefficient are suitable for evaluating classification sce-
narios with more than two classes and are reimplementations of those available from Intel DAAL.

crossValidate, runTests or runTest was run in resampling mode, one performance measure is
produced for every resampling. Otherwise, if the leave-k-out mode was used, then the predictions
are concatenated, and one performance measure is calculated for all classifications.

"Balanced Error" calculates the balanced error rate and is better suited to class-imbalanced data
sets than the ordinary error rate specified by "Error". "Sample Error" calculates the error rate of
each sample individually. This may help to identify which samples are contributing the most to the
overall error rate and check them for confounding factors. Precision, recall and F1 score have micro
and macro summary versions. The macro versions are preferable because the metric will not have a
good score if there is substantial class imbalance and the classifier predicts all samples as belonging
to the majority class.

Value

If calcCVperformance was run, an updated ClassifyResult object, with new metric values in the
performance slot. If calcExternalPerformance was run, the performance metric value itself.

For easyHard, a DataFrame of logistic regression model summary.



ClassifyResult 9

Author(s)

Dario Strbenac

Examples

predictTable <- DataFrame(sample = paste("A", 1:10, sep = ''),
class = factor(sample(LETTERS[1:2], 50, replace = TRUE)))

actual <- factor(sample(LETTERS[1:2], 10, replace = TRUE))
result <- ClassifyResult(DataFrame(characteristic = "Data Set", value = "Example"),

paste("A", 1:10, sep = ''), paste("Gene", 1:50), list(paste("Gene", 1:50), paste("Gene", 1:50)), list(paste("Gene", 1:5), paste("Gene", 1:10)),
list(function(oracle){}), NULL, predictTable, actual)

result <- calcCVperformance(result)
performance(result)

ClassifyResult Container for Storing Classification Results

Description

Contains a list of models, table of actual sample classes and predicted classes, the identifiers of
features selected for each fold of each permutation or each hold-out classification, and performance
metrics such as error rates. This class is not intended to be created by the user. It is created by
crossValidate, runTests or runTest.

Constructor

ClassifyResult(characteristics, originalNames, originalFeatures, rankedFeatures, chosenFeatures,
models, tunedParameters, predictions, actualOutcome, importance = NULL, modellingParams
= NULL, finalModel = NULL)

characteristics A DataFrame describing the characteristics of classification done. First column
must be named "charateristic" and second column must be named "value". If using
wrapper functions for feature selection and classifiers in this package, the function names will
automatically be generated and therefore it is not necessary to specify them.

originalNames All sample names.

originalFeatures All feature names. Character vector or DataFrame with one row for each
feature if the data set has multiple kinds of measurements on the same set of samples.

chosenFeatures Features selected at each fold. Character vector or a data frame if data set has
multiple kinds of measurements on the same set of samples.

models All of the models fitted to the training data.

tunedParameters Names of tuning parameters and the value chosen of each parameter.

predictions A data frame containing sample IDs, predicted class or risk and information about
the cross-validation iteration in which the prediction was made.

actualOutcome The known class or survival data of each sample.



10 ClassifyResult

importance The changes in model performance for each selected variable when it is excluded.

modellingParams Stores the object used for defining the model building to enable future reuse.

finalModel A model built using all of the samples for future use. For any tuning parameters,
the most popular value of the parameter in cross-validation is used. May be missing if some
cross-validated fittings failed. Could be of any class, depending on the R package used to fit
the model.

Summary

result is a ClassifyResult object. show(result): Prints a short summary of what result con-
tains.

Accessors

result is a ClassifyResult object.

sampleNames(result) Returns a vector of sample names present in the data set.

actualOutcome(result) Returns the known outcome of each sample.

models(result) A list of the models fitted for each training.

finalModel(result) A deployable model fitted on all of the data for use on future data.

chosenFeatureNames(result) A list of the features selected for each training.

predictions(result) Returns a DataFrame which has columns with test sample, cross-validation
and prediction information.

performance(result) Returns a list of performance measures. This is empty until calcCVperformance
has been used.

tunedParameters(result) Returns a list of tuned parameter values. If cross-validation is used,
this list will be large, as it stores chosen values for every iteration.

totalPredictions(result) A single number representing the total number. of predictions made
during the cross-validation procedure.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)
classified <- crossValidate(measurements, classes, nRepeats = 5)
class(classified)

#}



colCoxTests 11

colCoxTests A function to perform fast or standard Cox proportional hazard model
tests.

Description

A function to perform fast or standard Cox proportional hazard model tests.

Usage

colCoxTests(measurements, outcome, option = c("fast", "slow"), ...)

Arguments

measurements matrix with variables as columns.
outcome matrix with first column as time and second column as event.
option Default: "fast". Whether to use the fast or slow method.
... Not currently used.

Value

CrossValParams object

Examples

data(asthma)
time <- rpois(nrow(measurements), 100)
status <- sample(c(0,1), nrow(measurements), replace = TRUE)
outcome <- cbind(time, status)
output <- colCoxTests(measurements, outcome, "fast")

crissCrossPlot A function to plot the output of the crissCrossValidate function.

Description

This function generates a heatmap of the cross-validation results from crissCrossValidate. By
default, it hides the "resubstitution" diagonal (where the training == test set) unless showResubMetric
= TRUE.

Usage

crissCrossPlot(
crissCrossResult,
includeValues = FALSE,
showResubMetric = FALSE

)



12 crissCrossValidate

Arguments

crissCrossResult

The output of the crissCrossValidate function.
includeValues Logical. If TRUE, numeric values are printed on each tile.
showResubMetric

Logical. If FALSE, the diagonal (resubstitution) cells are set to NA and appear
grayed-out or blank. Defaults to FALSE.

crissCrossValidate A function to perform pairwise cross validation

Description

This function has been designed to perform cross-validation and model prediction on datasets in a
pairwise manner.

Usage

crissCrossValidate(
measurements,
outcomes,
nFeatures = 20,
selectionMethod = "auto",
selectionOptimisation = "Resubstitution",
trainType = c("modelTrain", "modelTest"),
performanceType = "auto",
doRandomFeatures = FALSE,
runTOP = FALSE,
classifier = "auto",
nFolds = 5,
nRepeats = 20,
nCores = 1,
verbose = 0

)

Arguments

measurements A list of either DataFrame, data.frame or matrix class measurements.
outcomes A list of vectors that respectively correspond to outcomes of the samples in

measurements list. / Factors should be coded such that the control class is the
first level.

nFeatures The number of features to be used for modelling.
selectionMethod

Default: "auto". A character keyword of the feature algorithm to be used. If
"auto", t-test (two categories) / F-test (three or more categories) ranking and top
nFeatures optimisation is done. Otherwise, the ranking method is per-feature
Cox proportional hazards p-value.



crossValidate 13

selectionOptimisation

A character of "Resubstitution", "Nested CV" or "none" specifying the approach
used to optimise nFeatures.

trainType Default: "modelTrain". A keyword specifying whether a fully trained model
is used to make predictions on the test set or if only the feature identifiers are
chosen using the training data set and a number of training-predictions are made
by cross-validation in the test set.

performanceType

Default: "auto". If "auto", then balanced accuracy for classification or C-index
for survival. Otherwise, any one of the options described in calcPerformance
may otherwise be specified.

doRandomFeatures

Default: FALSE. Whether to perform random feature selection to establish a
baseline performance. Either FALSE or TRUE are permitted values.

runTOP Default: FALSE. If TRUE, perform the Transferable Omics Prediction (TOP) pro-
cedure in a leave-one-dataset-out manner.

classifier Default: "auto". A character keyword of the modelling algorithm to be used. If
"auto", then a random forest is used for a classification task or Cox proportional
hazards model for a survival task.

nFolds A numeric specifying the number of folds to use for cross-validation.

nRepeats A numeric specifying the number of repeats or permutations to use for cross-
validation.

nCores A numeric specifying the number of cores used if the user wants to use paral-
lelisation.

verbose Default: 0. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages.

Value

A list with elements "real" for the matrix of pairwise performance metrics using real feature
selection, "random" if doRandomFeatures is TRUE for metrics of random selection, "top" if runTOP
is TRUE, and "params" for a list of parameters used.

Author(s)

Harry Robertson

crossValidate Cross-validation to evaluate classification performance.

Description

This function has been designed to facilitate the comparison of classification methods using cross-
validation, particularly when there are multiple assays per biological unit. A selection of typical
comparisons are implemented. The train function is a convenience method for training on one
data set and likewise predict for predicting on an independent validation data set.



14 crossValidate

Usage

## S4 method for signature 'DataFrame'
crossValidate(
measurements,
outcome,
nFeatures = 20,
selectionMethod = "auto",
classifier = "auto",
multiViewMethod = "none",
assayCombinations = "all",
nFolds = 5,
nRepeats = 20,
nCores = 1,
characteristicsLabel = NULL,
extraParams = NULL,
verbose = 0

)

## S4 method for signature 'MultiAssayExperimentOrList'
crossValidate(
measurements,
outcome,
nFeatures = 20,
selectionMethod = "auto",
classifier = "auto",
multiViewMethod = "none",
assayCombinations = "all",
nFolds = 5,
nRepeats = 20,
nCores = 1,
characteristicsLabel = NULL,
extraParams = NULL,
verbose = 0

)

## S4 method for signature 'data.frame'
crossValidate(
measurements,
outcome,
nFeatures = 20,
selectionMethod = "auto",
classifier = "auto",
multiViewMethod = "none",
assayCombinations = "all",
nFolds = 5,
nRepeats = 20,
nCores = 1,
characteristicsLabel = NULL,



crossValidate 15

extraParams = NULL,
verbose = 0

)

## S4 method for signature 'matrix'
crossValidate(
measurements,
outcome,
nFeatures = 20,
selectionMethod = "auto",
classifier = "auto",
multiViewMethod = "none",
assayCombinations = "all",
nFolds = 5,
nRepeats = 20,
nCores = 1,
characteristicsLabel = NULL,
extraParams = NULL,
verbose = 0

)

## S3 method for class 'matrix'
train(x, outcomeTrain, ...)

## S3 method for class 'data.frame'
train(x, outcomeTrain, ...)

## S3 method for class 'DataFrame'
train(
x,
outcomeTrain,
selectionMethod = "auto",
nFeatures = 20,
classifier = "auto",
multiViewMethod = "none",
assayIDs = "all",
extraParams = NULL,
verbose = 0,
...

)

## S3 method for class 'list'
train(x, outcomeTrain, ...)

## S3 method for class 'MultiAssayExperiment'
train(x, outcome, ...)

## S3 method for class 'trainedByClassifyR'



16 crossValidate

predict(object, newData, outcome, ...)

Arguments

measurements Either a DataFrame, data.frame, matrix, MultiAssayExperiment or a list of
the basic tabular objects containing the data.

outcome A vector of class labels of class factor of the same length as the number of
samples in measurements or a character vector of length 1 containing the col-
umn name in measurements if it is a DataFrame. Or a Surv object or a character
vector of length 2 or 3 specifying the time and event columns in measurements
for survival outcome. If measurements is a MultiAssayExperiment, the col-
umn name(s) in colData(measurements) representing the outcome. If column
names of survival information, time must be in first column and event status in
the second.

... For train and predict functions, parameters not used by the non-DataFrame
signature functions but passed into the DataFrame signature function.

nFeatures The number of features to choose in the feature selection stage and use in the
subsequent classifier training stage. If a named vector with the same names of
multiple assays, a different number of features will be used for each assay. Set
to "all" if all features should be used. To tune it, specify a vector or list of
named vectors to "tuneParams" list of "select" element list of extraParams
list.

selectionMethod

Default: "auto". A character vector of feature selection methods to compare.
If a named character vector with names corresponding to different assays, and
performing multiview classification, the respective selection methods will be
used on each assay. If "auto", t-test (two categories) / F-test (three or more
categories) ranking and top nFeatures optimisation is done. Otherwise, the
ranking method is per-feature Cox proportional hazards p-value. "none" is also
a valid value, meaning that no feature selection prior to model building will be
performed (but implicit selection might still happen with the classifier).

classifier Default: "auto". A character vector of classification methods to compare. If
a named character vector with names corresponding to different assays, and
performing multiview classification, the respective classification methods will
be used on each assay. If "auto", then a random forest is used for a classification
task or Cox proportional hazards model for a survival task.

multiViewMethod

Default: "none". A character vector specifying the multiview method or data in-
tegration approach to use. See available("multiViewMethod") for possibilities.

assayCombinations

A character vector or list of character vectors proposing the assays or, in the
case of a list, combination of assays to use with each element being a vector of
assays to combine. Special value "all" means all possible subsets of assays.

nFolds A numeric specifying the number of folds to use for cross-validation.

nRepeats A numeric specifying the the number of repeats or permutations to use for cross-
validation.



crossValidate 17

nCores A numeric specifying the number of cores used if the user wants to use paral-
lelisation.

characteristicsLabel

A character specifying an additional label for the cross-validation run.

extraParams A list of parameters that will be used to overwrite default settings of transforma-
tion, selection, or model-building functions or parameters which will be passed
into the data cleaning function or cross-validation mode used for parameter
tuning. Each name of a list element is a list and must be one of "prepare",
"select", "train", "predict", tuneCross. By default, no parameter tun-
ing is done. To use the a default parameter range for tuning (see the arti-
cle titled Parameter Tuning Presets for crossValidate and Their Customisation
on the website), specify a list element of "select" or "train" lists named
"tuneParams" with value "auto". To specify your own range of values, spec-
ify a list with names being the parameters in the functions described in the
same article on the website. For the valid element names in the "prepare"
list, see ?prepareData for its parameter names. The list "tuneCross" can
have elements named "tuneMode" and "performanceType". Valid values for
"tuneMode" are "Resubstitution" or "Nested CV". For "performanceType",
it is any of the metrics which can be specified to calcPerformance.

verbose Default: 0. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

x Same as measurements but only training samples.

outcomeTrain For the train function, either a factor vector of classes, a Surv object, or a char-
acter string, or vector of such strings, containing column name(s) of column(s)
containing either classes or time and event information about survival. If column
names of survival information, time must be in first column and event status in
the second.

assayIDs A character vector for assays to train with. Special value "all" uses all assays
in the input object.

object A fitted model or a list of such models.

newData For the predict function, an object of type matrix, data.frame DataFrame,
list (of matrices or data frames) or MultiAssayExperiment containing the
data to make predictions with with either a fitted model created by train or the
final model stored in a ClassifyResult object.

Details

classifier can be any a keyword for any of the implemented approaches as shown by available().
selectionMethod can be a keyword for any of the implemented approaches as shown by available("selectionMethod").
multiViewMethod can be a keyword for any of the implemented approaches as shown by available("multiViewMethod").

Value

An object of class ClassifyResult



18 CrossValParams

Examples

data(asthma)

# Compare randomForest and SVM classifiers.
result <- crossValidate(measurements, classes, classifier = c("randomForest", "SVM"))
performancePlot(result)

# Compare performance of different assays.
# First make a toy example assay with multiple data types. We'll randomly assign different features to be clinical, gene or protein.
# set.seed(51773)
# measurements <- DataFrame(measurements, check.names = FALSE)
# mcols(measurements)$assay <- c(rep("clinical", 20), sample(c("gene", "protein"), ncol(measurements) - 20, replace = TRUE))
# mcols(measurements)$feature <- colnames(measurements)

# We'll use different nFeatures for each assay. We'll also use repeated cross-validation with 5 repeats for speed in the example.
# set.seed(51773)
#result <- crossValidate(measurements, classes, nFeatures = c(clinical = 5, gene = 20, protein = 30), classifier = "randomForest", nRepeats = 5)
# performancePlot(result)

# Merge different assays. But we will only do this for two combinations. If assayCombinations is not specified it would attempt all combinations.
# set.seed(51773)
# resultMerge <- crossValidate(measurements, classes, assayCombinations = list(c("clinical", "protein"), c("clinical", "gene")), multiViewMethod = "merge", nRepeats = 5)
# performancePlot(resultMerge)

# performancePlot(c(result, resultMerge))

CrossValParams Parameters for Cross-validation Specification

Description

Collects and checks necessary parameters required for cross-validation by runTests.

Usage

CrossValParams(
samplesSplits = c("Permute k-Fold", "Permute Percentage Split", "Leave-k-Out",

"k-Fold"),
permutations = 100,
percentTest = 25,
folds = 5,
leave = 2,
tuneMode = c("none", "Resubstitution", "Nested CV"),
performanceType = "auto",
adaptiveResamplingDelta = NULL,
parallelParams = bpparam()

)



CrossValParams 19

Arguments

samplesSplits Default: "Permute k-Fold". A character value specifying what kind of sample
splitting to do.

permutations Default: 100. Number of times to permute the data set before it is split into train-
ing and test sets. Only relevant if samplesSplits is either "Permute k-Fold"
or "Permute Percentage Split".

percentTest The percentage of the data set to assign to the test set, with the remainder of
the samples belonging to the training set. Only relevant if samplesSplits is
"Permute Percentage Split".

folds The number of approximately equal-sized folds to partition the samples into.
Only relevant if samplesSplits is "Permute k-Fold" or "k-Fold".

leave The number of samples to generate all possible combination of and use as the
test set. Only relevant if samplesSplits is "Leave-k-Out". If set to 1, it is the
traditional leave-one-out cross-validation, sometimes written as LOOCV.

tuneMode Default: None. The cross-validation scheme to use for selecting any tuning
parameters. Valid values are "Resubstitution", "Nested CV", "none".

performanceType

Default: "auto". The performance metric to use if tuneMode is not "none".

adaptiveResamplingDelta

Default: NULL. If not null, adaptive resampling of training samples is performed
and this number is the difference in consecutive iterations that the class prob-
ability or risk of all samples must change less than for the iterative process to
stop. 0.01 was used in the original publication.

parallelParams An instance of BiocParallelParam specifying the kind of parallelisation to use.
Default is to use two cores less than the total number of cores the computer has,
if it has four or more cores, otherwise one core, as is the default of bpparam. To
make results fully reproducible, please choose a specific back-end depending on
your operating system and also set RNGseed to a number.

Author(s)

Dario Strbenac

Examples

CrossValParams() # Default is 100 permutations and 5 folds of each.
snow <- SnowParam(workers = 2, RNGseed = 999)
CrossValParams("Leave-k-Out", leave = 2, parallelParams = snow)
# Fully reproducible Leave-2-out cross-validation on 4 cores,
# even if feature selection or classifier use random sampling.



20 distribution

distribution Get Frequencies of Feature Selection or Sample-wise Predictive Per-
formance

Description

There are two modes. For aggregating feature selection results, the function counts the number
of times each feature was selected in all cross-validations. For aggregating predictive results, the
accuracy or C-index for each sample is visualised. This is useful in identifying samples that are
difficult to predict well.

Arguments

result An object of class ClassifyResult.

... Further parameters, such as colour and fill, passed to geom_histogram or
stat_density, depending on the value of plotType.

dataType Default: "features". Whether to summarise sample-wise error rate ("samples")
or the number of times or frequency a feature was selected.

plotType Whether to draw a probability density curve or a histogram.

summaryType If feature selection, whether to summarise as a proportion or count.

plot Whether to draw a plot of the frequency of selection or error rate.

xMax Maximum data value to show in plot.

fontSizes A vector of length 3. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values.

ordering Default: "descending". A character string, either "descending" or "ascending",
which specifies the ordering direction for sorting the summary.

Value

If dataType is "features", a vector as long as the number of features that were chosen at least once
containing the number of times the feature was chosen in cross validations or the proportion of
times chosen. If dataType is "samples", a vector as long as the number of samples, containing the
cross-validation error rate of the sample. If plot is TRUE, then a plot is also made on the current
graphics device.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)
result <- crossValidate(measurements, classes, nRepeats = 5)



edgesToHubNetworks 21

featureDistribution <- distribution(result, "features", summaryType = "count",
plotType = "histogram", binwidth = 1)

print(head(featureDistribution))
#}

edgesToHubNetworks Convert a Two-column Matrix or Data Frame into a Hub Node List

Description

Interactions between pairs of features (typically a protein-protein interaction, commonly abbrevi-
ated as PPI, database) are restructured into a named list. The name of the each element of the list is
a feature and the element contains all features which have an interaction with it.

Usage

edgesToHubNetworks(edges, minCardinality = 5)

Arguments

edges A two-column matrix or data.frame for which each row specifies a known
interaction betwen two interactors. If feature X appears in the first column and
feature Y appears in the second, there is no need for feature Y to appear in the
first column and feature X in the second.

minCardinality An integer specifying the minimum number of features to be associated with a
hub feature for it to be present in the result.

Value

An object of type FeatureSetCollection.

Author(s)

Dario Strbenac

References

VAN: an R package for identifying biologically perturbed networks via differential variability anal-
ysis, Vivek Jayaswal, Sarah-Jane Schramm, Graham J Mann, Marc R Wilkins and Yee Hwa Yang,
2010, BMC Research Notes, Volume 6 Article 430, https://bmcresnotes.biomedcentral.com/
articles/10.1186/1756-0500-6-430.

https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-430
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-430


22 FeatureSetCollection-class

Examples

interactor <- c("MITF", "MITF", "MITF", "MITF", "MITF", "MITF",
"KRAS", "KRAS", "KRAS", "KRAS", "KRAS", "KRAS",
"PD-1")

otherInteractor <- c("HINT1", "LEF1", "PSMD14", "PIAS3", "UBE2I", "PATZ1",
"ARAF", "CALM1", "CALM2", "CALM3", "RAF1", "HNRNPC",
"PD-L1")

edges <- data.frame(interactor, otherInteractor, stringsAsFactors = FALSE)

edgesToHubNetworks(edges, minCardinality = 4)

FeatureSetCollection-class

Container for Storing A Collection of Sets

Description

This container is the required storage format for a collection of sets. Typically, the elements of a set
will either be a set of proteins (i.e. character vector) which perform a particular biological process
or a set of binary interactions (i.e. Two-column matrix of feature identifiers).

Constructor

FeatureSetCollection(sets) sets A named list. The names of the list describe the sets and
the elements of the list specify the features which comprise the sets.

Summary

featureSets is a FeatureSetCollection object. show(featureSets): Prints a short summary
of what featureSets contains.
length(featureSets): Prints how many sets of features there are.

Subsetting

The FeatureSetCollection may be subsetted to a smaller set of elements or a single set may be
extracted as a vector.

featureSets is a FeatureSetCollection object. featureSets[i:j]: Reduces the object to a
subset of the feature sets between elements i and j of the collection.
featureSets[[i]]: Extract the feature set identified by i. i may be a numeric index or the
character name of a feature set.

Author(s)

Dario Strbenac



featureSetSummary 23

Examples

ontology <- list(c("SESN1", "PRDX1", "PRDX2", "PRDX3", "PRDX4", "PRDX5", "PRDX6",
"LRRK2", "PARK7"),

c("ATP7A", "CCS", "NQO1", "PARK7", "SOD1", "SOD2", "SOD3",
"SZT2", "TNF"),

c("AARS", "AIMP2", "CARS", "GARS", "KARS", "NARS", "NARS2",
"LARS2", "NARS", "NARS2", "RGN", "UBA7"),

c("CRY1", "CRY2", "ONP1SW", "OPN4", "RGR"),
c("ESRRG", "RARA", "RARB", "RARG", "RXRA", "RXRB", "RXRG"),
c("CD36", "CD47", "F2", "SDC4"),
c("BUD31", "PARK7", "RWDD1", "TAF1")
)

names(ontology) <- c("Peroxiredoxin Activity", "Superoxide Dismutase Activity",
"Ligase Activity", "Photoreceptor Activity",
"Retinoic Acid Receptor Activity",
"Thrombospondin Receptor Activity",
"Regulation of Androgen Receptor Activity")

featureSets <- FeatureSetCollection(ontology)
featureSets
featureSets[3:5]
featureSets[["Photoreceptor Activity"]]

subNetworks <- list(MAPK = matrix(c("NRAS", "NRAS", "NRAS", "BRAF", "MEK",
"ARAF", "BRAF", "CRAF", "MEK", "ERK"), ncol = 2),

P53 = matrix(c("ATM", "ATR", "ATR", "P53",
"CHK2", "CHK1", "P53", "MDM2"), ncol = 2)

)
networkSets <- FeatureSetCollection(subNetworks)
networkSets

featureSetSummary Transform a Table of Feature Abundances into a Table of Feature Set
Abundances.

Description

Represents a feature set by the mean or median feature measurement of a feature set for all features
belonging to a feature set.

Usage

## S4 method for signature 'matrix'
featureSetSummary(
measurements,
location = c("median", "mean"),
featureSets,
minimumOverlapPercent = 80,



24 featureSetSummary

verbose = 3
)

## S4 method for signature 'DataFrame'
featureSetSummary(
measurements,
location = c("median", "mean"),
featureSets,
minimumOverlapPercent = 80,
verbose = 3

)

## S4 method for signature 'MultiAssayExperiment'
featureSetSummary(
measurements,
target = NULL,
location = c("median", "mean"),
featureSets,
minimumOverlapPercent = 80,
verbose = 3

)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are samples, and the columns are features. If of
type DataFrame or MultiAssayExperiment, the data set is subset to only those
features of type numeric.

location Default: The median. The type of location to summarise a set of features be-
longing to a feature set by.

featureSets An object of type FeatureSetCollection which defines the feature sets.

minimumOverlapPercent

The minimum percentage of overlapping features between the data set and a
feature set defined in featureSets for that feature set to not be discarded from
the anaylsis.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

target If the input is a MultiAssayExperiment, this specifies which data set will be
transformed. Can either be an integer index or a character string specifying the
name of the table. Must have length 1.

Details

This feature transformation method is unusual because the mean or median feature of a feature
set for one sample may be different to another sample, whereas most other feature transformation
methods do not result in different features being compared between samples during classification.



HuRI 25

Value

The same class of variable as the input variable measurements is, with the individual features
summarised to feature sets. The number of samples remains unchanged, so only one dimension of
measurements is altered.

Author(s)

Dario Strbenac

References

Network-based biomarkers enhance classical approaches to prognostic gene expression signatures,
Rebecca L Barter, Sarah-Jane Schramm, Graham J Mann and Yee Hwa Yang, 2014, BMC Sys-
tems Biology, Volume 8 Supplement 4 Article S5, https://bmcsystbiol.biomedcentral.com/
articles/10.1186/1752-0509-8-S4-S5.

Examples

sets <- list(Adhesion = c("Gene 1", "Gene 2", "Gene 3"),
`Cell Cycle` = c("Gene 8", "Gene 9", "Gene 10"))

featureSets <- FeatureSetCollection(sets)

# Adhesion genes have a median gene difference between classes.
genesMatrix <- matrix(c(rnorm(5, 9, 0.3), rnorm(5, 7, 0.3), rnorm(5, 8, 0.3),

rnorm(5, 6, 0.3), rnorm(10, 7, 0.3), rnorm(70, 5, 0.1)),
nrow = 10)

rownames(genesMatrix) <- paste("Patient", 1:10)
colnames(genesMatrix) <- paste("Gene", 1:10)
classes <- factor(rep(c("Poor", "Good"), each = 5)) # But not used for transformation.

featureSetSummary(genesMatrix, featureSets = featureSets)

HuRI Human Reference Interactome

Description

A collection of 45783 pairs of protein gene symbols, as determined by the The Human Reference
Protein Interactome Mapping Project. Self-interactions have been removed.

Format

interactors is a Pairs object containing each pair of interacting proteins.

Source

A Reference Map of the Human Binary Protein Interactome, Nature, 2020. Webpage: http://
www.interactome-atlas.org/download

https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S4-S5
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S4-S5
http://www.interactome-atlas.org/download
http://www.interactome-atlas.org/download


26 interactorDifferences

interactorDifferences Convert Individual Features into Differences Between Binary Interac-
tors Based on Known Sub-networks

Description

This conversion is useful for creating a meta-feature table for classifier training and prediction based
on sub-networks that were selected based on their differential correlation between classes.

Usage

## S4 method for signature 'matrix'
interactorDifferences(measurements, ...)

## S4 method for signature 'DataFrame'
interactorDifferences(
measurements,
featurePairs = NULL,
absolute = FALSE,
verbose = 3

)

## S4 method for signature 'MultiAssayExperiment'
interactorDifferences(measurements, useFeatures = "all", ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are samples, and the columns are features.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

featurePairs A object of type Pairs.

absolute If TRUE, then the absolute values of the differences are returned.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

useFeatures If measurements is a MultiAssayExperiment, "all" or a two-column table
of features to use. If a table, the first column must have assay names and the
second column must have feature names found for that assay. "clinical" is
also a valid assay name and refers to the clinical data table.

Details

The pairs of features known to interact with each other are specified by networkSets.



METABRICclinical 27

Value

An object of class DataFrame with one column for each interactor pair difference and one row for
each sample. Additionally, mcols(resultTable) prodvides a DataFrame with a column named
"original" containing the name of the sub-network each meta-feature belongs to.

Author(s)

Dario Strbenac

References

Dynamic modularity in protein interaction networks predicts breast cancer outcome, Ian W Tay-
lor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley Bull,
Tony Pawson, Quaid Morris and Jeffrey L Wrana, 2009, Nature Biotechnology, Volume 27 Issue 2,
https://www.nature.com/articles/nbt.1522.

Examples

pairs <- Pairs(rep(c('A', 'G'), each = 3), c('B', 'C', 'D', 'H', 'I', 'J'))

# Consistent differences for interactors of A.
measurements <- matrix(c(5.7, 10.1, 6.9, 7.7, 8.8, 9.1, 11.2, 6.4, 7.0, 5.5,

3.6, 7.6, 4.0, 4.4, 5.8, 6.2, 8.1, 3.7, 4.4, 2.1,
8.5, 13.0, 9.9, 10.0, 10.3, 11.9, 13.8, 9.9, 10.7, 8.5,
8.1, 10.6, 7.4, 10.7, 10.8, 11.1, 13.3, 9.7, 11.0, 9.1,
round(rnorm(60, 8, 0.3), 1)), nrow = 10)

rownames(measurements) <- paste("Patient", 1:10)
colnames(measurements) <- LETTERS[1:10]

interactorDifferences(measurements, pairs)

METABRICclinical METABRIC Clinical Data

Description

470 patients with eight features.

Format

clinical A DataFrame containing clinical data.

Source

Dynamics of Breast Cancer Relapse Reveal Late-recurring ER-positive Genomic Subgroups, Na-
ture, 2019. Webpage: https://www.nature.com/articles/s43018-020-0026-6

https://www.nature.com/articles/nbt.1522
https://www.nature.com/articles/s43018-020-0026-6


28 ModellingParams

ModellingParams Parameters for Data Modelling Specification

Description

Collects and checks necessary parameters required for data modelling. Apart from data transfoma-
tion that needs to be done within cross-validation (e.g. subtracting each observation from training
set mean), feature selection, model training and prediction, this container also stores a setting for
class imbalance rebalancing.

Usage

ModellingParams(
balancing = c("downsample", "upsample", "none"),
transformParams = NULL,
selectParams = SelectParams("t-test"),
trainParams = TrainParams("DLDA"),
predictParams = PredictParams("DLDA"),
doImportance = FALSE

)

Arguments

balancing Default: "downsample". A character value specifying what kind of class bal-
ancing to do, if any.

transformParams

Parameters used for feature transformation inside of C.V. specified by a TransformParams
instance. Optional, can be NULL.

selectParams Parameters used during feature selection specified by a SelectParams instance.
By default, parameters for selection based on differences in means of numeric
data. Optional, can be NULL.

trainParams Parameters for model training specified by a TrainParams instance. By default,
uses diagonal LDA.

predictParams Parameters for model training specified by a PredictParams instance. By de-
fault, uses diagonal LDA.

doImportance Default: FALSE. Whether or not to carry out removal of each feature, one at a
time, which was chosen and then retrain and model and predict the test set, to
measure the change in performance metric. Can also be set to TRUE, if required.
Modelling run time will be noticeably longer.

Author(s)

Dario Strbenac



performancePlot 29

Examples

#if(require(sparsediscrim))
#{

ModellingParams() # Default is differences in means selection and DLDA.
ModellingParams(selectParams = NULL, # No feature selection before training.

trainParams = TrainParams("randomForest"),
predictParams = PredictParams("randomForest"))

#}

performancePlot Plot Performance Measures for Various Classifications

Description

Draws a graphical summary of a particular performance measure for a list of classifications

Usage

## S4 method for signature 'ClassifyResult'
performancePlot(results, ...)

## S4 method for signature 'list'
performancePlot(
results,
metric = "auto",
characteristicsList = list(x = "auto"),
aggregate = character(),
coloursList = list(),
alpha = 1,
orderingList = list(),
densityStyle = c("box", "violin"),
yLimits = NULL,
fontSizes = c(24, 16, 12, 12),
title = NULL,
margin = grid::unit(c(1, 1, 1, 1), "lines"),
rotate90 = FALSE,
showLegend = TRUE

)

Arguments

results A list of ClassifyResult objects.

... Not used by end user.

metric Default: "auto". The name of the performance measure or "auto". If the re-
sults are classification then balanced accuracy will be displayed. Otherwise, the
results would be survival risk predictions and then C-index will be displayed.



30 performancePlot

This is one of the names printed in the Performance Measures field when a
ClassifyResult object is printed, or if none are stored, the performance metric
will be calculated automatically.

characteristicsList

A named list of characteristics. Each element’s name must be one of "x", "row",
"column", "fillColour", or "lineColour". The value of each element must
be a characteristic name, as stored in the "characteristic" column of the
results’ characteristics table. Only "x" is mandatory. It is "auto" by default,
which will identify a characteristic that has a unique value for each element of
results. "x" represents a characteristic which will form the x-axis of the plot.
"row" and "column" each specify one characteristic which will form the row
facet and the column facet, respectively, of a facetted plot.

aggregate A character vector of the levels of characteristicsList['x'] to aggregate to
a single number by taking the mean. This is particularly meaningful when the
cross-validation is leave-k-out, when k is small.

coloursList A named list of plot aspects and colours for the aspects. No elements are manda-
tory. If specified, each list element’s name must be either "fillColours" or
"lineColours". If a characteristic is associated to fill or line by characteristicsList
but this list is empty, a palette of colours will be automatically chosen.

alpha Default: 1. A number between 0 and 1 specifying the transparency level of any
fill.

orderingList An optional named list. Any of the variables specified to characteristicsList
can be the name of an element of this list and the value of the element is the order
in which the factors should be presented in, in case alphabetical sorting is unde-
sirable. Special values "performanceAscending" and "performanceDescending"
indicate that the order of levels will be computed based on the median perfor-
mance value of the characteristic being sorted into ascending or descending or-
der.

densityStyle Default: "box". Either "violin" for violin plot or "box" for box plot. If cross-
validation is not repeated, then a bar chart.

yLimits The minimum and maximum value of the performance metric to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

margin The margin to have around the plot.

rotate90 Logical. IF TRUE, the plot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

Details

If there are multiple values for a performance measure in a single result object, it is plotted as a
violin plot, unless aggregate is TRUE, in which case the all predictions in a single result object are
considered simultaneously, so that only one performance number is calculated, and a barchart is
plotted.



plotFeatureClasses 31

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- DataFrame(sample = sample(LETTERS[1:10], 80, replace = TRUE),
permutation = rep(1:2, each = 40),
class = factor(rep(c("Healthy", "Cancer"), 40)))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",

"Cross-validation"),
value = c("Example", "t-test", "Differential Expression", "2 Permutations, 2 Folds")),
LETTERS[1:10], paste("Gene", 1:100), list(paste("Gene", 1:100), paste("Gene", c(10:1, 11:100)), paste("Gene", 1:100), paste("Gene", 1:100)),
list(paste("Gene", 1:3), paste("Gene", c(2, 5, 6)), paste("Gene", 1:4), paste("Gene", 5:8)),

list(function(oracle){}), NULL, predicted, actual)
result1 <- calcCVperformance(result1, "Macro F1")

predicted <- DataFrame(sample = sample(LETTERS[1:10], 80, replace = TRUE),
permutation = rep(1:2, each = 40),
class = factor(rep(c("Healthy", "Cancer"), 40)))

result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",
"Cross-validation"),

value = c("Example", "Bartlett Test", "Differential Variability", "2 Permutations, 2 Folds")),
LETTERS[1:10], paste("Gene", 1:100), list(paste("Gene", 1:100), paste("Gene", c(10:1, 11:100)), paste("Gene", 1:100), paste("Gene", 1:100)),

list(c(1:3), c(4:6), c(1, 6, 7, 9), c(5:8)),
list(function(oracle){}), NULL, predicted, actual)

result2 <- calcCVperformance(result2, "Macro F1")

performancePlot(list(result1, result2), metric = "Macro F1",
title = "Comparison")

plotFeatureClasses Plot Density, Scatterplot, Parallel Plot or Bar Chart for Features By
Class

Description

Allows the visualisation of measurements in the data set. If useFeatures is of type Pairs, then a
parallel plot is automatically drawn. If it’s a single categorical variable, then a bar chart is automat-
ically drawn.



32 plotFeatureClasses

Usage

## S4 method for signature 'matrix'
plotFeatureClasses(measurements, ...)

## S4 method for signature 'DataFrame'
plotFeatureClasses(
measurements,
classes,
useFeatures,
groupBy = NULL,
groupingName = NULL,
whichNumericFeaturePlots = c("both", "density", "stripchart"),
measurementLimits = NULL,
lineWidth = 1,
dotBinWidth = 1,
xAxisLabel = NULL,
yAxisLabels = c("Density", "Classes"),
showXtickLabels = TRUE,
showYtickLabels = TRUE,
xLabelPositions = "auto",
yLabelPositions = "auto",
fontSizes = c(24, 16, 12, 12, 12),
colours = c("#3F48CC", "#880015"),
showAssayName = TRUE

)

## S4 method for signature 'MultiAssayExperiment'
plotFeatureClasses(
measurements,
useFeatures,
classesColumn,
groupBy = NULL,
groupingName = NULL,
showAssayName = TRUE,
...

)

Arguments

measurements A matrix, DataFrame or a MultiAssayExperiment object containing the data.
For a matrix, the rows are for features and the columns are for samples. A
column with name "class" must be present in the DataFrame stored in the
colData slot.

... Unused variables by the three top-level methods passed to the internal method
which generates the plot(s).

classes Either a vector of class labels of class factor or if the measurements are of
class DataFrame a character vector of length 1 containing the column name in



plotFeatureClasses 33

measurement is also permitted. Not used if measurements is a MultiAssayExperiment
object.

useFeatures If measurements is a matrix or DataFrame, then a vector of numeric or charac-
ter indices or the feature identifiers corresponding to the feature(s) to be plotted.
If measurements is a MultiAssayExperiment, then a DataFrame of 2 columns
must be specified. The first column contains the names of the assays and the sec-
ond contains the names of the variables, thus each row unambiguously specifies
a variable to be plotted.

groupBy If measurements is a DataFrame, then a character vector of length 1, which
contains the name of a categorical feature, may be specified. If measurements
is a MultiAssayExperiment, then a character vector of length 2, which contains
the name of a data table as the first element and the name of a categorical feature
as the second element, may be specified. Additionally, the value "clinical"
may be used to refer to the column annotation stored in the colData slot of the
of the MultiAssayExperiment object. A density plot will have additional lines
of different line types for each category. A strip chart plot will have a separate
strip chart created for each category and the charts will be drawn in a single
column on the graphics device. A parallel plot and bar chart plot will similarly
be laid out.

groupingName A label for the grouping variable to be used in plots.
whichNumericFeaturePlots

If the feature is a single feature and has numeric measurements, this option
specifies which types of plot(s) to draw. The default value is "both", which
draws a density plot and also a stip chart below the density plot. Other options
are "density" for drawing only a density plot and "stripchart" for drawing
only a strip chart.

measurementLimits

The minimum and maximum expression values to plot. Default: NULL. By de-
fault, the limits are automatically computed from the data values.

lineWidth Numeric value that alters the line thickness for density plots. Default: 1.

dotBinWidth Numeric value that alters the diameter of dots in the strip chart. Default: 1.

xAxisLabel The axis label for the plot’s horizontal axis. Default: NULL.

yAxisLabels A character vector of length 1 or 2. If the feature’s measurements are numeric an
whichNumericFeaturePlots has the value "both", the first value is the y-axis
label for the density plot and the second value is the y-axis label for the strip
chart. Otherwise, if the feature’s measurements are numeric and only one plot
is drawn, then a character vector of length 1 specifies the y-axis label for that
particular plot. Ignored if the feature’s measurements are categorical.

showXtickLabels

Logical. Default: TRUE. If set to FALSE, the x-axis labels are hidden.
showYtickLabels

Logical. Default: TRUE. If set to FALSE, the y-axis labels are hidden.
xLabelPositions

Either "auto" or a vector of values. The positions of labels on the x-axis. If
"auto", the placement of labels is automatically calculated.



34 plotFeatureClasses

yLabelPositions

Either "auto" or a vector of values. The positions of labels on the y-axis. If
"auto", the placement of labels is automatically calculated.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

colours The colours to plot data of each class in. The length of this vector must be as
long as the distinct number of classes in the data set.

showAssayName Logical. Default: TRUE. If TRUE and the data is in a MultiAssayExperiment
object, the the name of the table in which the feature is stored in is added to the
plot title.

classesColumn If measurementsTrain is a MultiAssayExperiment, the names of the class col-
umn in the table extracted by colData(multiAssayExperiment) that contains
each sample’s outcome to use for prediction.

Value

Plots are created on the current graphics device and a list of plot objects is invisibly returned. The
classes of the plot object are determined based on the type of data plotted and the number of plots
per feature generated. If the plotted variable is discrete or if the variable is numeric and one plot
type was specified, the list element is an object of class ggplot. Otherwise, if the variable is
numeric and both the density and stripchart plot types were made, the list element is an object of
class TableGrob.

Settling lineWidth and dotBinWidth to the same value doesn’t result in the density plot and the
strip chart having elements of the same size. Some manual experimentation is required to get
similarly sized plot elements.

Author(s)

Dario Strbenac

Examples

# First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are
# one normal.
genesMatrix <- sapply(1:15, function(geneColumn) c(rnorm(5, 5, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:10, function(geneColumn) c(rnorm(5, 15, 1))))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) c(rnorm(5, 9, 2))))
genesMatrix <- rbind(genesMatrix, sapply(1:50, function(geneColumn) rnorm(95, 9, 3)))
genesMatrix <- t(genesMatrix)
rownames(genesMatrix) <- paste("Sample", 1:50)
colnames(genesMatrix) <- paste("Gene", 1:100)
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))
plotFeatureClasses(genesMatrix, classes, useFeatures = "Gene 4",

xAxisLabel = bquote(log[2]*'(expression)'), dotBinWidth = 0.5)



precisionPathwaysTrain 35

infectionResults <- c(rep(c("No", "Yes"), c(20, 5)), rep(c("No", "Yes"), c(5, 20)))
genders <- factor(rep(c("Male", "Female"), each = 10, length.out = 50))
clinicalData <- DataFrame(Gender = genders, Sugar = runif(50, 4, 10),

Infection = factor(infectionResults, levels = c("No", "Yes")),
row.names = rownames(genesMatrix))

plotFeatureClasses(clinicalData, classes, useFeatures = "Infection")
plotFeatureClasses(clinicalData, classes, useFeatures = "Infection", groupBy = "Gender")

genesMatrix <- t(genesMatrix) # MultiAssayExperiment needs features in rows.
dataContainer <- MultiAssayExperiment(list(RNA = genesMatrix),

colData = cbind(clinicalData, class = classes))
targetFeatures <- DataFrame(assay = "RNA", feature = "Gene 50")
plotFeatureClasses(dataContainer, useFeatures = targetFeatures, classesColumn = "class",

groupBy = c("clinical", "Gender"), # Table name, feature name.
xAxisLabel = bquote(log[2]*'(expression)'), dotBinWidth = 0.5)

precisionPathwaysTrain

Precision Pathways for Sample Prediction Based on Prediction Confi-
dence.

Description

Precision pathways allows the evaluation of various permutations of multiomics or multiview data.
Samples are predicted by a particular assay if they were consistently predicted as a particular class
during cross-validation. Otherwise, they are passed onto subsequent assays/tiers for prediction.
Balanced accuracy is used to evaluate overall prediction performance and sample-specific accuracy
for individual-level evaluation.

Usage

## S4 method for signature 'MultiAssayExperimentOrList'
precisionPathwaysTrain(
measurements,
class,
useFeatures = NULL,
maxMissingProp = 0,
topNvariance = NULL,
fixedAssays = "clinical",
confidenceCutoff = 0.8,
minAssaySamples = 10,
mode = c("stability", "combinatorial"),
nFeatures = 20,
selectionMethod = setNames(c("none", rep("t-test", length(measurements))),
c("clinical", names(measurements))),

classifier = setNames(c("elasticNetGLM", rep("randomForest", length(measurements))),
c("clinical", names(measurements))),



36 precisionPathwaysTrain

nFolds = 5,
nRepeats = 20,
nCores = 1

)

## S4 method for signature 'PrecisionPathways,MultiAssayExperimentOrList'
precisionPathwaysPredict(pathways, measurements, class)

Arguments

measurements Either a MultiAssayExperiment or a list of the basic tabular objects containing
the data.

class If a MultiAssayExperiment, a column name in colData(measurements) with
the classes. If measurements is a list of tabular data, may also be a vector of
classes.

useFeatures Default: NULL (i.e. use all provided features). A named list of features to use.
Otherwise, the input data is a single table and this can just be a vector of fea-
ture names. For any assays not in the named list, all of their features are used.
"clinical" is also a valid assay name and refers to the clinical data table. This
allows for the avoidance of variables such spike-in RNAs, sample IDs, sample
acquisition dates, etc. which are not relevant for outcome prediction.

maxMissingProp Default: 0.0. A proportion less than 1 which is the maximum tolerated propor-
tion of missingness for a feature to be retained for modelling.

topNvariance Default: NULL. An integer number of most variable features per assay to subset
to. Assays with less features won’t be reduced in size.

fixedAssays A character vector of assay names specifying any assays which must be at the
beginning of the pathway.

confidenceCutoff

The minimum confidence of predictions for a sample to be predicted by a partic-
ular assay. If a sample was predicted to belong to a particular class a proportion
p times, then the confidence is 2× |p− 0.5|.

minAssaySamples

An integer specifying the minimum number of samples a tier may have. If a
subsequent tier would have less than this number of samples, the samples are
incorporated into the current tier.

mode Default: "stability". Either "stability" or "combinatorial". If "stability",
then pathways grow by passing samples with confidence below confidenceCutoff
to the next assay, until the assays are exhausted or the samples are. If "combinatorial",
then all possible combinations of assays respecting fixedAssays, as well as
each assay individually are considered.

nFeatures Default: 20. The number of features to consider during feature selection, if
feature selection is done.

selectionMethod

A named character vector of feature selection methods to use for the assays, one
for each. The names must correspond to names of measurements.



PredictParams 37

classifier A named character vector of modelling methods to use for the assays, one for
each. The names must correspond to names of measurements.

nFolds A numeric specifying the number of folds to use for cross-validation.

nRepeats A numeric specifying the the number of repeats or permutations to use for cross-
validation.

nCores A numeric specifying the number of cores used if the user wants to use paral-
lelisation.

pathways A set of pathways created by precisionPathwaysTrain which is an object of
class PrecisionPathways to be used for predicting on a new data set.

Value

An object of class PrecisionPathways which is basically a named list that other plotting and
tabulating functions can use.

Examples

# To be determined.

PredictParams Parameters for Classifier Prediction

Description

Collects the function to be used for making predictions and any associated parameters.

Details

The function specified must return either a factor vector of class predictions, or a numeric vector of
scores for the second class, according to the levels of the class vector of the input data set, or a data
frame which has two columns named class and score.

Constructor

PredictParams(predictor, characteristics = DataFrame(), intermediate = character(0), ...)
Creates a PredictParams object which stores the function which will do the class prediction,
if required, and parameters that the function will use. If the training function also makes
predictions, this must be set to NULL.

predictor A character keyword referring to a registered classifier. See available for valid
keywords.

characteristics A DataFrame describing the characteristics of the predictor function used.
First column must be named "charateristic" and second column must be named
"value".

intermediate Character vector. Names of any variables created in prior stages in runTest
that need to be passed to the prediction function.

... Other arguments that predictor may use.



38 prepareData

Summary

predictParams is a PredictParams object. show(predictParams): Prints a short summary of
what predictParams contains.

Author(s)

Dario Strbenac

Examples

# For prediction by trained object created by DLDA training function.
predictParams <- PredictParams("DLDA")

prepareData Convert Different Data Classes into DataFrame and Filter Features

Description

Input data could be of matrix, MultiAssayExperiment, or DataFrame format and this function will
prepare a DataFrame of features and a vector of outcomes and help to exclude nuisance features
such as dates or unique sample identifiers from subsequent modelling.

Usage

## S4 method for signature 'matrix'
prepareData(measurements, outcome, ...)

## S4 method for signature 'data.frame'
prepareData(measurements, outcome, ...)

## S4 method for signature 'DataFrame'
prepareData(
measurements,
outcome,
useFeatures = NULL,
maxMissingProp = 0,
maxSimilarity = 1,
topNvariance = NULL

)

## S4 method for signature 'MultiAssayExperiment'
prepareData(measurements, outcomeColumns = NULL, useFeatures = NULL, ...)

## S4 method for signature 'list'
prepareData(measurements, outcome = NULL, useFeatures = NULL, ...)



prepareData 39

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing all of the
data. For a matrix or DataFrame, the rows are samples, and the columns are
features.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

outcome Either a factor vector of classes, a Surv object, or a character string, or vector of
such strings, containing column name(s) of column(s) containing either classes
or time and event information about survival. If column names of survival in-
formation, time must be in first column and event status in the second.

useFeatures Default: NULL (i.e. use all provided features). If measurements is a MultiAssayExperiment
or list of tabular data, a named list of features to use. Otherwise, the input data
is a single table and this can just be a vector of feature names. For any assays
not in the named list, all of their features are used. "clinical" is also a valid
assay name and refers to the clinical data table. This allows for the avoidance of
variables such spike-in RNAs, sample IDs, sample acquisition dates, etc. which
are not relevant for outcome prediction.

maxMissingProp Default: 0.0. A proportion less than 1 which is the maximum tolerated propor-
tion of missingness for a feature to be retained for modelling.

maxSimilarity Default: 1. A number between 0 and 1 which is the maximum similarity between
a pair of variables to be both kept in the data set. For numerical variables, the
Pearson correlation is used and for categorical variables, the Chi-squared test p-
value is used. For a pair that is too similar, the second variable will be excluded
from the data set.

topNvariance Default: NULL. If measurements is a MultiAssayExperiment or list of tabular
data, a named integer vector of most variable features per assay to subset to. If
the input data is a single table, then simply a single integer. If an assays has less
features, it won’t be reduced in size but stay as-is.

outcomeColumns If measurements is a MultiAssayExperiment, the names of the column (class)
or columns (survival) in the table extracted by colData(data) that contain(s)
the each individual’s outcome to use for prediction.

Value

A list of length two. The first element is a DataFrame of features and the second element is the
outcomes to use for modelling.

Author(s)

Dario Strbenac



40 rankingPlot

rankingPlot Plot Pair-wise Overlap of Ranked Features

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature ranking stability. Secondly,
the overlap may be considered between different classification results. This approach compares the
feature ranking commonality between different results. Two types of commonality are possible to
analyse. One summary is the average pair-wise overlap between all possible pairs of results. The
second kind of summary is the pair-wise overlap of each level of the comparison factor that is not
the reference level against the reference level. The overlaps are converted to percentages and plotted
as lineplots.

Usage

## S4 method for signature 'ClassifyResult'
rankingPlot(results, ...)

## S4 method for signature 'list'
rankingPlot(
results,
topRanked = seq(10, 100, 10),
comparison = "within",
referenceLevel = NULL,
characteristicsList = list(),
orderingList = list(),
sizesList = list(lineWidth = 1, pointSize = 2, legendLinesPointsSize = 1, fonts = c(24,

16, 12, 12, 12, 16)),
lineColours = NULL,
xLabelPositions = seq(10, 100, 10),
yMax = 100,
title = if (comparison[1] == "within") "Feature Ranking Stability" else
"Feature Ranking Commonality",

yLabel = if (is.null(referenceLevel)) "Average Common Features (%)" else
paste("Average Common Features with", referenceLevel, "(%)"),

margin = grid::unit(c(1, 1, 1, 1), "lines"),
showLegend = TRUE,
parallelParams = bpparam()

)

Arguments

results A list of ClassifyResult objects.

... Not used by end user.

topRanked A sequence of thresholds of number of the best features to use for overlapping.



rankingPlot 41

comparison Default: "within". The aspect of the experimental design to compare. Can
be any characteristic that all results share or special value "within" to compared
between all pairwise iterations of cross-validation.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

characteristicsList

A named list of characteristics. The name must be one of "lineColour",
"pointType", "row" or "column". The value of each element must be a char-
acteristic name, as stored in the "characteristic" column of the results’ char-
acteristics table.

orderingList An optional named list. Any of the variables specified to characteristicsList
can be the name of an element of this list and the value of the element is the order
in which the factor should be presented in.

sizesList Default: lineWidth = 1, pointSize = 2,legendLinesPointsSize = 1, fonts
= c(24, 16, 12, 12, 12, 16). A list which must contain elements named lineWidth,
pointSize, legendLinesPointsSize and fonts. The first three specify the
size of lines and points in the graph, as well as in the plot legend. fonts is a
vector of length 6. The first element is the size of the title text. The second
element is the size of the axes titles. The third element is the size of the axes
values. The fourth element is the size of the legends’ titles. The fifth element is
the font size of the legend labels. The sixth element is the font size of the titles
of grouped plots, if any are produced. Each list element must numeric.

lineColours A vector of colours for different levels of the line colouring parameter, if one is
specified by characteristicsList[["lineColour"]]. If none are specified
but, characteristicsList[["lineColour"]] is, an automatically-generated
palette will be used.

xLabelPositions

Locations where to put labels on the x-axis.

yMax The maximum value of the percentage to plot.

title An overall title for the plot.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

parallelParams An object of class MulticoreParam or SnowParam.

Details

If comparison is "within", then the feature selection overlaps are compared within a particular
analysis. The result will inform how stable the selections are between different iterations of cross-
validation for a particular analysis. Otherwise, the comparison is between different cross-validation
runs, and this gives an indication about how common are the features being selected by different
classifications.

Calculating all pair-wise set overlaps for a large cross-validation result can be time-consuming. This
stage can be done on multiple CPUs by providing the relevant options to parallelParams.



42 ROCplot

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- DataFrame(sample = sample(10, 100, replace = TRUE),
permutation = rep(1:2, each = 50),
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
allFeatures <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
rankList <- list(allFeatures[1:100], allFeatures[c(15:6, 1:5, 16:100)],

allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 61:100, 60:51)])
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name", "Cross-validation"),

value = c("Melanoma", "t-test", "Diagonal LDA", "2 Permutations, 2 Folds")),
LETTERS[1:10], allFeatures, rankList,
list(rankList[[1]][1:15], rankList[[2]][1:15],

rankList[[3]][1:10], rankList[[4]][1:10]),
list(function(oracle){}), NULL,
predicted, actual)

predicted[, "class"] <- sample(predicted[, "class"])
rankList <- list(allFeatures[1:100], allFeatures[c(sample(20), 21:100)],
allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 60:51, 61:100)])
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",

"Cross-validations"),
value = c("Melanoma", "t-test", "Random Forest", "2 Permutations, 2 Folds")),

LETTERS[1:10], allFeatures, rankList,
list(rankList[[1]][1:15], rankList[[2]][1:15],

rankList[[3]][1:10], rankList[[4]][1:10]),
list(function(oracle){}), NULL,
predicted, actual)

rankingPlot(list(result1, result2), characteristicsList = list(pointType = "Classifier Name"))

ROCplot Plot Receiver Operating Curve Graphs for Classification Results

Description

Creates one ROC plot or multiple ROC plots for a list of ClassifyResult objects. One plot is created
if the data set has two classes and multiple plots are created if the data set has three or more classes.



ROCplot 43

Usage

## S4 method for signature 'ClassifyResult'
ROCplot(results, ...)

## S4 method for signature 'list'
ROCplot(
results,
mode = c("merge", "average"),
interval = 95,
comparison = "auto",
lineColours = "auto",
lineWidth = 1,
fontSizes = c(24, 16, 12, 12, 12),
labelPositions = seq(0, 1, 0.2),
plotTitle = "ROC",
legendTitle = NULL,
xLabel = "False Positive Rate",
yLabel = "True Positive Rate",
showAUC = TRUE

)

Arguments

results A list of ClassifyResult objects.

... Parameters not used by the ClassifyResult method but passed to the list
method.

mode Default: "merge". Whether to merge all predictions of all iterations of cross-
validation into one set or keep them separate. Keeping them separate will cause
separate ROC curves to be computed for each iteration and confidence intervals
to be drawn with the solid line being the averaged ROC curve.

interval Default: 95 (percent). The percent confidence interval to draw around the aver-
aged ROC curve, if mode is "average".

comparison Default: "auto". The aspect of the experimental design to compare. Can be any
characteristic that all results share. If the data set has two classes, then the slot
name with factor levels to be used for colouring the lines. Otherwise, it specifies
the variable used for plot facetting.

lineColours Default: "auto". A vector of colours for different levels of the comparison
parameter, or if there are three or more classes, the classes. If "auto", a default
colour palette is automatically generated.

lineWidth A single number controlling the thickness of lines drawn.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles and AUC text, if it is not part of the legend. The third
number is the size of the axes values. The fourth number is the size of the
legends’ titles. The fifth number is the font size of the legend labels.

labelPositions Default: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. Locations where to put labels on the x and y
axes.



44 ROCplot

plotTitle An overall title for the plot.

legendTitle A default name is used if the value is NULL. Otherwise a character name can be
provided.

xLabel Label to be used for the x-axis of false positive rate.

yLabel Label to be used for the y-axis of true positive rate.

showAUC Logical. If TRUE, the AUC value of each result is added to its legend text.

Details

The scores stored in the results should be higher if the sample is more likely to be from the class
which the score is associated with. The score for each class must be in a column which has a column
name equal to the class name.

For cross-validated classification, all predictions from all iterations are considered simultaneously,
to calculate one curve per classification.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- do.call(rbind, list(DataFrame(data.frame(sample = LETTERS[seq(1, 20, 2)],
Healthy = c(0.89, 0.68, 0.53, 0.76, 0.13, 0.20, 0.60, 0.25, 0.10, 0.30),
Cancer = c(0.11, 0.32, 0.47, 0.24, 0.87, 0.80, 0.40, 0.75, 0.90, 0.70),

fold = 1)),
DataFrame(sample = LETTERS[seq(2, 20, 2)],
Healthy = c(0.45, 0.56, 0.33, 0.56, 0.65, 0.33, 0.20, 0.60, 0.40, 0.80),
Cancer = c(0.55, 0.44, 0.67, 0.44, 0.35, 0.67, 0.80, 0.40, 0.60, 0.20),

fold = 2)))
actual <- factor(c(rep("Healthy", 10), rep("Cancer", 10)), levels = c("Healthy", "Cancer"))
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name", "Cross-validation"),

value = c("Melanoma", "t-test", "Random Forest", "2-fold")),
LETTERS[1:20], paste("Gene", LETTERS[1:10]), list(paste("Gene", LETTERS[1:10]), paste("Gene", LETTERS[c(5:1, 6:10)])),

list(paste("Gene", LETTERS[1:3]), paste("Gene", LETTERS[1:5])),
list(function(oracle){}), NULL, predicted, actual)

predicted[c(2, 6), "Healthy"] <- c(0.40, 0.60)
predicted[c(2, 6), "Cancer"] <- c(0.60, 0.40)
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name", "Cross-validation"),

value = c("Melanoma", "Bartlett Test", "Differential Variability", "2-fold")),
LETTERS[1:20], paste("Gene", LETTERS[1:10]), list(paste("Gene", LETTERS[1:10]), paste("Gene", LETTERS[c(5:1, 6:10)])),

list(paste("Gene", LETTERS[1:3]), paste("Gene", LETTERS[1:5])),
list(function(oracle){}), NULL, predicted, actual)

ROCplot(list(result1, result2), plotTitle = "Cancer ROC")



runTest 45

runTest Perform a Single Classification

Description

For a data set of features and samples, the classification process is run. It consists of data transfor-
mation, feature selection, classifier training and testing.

Usage

## S4 method for signature 'matrix'
runTest(measurementsTrain, outcomeTrain, measurementsTest, outcomeTest, ...)

## S4 method for signature 'DataFrame'
runTest(
measurementsTrain,
outcomeTrain,
measurementsTest,
outcomeTest,
crossValParams = CrossValParams(),
modellingParams = ModellingParams(),
characteristics = S4Vectors::DataFrame(),
...,
verbose = 1,
.iteration = NULL

)

## S4 method for signature 'MultiAssayExperiment'
runTest(measurementsTrain, measurementsTest, outcomeColumns, ...)

Arguments

measurementsTrain

Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix or DataFrame, the rows are samples, and the columns are
features.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or passed onwards to prepareData.

outcomeTrain Either a factor vector of classes, a Surv object, or a character string, or vector of
such strings, containing column name(s) of column(s) containing either classes
or time and event information about survival. If column names of survival in-
formation, time must be in first column and event status in the second.

measurementsTest

Same data type as measurementsTrain, but only the test samples.

outcomeTest Same data type as outcomeTrain, but for only the test samples.



46 runTest

crossValParams An object of class CrossValParams, specifying the kind of cross-validation to
be done, if nested cross-validation is used to tune any parameters.

modellingParams

An object of class ModellingParams, specifying the class rebalancing, trans-
formation (if any), feature selection (if any), training and prediction to be done
on the data set.

characteristics

A DataFrame describing the characteristics of the classification used. First col-
umn must be named "charateristic" and second column must be named
"value". Useful for automated plot annotation by plotting functions within
this package. Transformation, selection and prediction functions provided by
this package will cause the characteristics to be automatically determined and
this can be left blank.

verbose Default: 1. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

.iteration Not to be set by a user. This value is used to keep track of the cross-validation
iteration, if called by runTests.

outcomeColumns If measurementsTrain is a MultiAssayExperiment, the names of the column
(class) or columns (survival) in the table extracted by colData(data) that con-
tain(s) the samples’ outcome to use for prediction.

Details

This function only performs one classification and prediction. See runTests for a driver function
that enables a number of different cross-validation schemes to be applied and uses this function to
perform each iteration.

Value

If called directly by the user rather than being used internally by runTests, a ClassifyResult
object. Otherwise a list of different aspects of the result which is passed back to runTests.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)
CVparams <- CrossValParams(tuneMode = "Resubstitution")
tuneList <- list(nFeatures = seq(5, 25, 5))
attr(tuneList, "performanceType") <- "Balanced Error"
selectParams <- SelectParams("limma", tuneParams = tuneList)
modellingParams <- ModellingParams(selectParams = selectParams)
trainIndices <- seq(1, nrow(measurements), 2)
testIndices <- seq(2, nrow(measurements), 2)



runTests 47

runTest(measurements[trainIndices, ], classes[trainIndices],
measurements[testIndices, ], classes[testIndices],
crossValParams = CVparams, modellingParams = modellingParams)

#}

runTests Reproducibly Run Various Kinds of Cross-Validation

Description

Enables doing classification schemes such as ordinary 10-fold, 100 permutations 5-fold, and leave
one out cross-validation. Processing in parallel is possible by leveraging the package BiocParallel.

Usage

## S4 method for signature 'matrix'
runTests(measurements, outcome, ...)

## S4 method for signature 'DataFrame'
runTests(
measurements,
outcome,
crossValParams = CrossValParams(),
modellingParams = ModellingParams(),
characteristics = S4Vectors::DataFrame(),
...,
verbose = 1

)

## S4 method for signature 'MultiAssayExperiment'
runTests(measurements, outcome, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing all of the
data. For a matrix or DataFrame, the rows are samples, and the columns are
features.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or passed onwards to prepareData.

outcome Either a factor vector of classes, a Surv object, or a character string, or vec-
tor of such strings, containing column name(s) of column(s) containing either
classes or time and event information about survival. If measurements is a
MultiAssayExperiment, the names of the column (class) or columns (survival)
in the table extracted by colData(data) that contain(s) the samples’ outcome
to use for prediction. If column names of survival information, time must be in
first column and event status in the second.



48 samplesMetricMap

crossValParams An object of class CrossValParams, specifying the kind of cross-validation to
be done.

modellingParams

An object of class ModellingParams, specifying the class rebalancing, trans-
formation (if any), feature selection (if any), training and prediction to be done
on the data set.

characteristics

A DataFrame describing the characteristics of the classification used. First col-
umn must be named "charateristic" and second column must be named
"value". Useful for automated plot annotation by plotting functions within
this package. Transformation, selection and prediction functions provided by
this package will cause the characteristics to be automatically determined and
this can be left blank.

verbose Default: 1. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

Value

An object of class ClassifyResult.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)

CVparams <- CrossValParams(permutations = 5, tuneMode = "Resubstitution")
tuneList <- list(nFeatures = seq(5, 25, 5))
attr(tuneList, "performanceType") <- "Balanced Error"
selectParams <- SelectParams("t-test", tuneParams = tuneList)
modellingParams <- ModellingParams(selectParams = selectParams)
runTests(measurements, classes, CVparams, modellingParams,

DataFrame(characteristic = c("Assay Name", "Classifier Name"),
value = c("Asthma", "Different Means"))

)
#}

samplesMetricMap Plot a Grid of Sample-wise Predictive Metrics



samplesMetricMap 49

Description

A grid of coloured tiles is drawn. There is one column for each sample and one row for each
cross-validation result.

Usage

## S4 method for signature 'ClassifyResult'
samplesMetricMap(results, ...)

## S4 method for signature 'list'
samplesMetricMap(
results,
comparison = "auto",
metric = "auto",
featureValues = NULL,
featureName = NULL,
metricColours = list(c("#FFFFFF", "#CFD1F2", "#9FA3E5", "#6F75D8", "#3F48CC"),

c("#FFFFFF", "#E1BFC4", "#C37F8A", "#A53F4F", "#880015")),
classColours = c("#3F48CC", "#880015"),
groupColours = c("darkgreen", "yellow2"),
fontSizes = c(24, 16, 12, 12, 12),
mapHeight = 4,
title = "auto",
showLegends = TRUE,
xAxisLabel = "Sample Name",
showXtickLabels = TRUE,
yAxisLabel = "auto",
showYtickLabels = TRUE,
legendSize = grid::unit(1, "lines")

)

## S4 method for signature 'matrix'
samplesMetricMap(
results,
classes,
metric = c("Sample Error", "Sample Accuracy"),
featureValues = NULL,
featureName = NULL,
metricColours = list(c("#3F48CC", "#6F75D8", "#9FA3E5", "#CFD1F2", "#FFFFFF"),

c("#880015", "#A53F4F", "#C37F8A", "#E1BFC4", "#FFFFFF")),
classColours = c("#3F48CC", "#880015"),
groupColours = c("darkgreen", "yellow2"),
fontSizes = c(24, 16, 12, 12, 12),
mapHeight = 4,
title = "Error Comparison",
showLegends = TRUE,
xAxisLabel = "Sample Name",
showXtickLabels = TRUE,



50 samplesMetricMap

yAxisLabel = "Analysis",
showYtickLabels = TRUE,
legendSize = grid::unit(1, "lines")

)

Arguments

results A list of ClassifyResult objects. Could also be a matrix of pre-calculated
metrics, for backwards compatibility.

... Parameters not used by the ClassifyResult method that does list-packaging
but used by the main list method.

comparison Default: "auto". The aspect of the experimental design to compare. Can be any
characteristic that all results share.

metric Default: "auto". The name of the performance measure or "auto". If the results
are classification then sample accuracy will be displayed. Otherwise, the results
would be survival risk predictions and then a sample C-index will be displayed.
Valid values are "Sample Error", "Sample Error" or "Sample C-index". If
the metric is not stored in the results list, the performance metric will be calcu-
lated automatically.

featureValues If not NULL, can be a named factor or named numeric vector specifying some
variable of interest to plot above the heatmap.

featureName A label describing the information in featureValues. It must be specified if
featureValues is.

metricColours If the outcome is categorical, a list of vectors of colours for metric levels for
each class. If the outcome is numeric, such as a risk score, then a single vector
of colours for the metric levels for all samples.

classColours Either a vector of colours for class levels if both classes should have same colour,
or a list of length 2, with each component being a vector of the same length. The
vector has the colour gradient for each class.

groupColours A vector of colours for group levels. Only useful if featureValues is not
NULL.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

mapHeight Height of the map, relative to the height of the class colour bar.

title The title to place above the plot.

showLegends Logical. IF FALSE, the legend is not drawn.

xAxisLabel The name plotted for the x-axis. NULL suppresses label.
showXtickLabels

Logical. IF FALSE, the x-axis labels are hidden.

yAxisLabel Default: "auto" for list of ClassifyResults and "Analysis" for a matrix.
The axis name plotted for the y-axis. If "auto", automatically set depending on
value of comparison. NULL suppresses the label.



samplesMetricMap 51

showYtickLabels

Logical. IF FALSE, the y-axis labels are hidden.

legendSize The size of the boxes in the legends.

classes If results is a matrix, this is a factor vector of the same length as the number
of columns that results has.

Details

The names of results determine the row names that will be in the plot. The length of metricColours
determines how many bins the metric values will be discretised to.

Value

A grob is returned that can be drawn on a graphics device.

Author(s)

Dario Strbenac

Examples

predicted <- DataFrame(sample = LETTERS[sample(10, 100, replace = TRUE)],
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5), levels = c("Healthy", "Cancer"))
features <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",

"Cross-validation"),
value = c("Example", "t-test", "Differential Expression", "2 Permutations, 2 Folds")),

LETTERS[1:10], features, list(1:100), list(sample(10, 10)),
list(function(oracle){}), NULL, predicted, actual)

predicted[, "class"] <- sample(predicted[, "class"])
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",

"Cross-validation"),
value = c("Example", "Bartlett Test", "Differential Variability", "2 Permutations, 2 Folds")),

LETTERS[1:10], features, list(1:100), list(sample(10, 10)),
list(function(oracle){}), NULL, predicted, actual)

result1 <- calcCVperformance(result1)
result2 <- calcCVperformance(result2)
groups <- factor(rep(c("Male", "Female"), length.out = 10))
names(groups) <- LETTERS[1:10]
cholesterol <- c(4.0, 5.5, 3.9, 4.9, 5.7, 7.1, 7.9, 8.0, 8.5, 7.2)
names(cholesterol) <- LETTERS[1:10]

wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2))
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2),

featureValues = groups, featureName = "Gender")
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2),

featureValues = cholesterol, featureName = "Cholesterol")



52 samplesSplits

samplesSplits Split Sample Indexes into Training and Test Partitions for Cross-
validation Taking Into Account Classes.

Description

samplesSplits Creates two lists of lists. First has training samples, second has test samples for a
range of different cross-validation schemes.

splitsTestInfo creates a table for tracking the permutation, fold number, or subset of each set of
test samples. Useful for column-binding to the predictions, once they are unlisted into a vector.

Usage

samplesSplits(
samplesSplits = c("k-Fold", "Permute k-Fold", "Permute Percentage Split",
"Leave-k-Out"),

permutations = 100,
folds = 5,
percentTest = 25,
leave = 2,
outcome

)

splitsTestInfo(
samplesSplits = c("k-Fold", "Permute k-Fold", "Permute Percentage Split",
"Leave-k-Out"),

permutations = 100,
folds = 5,
percentTest = 25,
leave = 2,
splitsList

)

Arguments

samplesSplits Default: "k-Fold". One of "k-Fold", "Permute k-Fold", "Permute Percentage
Split", "Leave-k-Out".

permutations Default: 100. An integer. The number of times the samples are permuted before
splitting (repetitions).

folds Default: 5. An integer. The number of folds to which the samples are partitioned
to. Only relevant if samplesSplits is "k-Fold" or "Permute k-Fold".

percentTest Default: 25. A positive number between 0 and 100. The percentage of sam-
ples to keep for the test partition. Only relevant if samplesSplits is "Permute
Percentage Split".

leave Default: 2. An integer. The number of samples to keep for the test set in leave-
k-out cross-validation. Only relevant if samplesSplits is "Leave-k-Out".



selectionPlot 53

outcome A factor vector or Surv object containing the samples to be partitioned.

splitsList The return value of the function samplesSplits.

Value

For samplesSplits, two lists of the same length. First is training partitions. Second is test parti-
tions.

For splitsTestInfoTable, a table with a subset of columns "permutation", "fold" and "subset",
depending on the cross-validation scheme specified.

Examples

classes <- factor(rep(c('A', 'B'), c(15, 5)))
splitsList <-samplesSplits(permutations = 1, outcome = classes)
splitsList
splitsTestInfo(permutations = 1, splitsList = splitsList)

selectionPlot Plot Pair-wise Overlap, Variable Importance or Selection Size Distri-
bution of Selected Features

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature selection stability. Secondly,
the overlap may be considered between different classification results. This approach compares
the feature selection commonality between different selection methods. Two types of commonality
are possible to analyse. One summary is the average pair-wise overlap between all levels of the
comparison factor and the other summary is the pair-wise overlap of each level of the comparison
factor that is not the reference level against the reference level. The overlaps are converted to
percentages and plotted as lineplots.

Usage

## S4 method for signature 'ClassifyResult'
selectionPlot(results, ...)

## S4 method for signature 'list'
selectionPlot(
results,
comparison = "within",
referenceLevel = NULL,
characteristicsList = list(x = "auto"),
coloursList = list(),
alpha = 1,
orderingList = list(),
binsList = list(),



54 selectionPlot

yMax = 100,
densityStyle = c("box", "violin"),
fontSizes = c(24, 16, 12, 16),
title = if (comparison == "within") "Feature Selection Stability" else if (comparison

== "size") "Feature Selection Size" else if (comparison == "importance")
"Variable Importance" else "Feature Selection Commonality",

yLabel = if (is.null(referenceLevel) && !comparison %in% c("size", "importance"))
"Common Features (%)" else if (comparison == "size") "Set Size" else if (comparison
== "importance") tail(names(results[[1]]@importance), 1) else
paste("Common Features with", referenceLevel, "(%)"),

margin = grid::unit(c(1, 1, 1, 1), "lines"),
rotate90 = FALSE,
showLegend = TRUE,
parallelParams = bpparam()

)

Arguments

results A list of ClassifyResult objects.

... Not used by end user.

comparison Default: "within". The aspect of the experimental design to compare. Can
be any characteristic that all results share or either one of the special values
"within" to compare between all pairwise iterations of cross-validation. or
"size", to draw a bar chart of the frequency of selected set sizes, or "importance"
to plot the variable importance scores of selected variables. "importance" only
usable if doImportance was TRUE during cross-validation.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

characteristicsList

A named list of characteristics. Each element’s name must be one of "x", "row",
"column", "fillColour", or "lineColour". The value of each element must
be a characteristic name, as stored in the "characteristic" column of the
results’ characteristics table. Only "x" is mandatory. It is "auto" by default,
which will identify a characteristic that has a unique value for each element of
results. "x" represents a characteristic which will form the x-axis of the plot.
"row" and "column" each specify one characteristic which will form the row
facet and the column facet, respectively, of a facetted plot.

coloursList A named list of plot aspects and colours for the aspects. No elements are manda-
tory. If specified, each list element’s name must be either "fillColours" or
"lineColours". If a characteristic is associated to fill or line by characteristicsList
but this list is empty, a palette of colours will be automatically chosen.

alpha Default: 1. A number between 0 and 1 specifying the transparency level of any
fill.

orderingList An optional named list. Any of the variables specified to characteristicsList
can be the name of an element of this list and the value of the element is the order



selectionPlot 55

in which the factors should be presented in, in case alphabetical sorting is unde-
sirable. Special values "performanceAscending" and "performanceDescending"
indicate that the order of levels will be computed based on the median perfor-
mance value of the characteristic being sorted into ascending or descending or-
der.

binsList Used only if comparison is "size". A list with elements named "setSizes"
and "frequencies" Both elements are mandatory. "setSizes" specifies the
bin boundaries for bins of interest of feature selection sizes (e.g. 0, 10, 20, 30).
"frequencies" specifies the bin boundaries for the relative frequency percent-
ages to plot (e.g. 0, 20, 40, 60, 80, 100).

yMax Used only if comparison is not "size". The maximum value of the percentage
overlap to plot.

densityStyle Default: "box". Either "violin" for violin plot or "box" for box plot. If cross-
validation is not repeated, then a bar chart.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot. By default, specifies whether stability or common-
ality is shown.

yLabel Label to be used for the y-axis of overlap percentages. By default, specifies
whether stability or commonality is shown.

margin The margin to have around the plot.

rotate90 Logical. If TRUE, the boxplot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

parallelParams An object of class MulticoreParam or SnowParam.

Details

Additionally, a heatmap of selection size frequencies can be made by specifying size as the com-
parison to make.

Lastly, a plot showing the distribution of performance metric changes when features are excluded
from training can be made if variable importance calculation was turned on during cross-validation.

If comparison is "within", then the feature selection overlaps are compared within a particular
analysis. The result will inform how stable the selections are between different iterations of cross-
validation for a particular analysis. Otherwise, the comparison is between different cross-validation
runs, and this gives an indication about how common are the features being selected by different
classifications.

Calculating all pair-wise set overlaps can be time-consuming. This stage can be done on multiple
CPUs by providing the relevant options to parallelParams. The percentage is calculated as the
intersection of two sets of features divided by the union of the sets, multiplied by 100.

For the feature selection size mode, binsList is used to create bins which include the lowest value
for the first bin, and the highest value for the last bin using cut.



56 SelectParams

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- DataFrame(sample = sample(10, 100, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
allFeatures <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
rankList <- list(allFeatures[1:100], allFeatures[c(5:1, 6:100)],

allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 60:51, 61:100)])
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",

"Cross-validations"),
value = c("Melanoma", "t-test", "Random Forest", "2 Permutations, 2 Folds")),

LETTERS[1:10], allFeatures, rankList,
list(rankList[[1]][1:15], rankList[[2]][1:15],

rankList[[3]][1:10], rankList[[4]][1:10]),
list(function(oracle){}), NULL,
predicted, actual)

predicted[, "class"] <- sample(predicted[, "class"])
rankList <- list(allFeatures[1:100], allFeatures[c(sample(20), 21:100)],

allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 60:51, 61:100)])
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",

"Cross-validation"),
value = c("Melanoma", "t-test", "Diagonal LDA", "2 Permutations, 2 Folds")),

LETTERS[1:10], allFeatures, rankList,
list(rankList[[1]][1:15], rankList[[2]][1:25],

rankList[[3]][1:10], rankList[[4]][1:10]),
list(function(oracle){}), NULL,
predicted, actual)

cList <- list(x = "Classifier Name", fillColour = "Classifier Name")
selectionPlot(list(result1, result2), characteristicsList = cList)

cList <- list(x = "Classifier Name", fillColour = "size")
selectionPlot(list(result1, result2), comparison = "size",

characteristicsList = cList,
binsList = list(frequencies = seq(0, 100, 10), setSizes = seq(0, 25, 5))
)

SelectParams Parameters for Feature Selection



SelectParams 57

Description

Collects and checks necessary parameters required for feature selection. Either one function is
specified or a list of functions to perform ensemble feature selection. The empty constructor is
provided for convenience.

Constructor

SelectParams(featureRanking, characteristics = DataFrame(), nFeatures = 20, minPresence = 1, intermediate = character(0), subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10)), ...)
Creates a SelectParams object which stores the function(s) which will do the selection and
parameters that the function will use.

featureRanking A character keyword referring to a registered feature ranking function. See
available for valid keywords.

characteristics A DataFrame describing the characteristics of feature selection to be done.
First column must be named "charateristic" and second column must be named
"value". If using wrapper functions for feature selection in this package, the feature
selection name will automatically be generated and therefore it is not necessary to spec-
ify it.

nFeatures Default: 20. The number of top-ranked features to choose. Can also be NULL if a
vector of top numbers is specified to tuneParams for the list element named nFeatures.

minPresence Default: 1. If a list of functions was provided, how many of those must a
feature have been selected by to be used in classification. 1 is equivalent to a set union
and a number the same length as featureSelection is equivalent to set intersection.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

subsetToSelections Whether to subset the data table(s), after feature selection has been
done.

tuneParams A list specifying tuning parameters to try during feature selection. A list element
named nFeatures is used to represent a variety of top-n ranked features to try. Other
names of the list are the names of the parameters of the ranking function and the vectors
are the values of the ranking function’s parameters to try. All possible combinations are
generated.

... Other named parameters which will be used by the selection function. If featureSelection
was a list of functions, this must be a list of lists, as long as featureSelection.

Summary

selectParams is a SelectParams object. show(SelectParams): Prints a short summary of what
selectParams contains.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{



58 TrainParams

SelectParams("KS")

# Ensemble feature selection.
SelectParams(list("Bartlett", "Levene"))

#}

TrainParams Parameters for Classifier Training

Description

Collects and checks necessary parameters required for classifier training. The empty constructor is
provided for convenience.

Constructor

TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(), intermediate = character(0), tuneParams = NULL, getFeatures = NULL, ...)
Creates a TrainParams object which stores the function which will do the classifier building
and parameters that the function will use.

classifier A character keyword referring to a registered classifier. See available for valid
keywords.

balancing Default: "downsample". A keyword specifying how to handle class imbalance
for data sets with categorical outcome. Valid values are "downsample", "upsample" and
"none".

characteristics A DataFrame describing the characteristics of the classifier used. First
column must be named "charateristic" and second column must be named "value".
If using wrapper functions for classifiers in this package, a classifier name will automati-
cally be generated and therefore it is not necessary to specify it.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to classifier.

tuneParams A list specifying tuning parameters required during feature selection. The names
of the list are the names of the parameters and the vectors are the values of the parameters
to try. All possible combinations are generated.

getFeatures A function may be specified that extracts the selected features from the trained
model. This is relevant if using a classifier that does feature selection within training (e.g.
random forest). The function must return a list of two vectors. The first vector contains
the ranked features (or empty if the training algorithm doesn’t produce rankings) and the
second vector contains the selected features.

... Other named parameters which will be used by the classifier.

Summary

trainParams is a TrainParams object. show(trainParams): Prints a short summary of what trainParams
contains.



TransformParams 59

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
trainParams <- TrainParams("DLDA")

TransformParams Parameters for Data Transformation

Description

Collects and checks necessary parameters required for transformation within CV.

Constructor

TransformParams(transform, characteristics = DataFrame(), intermediate = character(0), ...)
Creates a TransformParams object which stores the function which will do the transformation
and parameters that the function will use.

transform A character keyword referring to a registered transformation function. See available
for valid keywords.

characteristics A DataFrame describing the characteristics of data transformation to be
done. First column must be named "charateristic" and second column must be named
"value". If using wrapper functions for data transformation in this package, the data
transformation name will automatically be generated and therefore it is not necessary to
specify it.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

... Other named parameters which will be used by the transformation function.

Summary

transformParams is a TransformParams object. show(transformParams): Prints a short sum-
mary of what transformParams contains.

Author(s)

Dario Strbenac

Examples

transformParams <- TransformParams("diffLoc", location = "median")
# Subtract all values from training set median, to obtain absolute deviations.



Index

∗ datasets
asthma, 3
HuRI, 25
METABRICclinical, 27

[,FeatureSetCollection,numeric,missing,ANY-method
(FeatureSetCollection-class),
22

[[,FeatureSetCollection,ANY,missing-method
(FeatureSetCollection-class),
22

actualOutcome (ClassifyResult), 9
actualOutcome,ClassifyResult-method

(ClassifyResult), 9
allFeatureNames (ClassifyResult), 9
allFeatureNames,ClassifyResult-method

(ClassifyResult), 9
asthma, 3
available, 4, 37, 57–59

BiocParallel, 47
BiocParallelParam, 19
bpparam, 19
bubblePlot (calcCostsAndPerformance), 4

calcCostsAndPerformance, 4
calcCVperformance, 8
calcCVperformance

(calcExternalPerformance), 5
calcCVperformance,ClassifyResult-method

(calcExternalPerformance), 5
calcExternalPerformance, 5
calcExternalPerformance,factor,factor-method

(calcExternalPerformance), 5
calcExternalPerformance,factor,tabular-method

(calcExternalPerformance), 5
calcExternalPerformance,Surv,numeric-method

(calcExternalPerformance), 5
calcPerformance, 13, 17

calcPerformance
(calcExternalPerformance), 5

chosenFeatureNames (ClassifyResult), 9
chosenFeatureNames,ClassifyResult-method

(ClassifyResult), 9
classes (asthma), 3
ClassifyResult, 7, 8, 9, 17, 20, 29, 30, 40,

43, 46, 48, 50, 54
ClassifyResult,DataFrame,character,characterOrDataFrame-method

(ClassifyResult), 9
ClassifyResult,DataFrame,character-method

(ClassifyResult), 9
ClassifyResult-class (ClassifyResult), 9
clinical (METABRICclinical), 27
colCoxTests, 11
crissCrossPlot, 11
crissCrossValidate, 11, 12, 12
crossValidate, 4, 6, 8, 9, 13
crossValidate,data.frame-method

(crossValidate), 13
crossValidate,DataFrame-method

(crossValidate), 13
crossValidate,matrix-method

(crossValidate), 13
crossValidate,MultiAssayExperiment-method,

(crossValidate), 13
crossValidate,MultiAssayExperimentOrList-method

(crossValidate), 13
CrossValParams, 18, 46, 48
CrossValParams-class (CrossValParams),

18
cut, 55

data.frame, 8, 12, 16
DataFrame, 8, 9, 12, 16, 24, 26, 27, 32, 37, 39,

45–48, 57–59
distribution, 20
distribution,ClassifyResult-method

(distribution), 20

60



INDEX 61

easyHard (calcExternalPerformance), 5
easyHard,MultiAssayExperimentOrList-method

(calcExternalPerformance), 5
edgesToHubNetworks, 21

factor, 16, 32
features (ClassifyResult), 9
features,ClassifyResult-method

(ClassifyResult), 9
FeatureSetCollection, 21, 24
FeatureSetCollection

(FeatureSetCollection-class),
22

FeatureSetCollection,list-method
(FeatureSetCollection-class),
22

FeatureSetCollection-class, 22
featureSetSummary, 23
featureSetSummary,DataFrame-method

(featureSetSummary), 23
featureSetSummary,matrix-method

(featureSetSummary), 23
featureSetSummary,MultiAssayExperiment-method

(featureSetSummary), 23
finalModel (ClassifyResult), 9
finalModel,ClassifyResult-method

(ClassifyResult), 9
flowchart (calcCostsAndPerformance), 4

geom_histogram, 20

HuRI, 25

interactorDifferences, 26
interactorDifferences,DataFrame-method

(interactorDifferences), 26
interactorDifferences,matrix-method

(interactorDifferences), 26
interactorDifferences,MultiAssayExperiment-method

(interactorDifferences), 26
interactors (HuRI), 25

length,FeatureSetCollection-method
(FeatureSetCollection-class),
22

matrix, 8, 12, 16, 24, 26, 32, 39, 45, 47
measurements (asthma), 3
METABRICclinical, 27
ModellingParams, 28, 46, 48

ModellingParams-class
(ModellingParams), 28

models (ClassifyResult), 9
models,ClassifyResult-method

(ClassifyResult), 9
MultiAssayExperiment, 8, 16, 24, 26, 32, 36,

39, 45, 47
MulticoreParam, 41, 55

Pairs, 25, 26, 31
performance (ClassifyResult), 9
performance,ClassifyResult-method

(ClassifyResult), 9
performancePlot, 29
performancePlot,ClassifyResult-method

(performancePlot), 29
performancePlot,list-method

(performancePlot), 29
performanceTable

(calcExternalPerformance), 5
plotFeatureClasses, 31
plotFeatureClasses,DataFrame-method

(plotFeatureClasses), 31
plotFeatureClasses,matrix-method

(plotFeatureClasses), 31
plotFeatureClasses,MultiAssayExperiment-method

(plotFeatureClasses), 31
precisionPathwaysPredict

(precisionPathwaysTrain), 35
precisionPathwaysPredict,PrecisionPathways,MultiAssayExperimentOrList-method

(precisionPathwaysTrain), 35
precisionPathwaysTrain, 35
precisionPathwaysTrain,MultiAssayExperimentOrList-method

(precisionPathwaysTrain), 35
predict.trainedByClassifyR

(crossValidate), 13
predictions (ClassifyResult), 9
predictions,ClassifyResult-method

(ClassifyResult), 9
PredictParams, 28, 37
PredictParams,characterOrFunction-method

(PredictParams), 37
PredictParams,missing-method

(PredictParams), 37
PredictParams-class (PredictParams), 37
prepareData, 38, 45, 47
prepareData,data.frame-method

(prepareData), 38



62 INDEX

prepareData,DataFrame-method
(prepareData), 38

prepareData,list-method (prepareData),
38

prepareData,matrix-method
(prepareData), 38

prepareData,MultiAssayExperiment-method
(prepareData), 38

rankingPlot, 40
rankingPlot,ClassifyResult-method

(rankingPlot), 40
rankingPlot,list-method (rankingPlot),

40
ROCplot, 42
ROCplot,ClassifyResult-method

(ROCplot), 42
ROCplot,list-method (ROCplot), 42
runTest, 6, 8, 9, 37, 45, 57–59
runTest,DataFrame-method (runTest), 45
runTest,matrix-method (runTest), 45
runTest,MultiAssayExperiment-method

(runTest), 45
runTests, 6, 8, 9, 18, 46, 47
runTests,DataFrame-method (runTests), 47
runTests,matrix-method (runTests), 47
runTests,MultiAssayExperiment-method

(runTests), 47

sampleNames (ClassifyResult), 9
sampleNames,ClassifyResult-method

(ClassifyResult), 9
samplesMetricMap, 48
samplesMetricMap,ClassifyResult-method

(samplesMetricMap), 48
samplesMetricMap,list-method

(samplesMetricMap), 48
samplesMetricMap,matrix-method

(samplesMetricMap), 48
samplesSplits, 52
samplesSplits,CrossValParams-method

(samplesSplits), 52
samplesSplits,numeric-method

(samplesSplits), 52
selectionPlot, 53
selectionPlot,ClassifyResult-method

(selectionPlot), 53
selectionPlot,list-method

(selectionPlot), 53

SelectParams, 28, 56
SelectParams,characterOrList-method

(SelectParams), 56
SelectParams,missing-method

(SelectParams), 56
SelectParams-class (SelectParams), 56
show,ClassifyResult-method

(ClassifyResult), 9
show,FeatureSetCollection-method

(FeatureSetCollection-class),
22

show,PredictParams-method
(PredictParams), 37

show,SelectParams-method
(SelectParams), 56

show,TrainParams-method (TrainParams),
58

show,TransformParams-method
(TransformParams), 59

SnowParam, 41, 55
splitsTestInfo (samplesSplits), 52
stat_density, 20
strataPlot (calcCostsAndPerformance), 4
summary.PrecisionPathways

(calcCostsAndPerformance), 4
Surv, 16, 17, 39, 45, 47, 53

totalPredictions (ClassifyResult), 9
totalPredictions,ClassifyResult-method

(ClassifyResult), 9
train.data.frame (crossValidate), 13
train.DataFrame (crossValidate), 13
train.list (crossValidate), 13
train.matrix (crossValidate), 13
train.MultiAssayExperiment

(crossValidate), 13
TrainParams, 28, 58
TrainParams,characterOrFunction-method

(TrainParams), 58
TrainParams,missing-method

(TrainParams), 58
TrainParams-class (TrainParams), 58
TransformParams, 28, 59
TransformParams,ANY-method

(TransformParams), 59
TransformParams,character-method

(TransformParams), 59
TransformParams-class

(TransformParams), 59



INDEX 63

tunedParameters (ClassifyResult), 9
tunedParameters,ClassifyResult-method

(ClassifyResult), 9


	asthma
	available
	calcCostsAndPerformance
	calcExternalPerformance
	ClassifyResult
	colCoxTests
	crissCrossPlot
	crissCrossValidate
	crossValidate
	CrossValParams
	distribution
	edgesToHubNetworks
	FeatureSetCollection-class
	featureSetSummary
	HuRI
	interactorDifferences
	METABRICclinical
	ModellingParams
	performancePlot
	plotFeatureClasses
	precisionPathwaysTrain
	PredictParams
	prepareData
	rankingPlot
	ROCplot
	runTest
	runTests
	samplesMetricMap
	samplesSplits
	selectionPlot
	SelectParams
	TrainParams
	TransformParams
	Index

