Package ‘CardinallO’

October 24, 2025
Type Package

Title Read and write mass spectrometry imaging files
Version 1.7.0
Date 2023-8-29

Description Fast and efficient reading and writing of mass spectrometry imaging data files. Sup-
ports imzML and Analyze 7.5 formats. Provides ontologies for mass spectrometry imaging.

License Artistic-2.0 | file LICENSE

Depends R (>=4.4), BiocParallel, matter, ontologyIndex

Imports methods, S4Vectors, stats, utils, tools

Suggests BiocStyle, testthat, knitr, rmarkdown

VignetteBuilder knitr

biocViews Software, Infrastructure, Datalmport, MassSpectrometry,
ImagingMassSpectrometry

URL http://www.cardinalmsi.org

BugReports https://github.com/kuwisdelu/CardinalIO/issues
git_url https://git.bioconductor.org/packages/CardinallO

git_branch devel

git_last_commit d63f40f

git_last commit_date 2025-04-15

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Author Kylie Ariel Bemis [aut, cre]

Maintainer Kylie Ariel Bemis <k.bemis@northeastern.edu>

1

http://www.cardinalmsi.org
https://github.com/kuwisdelu/CardinalIO/issues

2 exampleImzMLFile

Contents
CardinallO-package e 2
exampleImzMLFile 2
et 0bO . . L L e e 3
ImzMeta-class e 5
parseAnalyze e 6
parseImzML 7
writeAnalyze e e e e e e 9
writeImzML e 10

Index 13

CardinalIO-package

CardinallO package

Description

Read and write mass spectrometry imaging files

Details

CardinalIO provides fast and efficient reading and writing of mass spectrometry imaging data
files. It supports imzML and Analyze 7.5 formats, and provides ontologies for mass spectrometry

imaging.

See vignette("Car

dinalIO-guide”) for an introduction to the standard imzML format and how

to use parseImzML and writeImzML to parse and write imzML files.

For a complete list o

Author(s)
Kylie A. Bemis

f functions, use library(help = "CardinalIQ").

exampleImzMLFile

Example imzML files

Description

Get a local file path to an example imzML file originally downloaded from https://ms-imaging.
org/imzml/example-files-test/.

Usage

exampleImzMLFile(type = c("continuous"”, "processed"”))

https://ms-imaging.org/imzml/example-files-test/
https://ms-imaging.org/imzml/example-files-test/

get_obo 3

Arguments

type The type of example imzML file path to return.

Value

A string giving the local file path.

Author(s)
Kylie A. Bemis

See Also

parseImzML

Examples

get the path to an example imzML file
path <- exampleImzMLFile("processed”)

parse the file
p <- parseImzML(path)
print(p)

get_obo Mass spectrometry imaging ontology

Description

These functions provide ways of getting and querying the ontologies necessary for imzML. Specifi-
cally, ontologies for mass spectrometry imaging ("ims’), mass spectrometry ("'ms’), and units ("uo’)
are provided.

Usage

get_obo(obo = c("ims"”, "ms", "uo"), ...)

valid_terms(terms, obo = c("ims", "ms", "uo"),
check = c("any”, "name”, "accession"))

ind_ , obo = c("1i uo”),

find_terms(pattern, obo = c("ims"”, "ms", "uo"
value = c("name”, "accession"))

find_term(term, obo = c("ims"”, "ms"”, "uo"),
value = c("name”, "accession”))

n

find_descendants_in(list, terms, obo = c("ims", "ms", "uo"))

4 get_obo

Arguments
obo The ontology to get or use.
terms One or more ontology terms (either names or accessions) to check for validity
in the ontology.
pattern The regular expression pattern to search in the ontology.
term An ontology term to partially match (by name, not accession).
Additional arguments passed to get_ontology) when first loading the ontology.
check When validating terms, are they names ('name’), accession IDs ("accession’) or
either (Cany’)?
value Should the term names ("name’) or accession IDs ("accession’) be returned?
list A named list where the names are accession IDs.
Details

get_obo() caches and returns the requested ontology.

find_term() and find_terms() both query the specified ontology for the given term and return it
if found. The former uses partial matching via pmatch and must unambiguously resolve to a single
term. The latter uses grep and finds all potential matching terms.

find_descendants_in() finds descendants of particular terms in a named list where the names are
accession IDs. It returns the list subsetted to matching descendants.
Value

For get_obo(), a ontology_index object.
For valid_terms(), a logical vector indicating whether the corresponding terms are valid.
For find_descendants_in(), a subset of the original list.

For all others, a character vector of the requested terms.

Author(s)
Kylie A. Bemis

See Also

get_ontology

Examples

find position-related terms in imaging ontology
find_terms("position”, "ims"

find a specific term's accession ID

" n

find_term("position x"”, "ims"”, value="accession")

find all terms related to a vendor in MS ontology
find_terms("Bruker”, "ms"
find_terms("Thermo"”, "ms")

ImzMeta-class 5

ImzMeta-class Mass spectrometry imaging experimental metadata

Description

The ImzMeta class provides a simpler and more limited interface for tracking mass spectrometry
(MS) imaging experimental metadata compared to a full ImzML instance as returned by parseImzML.
It is a simple list of expected/required metadata tags that can be easily set by the user. Replacement
methods support partial matching to identify the correct controlled-vocabulary parameter.

Usage
Instance creation
ImzMeta(...)
Arguments
Named metadata tags (in the form name=value, e.g., spectrumRepresentation="profile
specrum”. Use names(ImzMeta()) to see possible tags.
Details

The ImzMeta class supports lossy conversion between itself and ImzML instances. Only the sup-
ported information is captured, so converting from ImzML and then back to ImzML will lose some
information. It is primarily intended for ease of use when preparing the metadata from scratch and
when a complete ImzML instance is not available at the time of writing the file.

Value

An object of class ImzMeta.

Methods
Standard generic methods:

x$name, x$name <- value: Get or set a tag.

x[["name"”]1], x[["name"]1] <- value: Get or set a tag.

Note

This class does not currently meet minimum reporting guidelines for MS imaging experiments,
as that is not its purpose. It is designed to provide the minimum required experimental metadata
for writing a valid imzML file. For example, it does not currently support sample metadata, as this
would require ontologies that are outside of the scope of the present package. This may be expanded
in the future if the need arises.

Author(s)
Kylie A. Bemis

6 parseAnalyze

See Also

parseImzML, writeImzML

Examples

create an empty ImzMeta instance
e <- ImzMeta()

set some experimental metadata
e$spectrumType <- "MS1 spectrum”
e$spectrumRepresentation <- "profile spectrum”
e

convert to ImzML instance
as(e, "ImzML")

convert from a parsed imzML file
path <- exampleImzMLFile()

p <- parselImzML(path)

as(p, "ImzMeta")

parseAnalyze Parse an Analyze 7.5 File

Description

Analyze 7.5 is a format originally designed for magnetic resonance imaging (MRI), but is also used
for mass spectrometry (MS) imaging.

Usage
parseAnalyze(file, ...)
Arguments
file The file path to either of the ".hdr" or ".img" files.
Not currently used.
Details

Because the Analyze 7.5 is originally intended for MRI, it stores the complete data cube as an N-
dimensional array. For MRI data, there are typically 4 dimensions. For MS imaging data, there are
typically 3 dimensions, where the first dimension is the m/z value axis, and the other two dimensions
are spatial. If a ".t2m" file is present (storing the m/z-values for MS imaging data), then it will be
parsed as well.

parseImzML

Value

An object of class Analyze75, which is a list with components named hdr, img, and (if appropriate)

t2m.

Author(s)
Kylie A. Bemis

Examples

create a toy data cube

set.seed(2023)

nx <- 3
ny <- 3
nmz <- 500

mz <- seq(500, 510, length.out=nmz)
intensity <- replicate(nx * ny, rlnorm(nmz))
dim(intensity) <- c(nmz, nx, ny)

path <- tempfile(fileext=".hdr")

write it in Analyze 7.5 format
writeAnalyze(intensity, path, domain=mz, type="float32")

parse it back in
parseAnalyze(path)

parseImzML

Parse an imzML File

Description

Parse an imzML file for mass spectrometry (MS) imaging experiment metadata and spectrum-level

metadata.

Usage

parseImzML(file, ibd = FALSE, extra = NULL,

extraArrays

Arguments
file
ibd

extra

extraArrays

= NULL, check = ibd, ...)

The file path to the ".imzML" file.
Should the binary data file be attached?

Additional cvParam or userParam tags to parse from spectrum and/or scan tags
by their accession or name attributes.

Additional binary data arrays to parse based on identifying accession or name
cvParam tags.

8 parseImzML

check Should the UUID, checksum, and size of the binary data file be checked against
the corresponding imzML tags and binary data array offsets? This can also
be a character vector specifying any combination of "checksum", "uuid", and
"filesize" to check.

Not currently used.

Details

The parse imzML file is returned as a ImzML object, which is a list-like structure that can be travered
via the standard $, "[", and "[[" operators. Child nodes that contain cvParams and userParams will
be imzplist objects which are also list-like structures that can be traversed the same way.

The spectrum-level metadata is an exception and will be read in selectively and represented as
data.frames where each row contains the metadata for a specific spectrum. Metadata for positions,
mzArrays, and intensityArrays will be parsed. These will be available in runspectrumList.

If ibd=TRUE, the binary data arrays are attached as out-of-memory matter_list objects. Un-
compressed data arrays are attached as their native binary data types. Compressed data arrays are
attached as raw byte arrays.

Value

An object of class ImzML.

Author(s)
Kylie A. Bemis

See Also

ImzMeta, writeImzML

Examples

get the path to an example imzML file
path <- exampleImzMLFile()

parse the file
p <- parselImzML(path, ibd=TRUE, extra=c(TIC="MS:1000285"))
print(p)

get the spectra positions
prunspectrumList$positions

get the TIC
prunspectrumList$extra

get the m/z and intensity arrays
pibdmz
pibdintensity

writeAnalyze

writeAnalyze

Write an Analyze 7.5 File

Description

Write an Analyze 7.5 file from a N-dimensional array or a matrix with corresponding pixel/voxel

positions.

Usage

S4 method for signature 'array'

S4 method for signature 'matter_arr'’

writeAnalyze(object, file, positions = NULL, domain = NULL,
type = "float32", ..., BPPARAM = bpparam())
writeAnalyze(object, file, positions = NULL, domain = NULL,

type = "float32", ..., BPPARAM = bpparam())

S4 method for signature 'sparse_arr'
writeAnalyze(object, file, positions = NULL, domain = NULL,

type = "float32", ..., BPPARAM = bpparam())
Arguments
object Array-like data of at least 3 dimensions, or matrix-like data with columns corre-
sponding to rows in positions.
file The file path to use for writing the ".img" and ".hdr" files.
positions A data frame or matrix of pixel/voxel positions corresponding to the columns of
object.
domain An optional numeric vector of domain values (e.g., m/z-values).
type The data type using for writing the ".img" file. Allowed values are "int16",
"int32", "float32", and "float64".
Additional arguments passed to chunk_colapply.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Details

If domain is provided (e.g., for m/z-values), then a ".t2m" file will also be written.

Value

TRUE if the file was successfully written; FALSE otherwise. The output file paths and metadata are
attached as attributes.

10 writeImzML

Author(s)
Kylie A. Bemis

Examples

create a toy data cube

set.seed(2023)

nx <- 3

ny <- 3

nmz <- 500

mz <- seq(500, 510, length.out=nmz)
intensity <- replicate(nx * ny, rlnorm(nmz))
dim(intensity) <- c(nmz, nx, ny)

path <- tempfile(fileext=".hdr")

write it in Analyze 7.5 format
writeAnalyze(intensity, path, domain=mz, type="float32")

parse it
parseAnalyze(path)

writeImzML Write an imzML File

Description

Write an imzML file with experimental and spectrum-level metadata.

Usage

S4 method for signature 'ImzML'

writeImzML (object, file, positions = NULL, mz = NULL, intensity = NULL,
mz.type = "float64", intensity.type = "float32"”, asis = FALSE, ...,
BPPARAM = bpparam())

S4 method for signature 'ImzMeta'
writeImzML (object, file, positions, mz, intensity, ...,
BPPARAM = bpparam())

Arguments
object An object containing MS imaging metadata.
file The file path to use for writing the ".imzML" file.
positions A data frame or matrix of raster positions where the mass spectra were collected.
Replaces any existing positions in object.
mz A numeric vector (for "continuous" format) or list of such vectors (for "pro-

cessed" format) giving the m/z-values of the mass spectra. Used to write the
".ibd" file if provided.

writeImzML 11

intensity A numeric matrix (for "continuous" format) or list of numeric vectors (for "pro-
cessed" format) giving the intensity values of the mass spectra. Used to write
the ".ibd" file if provided.

mz.type, intensity. type

The data types for writing the respective arrays to the ".ibd" file. Allowed types
are "int32", "int64", "float32", and "float64".

asis If TRUE and mz and intensity are both file-backed matter objects, then they
are only used to infer the binary metadata for writing the ".imzML" file, and the
".ibd" is not written.

Additional arguments passed to chunk_colapply or chunk_mapply.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Details

The ImzML method writes the ".imzML" file based on the provided ImzML object. If mz and intensity
are both provided, then it also writes the associated ".ibd" file. It performs only minimal checking
that the required tags exist in the ImzML object. It does not validate the XML mapping before
writing.

The ImzMeta method requires all of positions, mz, and intensity to write the files.

Value

TRUE if the file was successfully written; FALSE otherwise. This return value should be checked to
make sure the operation completed, as most failure cases will yield warnings rather than errors. The
output file paths and metadata are attached as attributes.

Author(s)
Kylie A. Bemis

See Also

ImzMeta, parseImzML

Examples

get the path to an example imzML file
path <- exampleImzMLFile()

parse the file
p <- parseImzML(path, ibd=TRUE)
print(p)

get the spectra and positions

mz <- as.list(pibdmz)

intensity <- as.list(pibdintensity)
positions <- prunspectrumList$positions

write the file back out

12

path2 <- tempfile(fileext=".imzML")
writeImzML(p, path2, positions=positions,
mz=mz, intensity=intensity)

writeImzML

Index

* 10
ImzMeta-class, 5
parseAnalyze, 6
parseImzML, 7
writeAnalyze, 9
writeImzML, 10

* classes
ImzMeta-class, 5

x file
exampleImzMLFile, 2
parseAnalyze, 6
parseImzML, 7
writeAnalyze, 9
writeImzML, 10

+ package
CardinalIO-package, 2

+ utilities
get_obo, 3

[[<-,ImzMeta-method (ImzMeta-class), 5

Analyze75 (parseAnalyze), 6
Analyze75-class (parseAnalyze), 6

bplapply, 9, 11

CardinallIO (CardinalIlO-package), 2
CardinalIO-package, 2
chunk_colapply, 9, 11
chunk_mapply, 11

class:Analyze75 (parseAnalyze), 6
class:ImzMeta (ImzMeta-class), 5
class:ImzML (parseImzML), 7

exampleImzMLFile, 2

find_descendants_in (get_obo), 3
find_term(get_obo), 3
find_terms (get_obo), 3

get_obo, 3
get_ontology, 4

13

grep, 4

ImzMeta, 5,8, 11

ImzMeta (ImzMeta-class), 5
ImzMeta-class, 5

ImzML (parseImzML), 7
ImzML-class (parseImzML), 7

matter, 11
matter_list, 8

parseAnalyze, 6
parselmzML, 2, 3,5, 6,7, 11
pmatch, 4

valid_terms (get_obo), 3

writeAnalyze, 9

writeAnalyze,array-method
(writeAnalyze), 9

writeAnalyze,matter_arr-method
(writeAnalyze), 9

writeAnalyze, sparse_arr-method
(writeAnalyze), 9

writeImzML, 2,6, 8, 10

writeImzML,ImzMeta-method (writeImzML),
10

writeImzML, ImzML-method (writeImzML), 10

	CardinalIO-package
	exampleImzMLFile
	get_obo
	ImzMeta-class
	parseAnalyze
	parseImzML
	writeAnalyze
	writeImzML
	Index

