Package ‘BiocNeighbors’

October 24, 2025
Version 2.3.1
Date 2025-05-22
Title Nearest Neighbor Detection for Bioconductor Packages
Imports Rcpp, methods
Suggests BiocParallel, testthat, BiocStyle, knitr, rmarkdown
biocViews Clustering, Classification

Description Implements exact and approximate methods for nearest neighbor
detection, in a framework that allows them to be easily switched within

Bioconductor packages or workflows. Exact searches can be performed using
the k-means for k-nearest neighbors algorithm or with vantage point trees.
Approximate searches can be performed using the Annoy or HNSW libraries.
Searching on either Euclidean or Manhattan distances is supported.
Parallelization is achieved for all methods by using BiocParallel. Functions

are also provided to search for all neighbors within a given distance.
License GPL-3
LinkingTo Rcpp, assorthead
VignetteBuilder knitr
SystemRequirements C++17
RoxygenNote 7.3.2
Encoding UTF-8
git_url https://git.bioconductor.org/packages/BiocNeighbors
git_branch devel
git_last_commit 83al145d
git_last_commit_date 2025-05-22
Repository Bioconductor 3.23
Date/Publication 2025-10-24
Author Aaron Lun [aut, cre, cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2 BiocNeighbors-package

Contents
BiocNeighbors-package 2
AnnoyParam L. L 3
BiocNeighborIndex 4
BiocNeighborParam 5
buildIndex e 6
defineBuilder 7
ExhaustiveParam 8
findDistance e 9
findKNN . . . e 10
findMutualNN 12
findNeighbors 14
HnswParam 0. 16
KmknnParam 17
queryDistance 18
queryKNN .« . e 20
queryNeighbors e 22
VptreeParam 24

Index 26

BiocNeighbors-package BiocNeighbors: Nearest Neighbor Detection for Bioconductor Pack-

ages

Description

Implements exact and approximate methods for nearest neighbor detection, in a framework that
allows them to be easily switched within Bioconductor packages or workflows. Exact searches
can be performed using the k-means for k-nearest neighbors algorithm or with vantage point trees.
Approximate searches can be performed using the Annoy or HNSW libraries. Searching on either
Euclidean or Manhattan distances is supported. Parallelization is achieved for all methods by using
BiocParallel. Functions are also provided to search for all neighbors within a given distance.

Author(s)

Maintainer: Aaron Lun <infinite.monkeys.with.keyboards@gmail.com> [copyright holder]

AnnoyParam 3

AnnoyParam The AnnoyParam class

Description

A class to hold parameters for the Annoy algorithm for approximate nearest neighbor identification.

Usage

AnnoyParam(
ntrees = 50,
search.mult = ntrees,
distance = c("Euclidean”, "Manhattan”, "Cosine")

)

S4 method for signature 'AnnoyParam'
defineBuilder (BNPARAM)

Arguments
ntrees Integer scalar, number of trees to use for index generation.
search.mult Numeric scalar, multiplier for the number of points to search.
distance String specifying the distance metric to use. Cosine distances are implemented
as Euclidean distances on L2-normalized coordinates.
BNPARAM An AnnoyParam instance.
Details

The Approximate nearest neighbors Oh Yeah (Annoy) algorithm is based on recursive hyperplane
partitions. Briefly, a tree is constructed where a random hyperplane splits the points into two subsets
at each internal node. Leaf nodes are defined when the number of points in a subset falls below a
threshold (close to twice the number of dimensions for the settings used here). Multiple trees are
constructed in this manner, each of which is different due to the random choice of hyperplanes. For
a given query point, each tree is searched to identify the subset of all points in the same leaf node
as the query point. The union of these subsets across all trees is exhaustively searched to identify
the actual nearest neighbors to the query.

The ntrees parameter controls the trade-off between accuracy and computational work. More trees
provide greater accuracy at the cost of more computational work (both in terms of the indexing time
and search speed in downstream functions).

The search.mult controls the parameter known as search_k in the original Annoy documentation.
Specifically, search_k is defined as k * search.mult where k is the number of nearest neighbors to
identify in downstream functions. This represents the number of points to search exhaustively and
determines the run-time balance between speed and accuracy. The default search.mult=ntrees
is based on the Annoy library defaults. Note that this parameter is not actually used in the index
construction itself, and is only included here so that the output index fully parametrizes the search.

4 BiocNeighborIndex

Technically, the index construction algorithm is stochastic but, for various logistical reasons, the
seed is hard-coded into the C++ code. This means that the results of the Annoy neighbor searches
will be fully deterministic for the same inputs, even though the theory provides no such guarantees.

Value

The AnnoyParam constructor returns an instance of the AnnoyParam class.

The defineBuilder method returns a list that can be used in buildIndex to construct an Annoy
index.
Author(s)

Aaron Lun

See Also

BiocNeighborParam, for the parent class and its available methods.
https://github.com/spotify/annoy, for details on the underlying algorithm.

Examples

(out <- AnnoyParam())
out[['ntrees']]

out[['ntrees']] <- 20L
out

BiocNeighborIndex The BiocNeighborlndex class

Description

A virtual class for indexing structures of different nearest-neighbor search algorithms. Developers
should define subclasses for their own buildIndex and/or defineBuilder methods.

Details

In general, the internal structure of a BiocNeighborIndex class is arbitrary and left to the discretion
of the developer. If an arbitrary structure is used, the associated methods should be written for all
downstream generics like findKNN, etc.

Alternatively, developers may choose to derive from the BiocNeighborGenericlndex class. This
expects:

* A ptr slot containing an external pointer that refers to a BiocNeighbors: :Prebuilt object

(see definition in system.file(”include”, "BiocNeighbors.h", package="BiocNeighbors")).

* A names slot containing a character vector with the names of the observations, or NULL if no
names are available. This is used by subset= in the various findx generics.

In this case, no additional methods are required for the downstream generics.

https://github.com/spotify/annoy

BiocNeighborParam 5

Author(s)

Aaron Lun

BiocNeighborParam The BiocNeighborParam class

Description
A virtual class for specifying the type of nearest-neighbor search algorithm and associated parame-
ters.

Details

The BiocNeighborParam class is a virtual base class on which other parameter objects are built.
There are currently 5 concrete subclasses in BiocNeighbors:

KmknnParam: Exact nearest-neighbor search with the KMKNN algorithm.

VptreeParam: Exact nearest-neighbor search with the tree algorithm.

ExhaustiveParam: Exact nearest-neighbor search via brute-force.

AnnoyParam: Approximate nearest-neighbor search with the Annoy algorithm.

HnswParam: Approximate nearest-neighbor search with the HNSW algorithm.

These objects hold parameters specifying how each algorithm should be run on an arbitrary data
set. See the associated documentation pages for more details.

Methods
In the following code snippets, x and object are BiocNeighborParam objects.

show(object): Display the class and arguments of object.

bndistance(object): Return a string specifying the distance metric to be used for searching.
This should be one of "Euclidean”, "Manhattan” or "Cosine”.

x[[i]]: Return the value of slot i, as used in the constructor for x.

x[[i]] <- value: Setslot i to the specified value.

Author(s)

Aaron Lun

See Also

KmknnParam, VptreeParam, AnnoyParam, and HnswParam for constructors.
buildIndex, findKNN and queryKNN for dispatch.

6 buildIndex

buildIndex Build a nearest-neighbor index

Description

Build indices for nearest-neighbor searching with different algorithms.

Usage
buildIndex(X, transposed = FALSE, ..., BNPARAM = NULL)
Arguments
X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).
transposed Logical scalar indicating whether X is transposed, i.e., rows are variables and
columns are data points.
Further arguments to be passed to individual methods.
BNPARAM A BiocNeighborParam object specifying the type of index to be constructed. If
NULL, this defaults to a KmknnParam object.
Alternatively, this may be a list returned by defineBuilder.
Details

Each buildIndex method is expected to return an instance of a BiocNeighborIndex subclass. The
structure of this subclass is arbitrary and left to the discretion of the method developer. Developers
are also responsible for defining methods for their subclass in each of the relevant functions (e.g.,
findKNN, queryKNN). The exception is if the method returns an instance of a BiocNeighborGener-
icIndex subclass, which can be used with the existing methods for findKNN, etc. without further
effort.

Value

A BiocNeighborIndex object can be used in findKNN and related functions as the X= argument.
Users should assume that the index is not serializable, i.e., cannot be saved or transferred between
processes.

Author(s)

Aaron Lun

Examples

Y <- matrix(rnorm(100000), ncol=20)
(k.out <- buildIndex(Y))
(a.out <- buildIndex(Y, BNPARAM=AnnoyParam()))

defineBuilder 7

defineBuilder Define an index builder

Description

Define a builder object that can construct C++ indices for neighbor searches.

Usage
defineBuilder (BNPARAM)

Arguments
BNPARAM A BiocNeighborParam object specifying the type of index to be constructed. If
NULL, this defaults to a KmknnParam object.
Details

The external pointer returned in builder should refer to a BiocNeighbors: :Builder object, see
the definition in system.file("include”, "BiocNeighbors.h", package="BiocNeighbors")
for details. If a developer defines a defineBuilder method for a search algorithm, they do not
have to define a new buildIndex method. The existing buildIndex methods will automatically
create an instance of the appropriate BiocNeighborGenericIndex subclass based on class, which
can be immediately used in all generics (e.g., findKNN, queryNeighbors) without further effort.

Note that the pointer returned by defineBuilder should not be used as the ptr in the BiocNeigh-
borIndex subclasses. The ptr slot is expected to contain a pointer referring to aBiocNeighbors: :Prebuilt
object, as returned by the default buildIndex. Using the pointer from builder will probably crash

the R session.

Needless to say, users should not attempt to serialize the external pointer returned by this generic.
Attempting to use a deserialized pointer in buildIndex will cause the R session to crash.

Value
List containing:

* builder, a pointer to a builder instance that can be used to construct a prebuilt index in
buildIndex.

* class, the constructor for a BiocNeighborGenericIndex subclass that accepts ptr and names
arguments.

Author(s)

Aaron Lun

See Also

defineBuilder,KmknnParam-method, defineBuilder,VptreeParam-method, defineBuilder,AnnoyParam-method
and defineBuilder,HnswParam-method for specific methods.

8 ExhaustiveParam

Examples

(out <- defineBuilder())
(out2 <- defineBuilder (AnnoyParam()))

ExhaustiveParam The ExhaustiveParam class

Description

A class to hold parameters for the exhaustive algorithm for exact nearest neighbor identification.

Usage

ExhaustiveParam(distance = c("Euclidean”, "Manhattan”, "Cosine"))

S4 method for signature 'ExhaustiveParam'
defineBuilder (BNPARAM)

Arguments
distance String specifying the distance metric to use. Cosine distances are implemented
as Euclidean distances on L2-normalized coordinates.
BNPARAM An ExhaustiveParam instance.
Details

The exhaustive search computes all pairwise distances between data and query points to identify
nearest neighbors of the latter. It has quadratic complexity and is theoretically the worst-performing
method; however, it has effectively no overhead from constructing or querying indexing structures,
making it faster for in situations where indexing provides little benefit. This includes queries against
datasets with few data points or very high dimensionality.

All that said, this algorithm is largely provided as a baseline for comparing against the other algo-
rithms.
Value

The ExhaustiveParam constructor returns an instance of the ExhaustiveParam class.

The defineBuilder method returns an external pointer that can be used in buildIndex to construct
an exhaustive index.

Author(s)

Allison Vuong

See Also

BiocNeighborParam, for the parent class and its available methods.

findDistance

Examples

(out <- ExhaustiveParam())

findDistance

Distance to the k-th nearest neighbor

Description

Find the distance to the k-th nearest neighbor for each point in a dataset.

Usage
findDistance(X, k, num.threads = 1, subset = NULL, ..., BNPARAM = NULL)
Arguments
X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions). Alternatively, a prebuilt BiocNeighborIndex ob-
ject from buildIndex.
k A positive integer scalar specifying the number of nearest neighbors to retrieve.

num. threads

subset

BNPARAM

Details

Alternatively, an integer vector of length equal to the number of points in X,
specifying the number of neighbors to identify for each point. If subset is
provided, this should have length equal to the length of subset. Users should
wrap this vector in an Asls class to distinguish length-1 vectors from integer
scalars.

All k should be less than or equal to the number of points in X minus 1, otherwise
the former will be capped at the latter with a warning.
Integer scalar specifying the number of threads to use for the search.

An integer, logical or character vector specifying the indices of points in X for
which the nearest neighbors should be identified. This yields the same result
as (but is more efficient than) subsetting the output matrices after computing
neighbors for all points.

Further arguments to pass to buildIndex when X is not an external pointer.

A BiocNeighborParam object specifying how the index should be constructed.
If NULL, this defaults to a KmknnParam. Ignored if x contains a prebuilt index.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from
X with buildIndex. The resulting pointer object can be supplied as X to multiple findDistance
calls, avoiding the need to repeat index construction in each call.

10 findKNN

Value

Numeric vector of length equal to the number of points in X (or subset, if provided), containing
the distance from each point to its k-th nearest neighbor. This is equivalent to but more memory
efficient than using findKNN and subsetting to the last distance.

Author(s)

Aaron Lun

See Also

buildIndex, to build an index ahead of time.

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- findDistance(Y, k=8)
summary (out)

findKNN Find k-nearest neighbors

Description

Find the k-nearest neighbors of each point in a dataset.

Usage

findKNN(
X,
k,
get.index = TRUE,
get.distance = TRUE,
num.threads = 1,
subset = NULL,

BNPARAM = NULL

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions). Alternatively, a prebuilt BiocNeighborIndex ob-
ject from buildIndex.

findKNN

get.index

get.distance

num. threads

subset

BNPARAM

Details

11

A positive integer scalar specifying the number of nearest neighbors to retrieve.

Alternatively, an integer vector of length equal to the number of points in X,
specifying the number of neighbors to identify for each point. If subset is
provided, this should have length equal to the length of subset. Users should
wrap this vector in an Asls class to distinguish length-1 vectors from integer
scalars.

All k should be less than or equal to the number of points in X minus 1, otherwise
the former will be capped at the latter with a warning.

A logical scalar indicating whether the indices of the nearest neighbors should
be recorded. Setting this to FALSE improves efficiency if the indices are not of
interest.

Alternatively, if k is an integer scalar, this may be a string containing "normal”
or "transposed”. The former is the same as TRUE, while the latter returns the
index matrix in transposed format.

A logical scalar indicating whether distances to the nearest neighbors should be
recorded. Setting this to FALSE improves efficiency if the distances are not of
interest.

Alternatively, if k is an integer scalar, this may be a string containing "normal”
or "transposed”. The former is the same as TRUE, while the latter returns the
distance matrix in transposed format.

Integer scalar specifying the number of threads to use for the search.

An integer, logical or character vector specifying the indices of points in X for
which the nearest neighbors should be identified. This yields the same result
as (but is more efficient than) subsetting the output matrices after computing
neighbors for all points.

Further arguments to pass to buildIndex when X is not an external pointer.

A BiocNeighborParam object specifying how the index should be constructed.
If NULL, this defaults to a KmknnParam. Ignored if x contains a prebuilt index.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from
X with buildIndex. The resulting pointer object can be supplied as X to multiple findKNN calls,
avoiding the need to repeat index construction in each call.

Value

List containing index (if get.index is not FALSE) and distance (if get.distance is not FALSE).

e If get.index=TRUE or "normal” and k is an integer scalar, index is an integer matrix with k
columns where each row corresponds to a point (denoted here as ¢) in X. The ¢-th row contains
the indices of points in X that are the nearest neighbors to point ¢, sorted by increasing distance
from 4. ¢ will not be included in its own set of nearest neighbors.

If get.index=FALSE or "transposed” and k is an integer scalar, index is as described above
but transposed, i.e., the i-th column contains the indices of neighboring points in X.

12 findMutualNN

e If get.distance=TRUE or "normal” and k is an integer scalar, distance is a numeric matrix
of the same dimensions as index. The ¢-th row contains the distances of neighboring points
in X to the point 7, sorted in increasing order.

If get.distance=FALSE or "transposed” and k is an integer scalar, distance is as described
above but transposed, i.e., the i-th column contains the distances to neighboring points in X.

 If get.index is not FALSE and k is an integer vector, index is a list of integer vectors where
each vector corresponds to a point (denoted here as 7) in X. The i-th vector has length k[i] and
contains the indices of points in X that are the nearest neighbors to point z, sorted by increasing
distance from i.

* If get.distance is not FALSE and k is an integer vector, distance is a list of numeric vectors
of the same lengths as those in index. The i-th vector contains the distances of neighboring
points in X to the point ¢, sorted in increasing order.

Author(s)

Aaron Lun

See Also

buildIndex, to build an index ahead of time.

findDistance, to efficiently obtain the distance to the k-th nearest neighbor.

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- findKNN(Y, k=8)

head (out$index)

head(out$distance)

findMutualNN Find mutual nearest neighbors

Description

Find mutual nearest neighbors (MNN) across two data sets.

Usage

findMutualNN(datal, data2, k1, k2 = k1, BNINDEX1 = NULL, BNINDEX2 = NULL, ...)

findMutualNN 13

Arguments
datal A numeric matrix containing points in the rows and variables/dimensions in the
columns.
data2 A numeric matrix like data1 for another dataset with the same variables/dimensions.
k1 Integer scalar specifying the number of neighbors to search for in datal.
k2 Integer scalar specifying the number of neighbors to search for in data2.
BNINDEX1 A pre-built index for datal. If NULL, this is constructed from datal within the
internal queryKNN call.
BNINDEX2 A pre-built index for data2. If NULL, this is constructed from data2 within the
internal queryKNN call.
Other arguments to be passed to the underlying queryKNN calls, e.g., BNPARAM, .
Details

For each point in dataset 1, the set of k2 nearest points in dataset 2 is identified. For each point
in dataset 2, the set of k1 nearest points in dataset 1 is similarly identified. Two points in different
datasets are considered to be part of an MNN pair if each point lies in the other’s set of neighbors.
This concept allows us to identify matching points across datasets, which is useful for, e.g., batch
correction.

Any values for the BNINDEXT and BNINDEX2 arguments should be equal to the output of buildIndex
for the respective matrices, using the algorithm specified with BNPARAM. These arguments are only
provided to improve efficiency during repeated searches on the same datasets (e.g., for comparisons
between all pairs). The specification of these arguments should not, generally speaking, alter the
output of the function.

Value

A list containing the integer vectors first and second, containing row indices from datal and
data2 respectively. Corresponding entries in first and second specify a MNN pair consisting of
the specified rows from each matrix.

Author(s)

Aaron Lun

See Also

queryKNN for the underlying neighbor search code.

fastMNN and related functions from the batchelor package, from which this code was originally
derived.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- findMutualNN(B1, B2, k1=20)
head(out$first)

14

head(out$second)

findNeighbors

findNeighbors

Find neighbors within a threshold distance

Description

Find all neighbors within a threshold distance of each point of a dataset.

Usage
findNeighbors(
X7
threshold,
get.index = TRUE,
get.distance = TRUE,

num.threads =

T,

subset = NULL,

BNPARAM = NULL

Arguments

X

threshold

get.index
get.distance
num. threads

subset

BNPARAM

A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions). Alternatively, a prebuilt BiocNeighborIndex ob-
ject from buildIndex.

A positive numeric scalar specifying the maximum distance at which a point
is considered a neighbor. Alternatively, a vector containing a different distance
threshold for each point.

A logical scalar indicating whether the indices of the neighbors should be recorded.
A logical scalar indicating whether distances to the neighbors should be recorded.
Integer scalar specifying the number of threads to use for the search.

An integer, logical or character vector specifying the indices of points in X for
which the nearest neighbors should be identified. This yields the same result
as (but is more efficient than) subsetting the output matrices after computing
neighbors for all points.

Further arguments to pass to buildIndex when X is not an external pointer.

A BiocNeighborParam object specifying how the index should be constructed.
If NULL, this defaults to a KmknnParam. Ignored if x contains a prebuilt index.

findNeighbors 15

Details

This function identifies all points in X that within threshold of each point in X. For Euclidean
distances, this is equivalent to identifying all points in a hypersphere centered around the point
of interest. Not all implementations support this search mode, but we can use KmknnParam and
VptreeParam.

If threshold is a vector, each entry is assumed to specify a (possibly different) threshold for each
point in X. If subset is also specified, each entry is assumed to specify a threshold for each point in
subset. An error will be raised if threshold is a vector of incorrect length.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from
X with buildIndex. The resulting pointer object can be supplied as X to multiple findNeighbors
calls, avoiding the need to repeat index construction in each call.

Value

A list is returned containing:

* index, if get.index=TRUE. This is a list of integer vectors where each entry corresponds to a
point (denoted here as 7) in X. The vector for ¢ contains the set of row indices of all points in X
that lie within threshold of point 7. Neighbors for ¢ are sorted by increasing distance.

» distance, if get.distance=TRUE. This is a list of numeric vectors where each entry corre-
sponds to a point (as above) and contains the distances of the neighbors from ¢. Elements of
each vector in distance match to elements of the corresponding vector in index.

If both get.index=FALSE and get.distance=FALSE, an integer vector is returned of length equal
to the number of observations. The i-th entry contains the number of neighbors of ¢ within
threshold.

If subset is not NULL, each entry of the above vector/lists corresponds to a point in the subset, in
the same order as supplied in subset.
Author(s)

Aaron Lun

See Also

buildIndex, to build an index ahead of time.

Examples

Y <- matrix(runif(100000), ncol=20)
out <- findNeighbors(Y, threshold=1)
summary (lengths(out$index))

16 HnswParam

HnswParam The HnswParam class

Description

A class to hold parameters for the HNSW algorithm for approximate nearest neighbor identification.

Usage

HnswParam(
nlinks = 16,
ef.construction = 200,
ef.search = 10,
distance = c("Euclidean”, "Manhattan”, "Cosine")

)

S4 method for signature 'HnswParam'
defineBuilder (BNPARAM)

Arguments

nlinks Integer scalar, number of bi-directional links per element for index generation.
ef.construction
Integer scalar, size of the dynamic list for index generation.

ef.search Integer scalar, size of the dynamic list for neighbor searching.
distance String specifying the distance metric to use. Cosine distances are implemented
as Euclidean distances on L2-normalized coordinates.
BNPARAM A HsnwParam instance.
Details

In the HNSW algorithm (Malkov and Yashunin, 2016), each point is a node in a “nagivable small
world” graph. The nearest neighbor search proceeds by starting at a node and walking through the
graph to obtain closer neighbors to a given query point. Nagivable small world graphs are used
to maintain connectivity across the data set by creating links between distant points. This speeds
up the search by ensuring that the algorithm does not need to take many small steps to move from
one cluster to another. The HNSW algorithm extends this idea by using a hierarchy of such graphs
containing links of different lengths, which avoids wasting time on small steps in the early stages
of the search where the current node position is far from the query.

Larger values of nlinks improve accuracy at the expense of speed and memory usage. Larger
values of ef.construction improve index quality at the expense of indexing time. The value of
ef.search controls the accuracy of the neighbor search at run time, where larger values improve
accuracy at the expense of a slower search.

Technically, the index construction algorithm is stochastic but, for various logistical reasons, the
seed is hard-coded into the C++ code. This means that the results of the HNSW neighbor searches
will be fully deterministic for the same inputs, even though the theory provides no such guarantees.

KmknnParam 17

Value

The HnswParam constructor returns an instance of the HnswParam class.

The defineBuilder method returns an external pointer that can be used in buildIndex to construct
a HNSW index.

Author(s)

Aaron Lun

See Also

BiocNeighborParam, for the parent class and its available methods.

https://github.com/nmslib/hnswlib, for details on the underlying algorithm.

Examples

(out <- HnswParam())
out[['nlinks']]

out[['nlinks']] <- 20L
out

KmknnParam The KmknnParam class

Description

A class to hold parameters for the k-means k-nearest-neighbors (KMKNN) algorithm for exact
nearest neighbor identification.

Usage

KmknnParam(..., distance = c("Euclidean”, "Manhattan”, "Cosine"))

S4 method for signature 'KmknnParam'
defineBuilder (BNPARAM)

Arguments

Further arguments, ignored.

distance String specifying the distance metric to use. Cosine distances are implemented
as Euclidean distances on L2-normalized coordinates.

BNPARAM A KmknnParam instance.

https://github.com/nmslib/hnswlib

18 queryDistance

Details

In the KMKNN algorithm (Wang, 2012), k-means clustering is first applied to the data points using
the square root of the number of points as the number of cluster centers. The cluster assignment and
distance to the assigned cluster center for each point represent the KMKNN indexing information.
This speeds up the nearest neighbor search by exploiting the triangle inequality between cluster
centers, the query point and each point in the cluster to narrow the search space. The advantage of
the KMKNN approach is its simplicity and minimal overhead, resulting in performance improve-
ments over conventional tree-based methods for high-dimensional data where most points need to
be searched anyway. It is also trivially extended to find all neighbors within a threshold distance
from a query point.

Note that KMKNN operates much more naturally with Euclidean distances. Computational effi-
ciency may not be optimal when using it with other choices of distance, though the results will
still be exact.

Value

The KmknnParam constructor returns an instance of the KmknnParam class.

The defineBuilder method returns a list that can be used in buildIndex to construct a KMKNN
index.

Author(s)

Aaron Lun, using code from the cydar package.

References
Wang X (2012). A fast exact k-nearest neighbors algorithm for high dimensional search using
k-means clustering and triangle inequality. Proc Int Jt Conf Neural Netw, 43, 6:2351-2358.

See Also

BiocNeighborParam, for the parent class and its available methods.

Examples

(out <- KmknnParam(iter.max=100))

queryDistance Distance to the k-th nearest neighbor to query points

Description

Query a reference dataset to determine the distance to the k-th nearest neighbor of each point in a
query dataset.

queryDistance

Usage

queryDistance(
X,
query,
k)
num. threads
subset = NUL
transposed =

19

:‘]y
L,
FALSE,

BNPARAM = NULL

Arguments

X

query

num. threads

subset

transposed

BNPARAM

Details

The reference dataset to be queried. This should be a numeric matrix where rows
correspond to reference points and columns correspond to variables (i.e., dimen-
sions). Alternatively, a prebuilt BiocNeighborIndex object from buildIndex.

A numeric matrix of query points, containing the same number of columns as X.

A positive integer scalar specifying the number of nearest neighbors to retrieve.
Alternatively, an integer vector of length equal to the number of points in query,
specifying the number of neighbors to identify for each point. If subset is
provided, this should have length equal to the length of subset. Users should
wrap this vector in an Asls class to distinguish length-1 vectors from integer
scalars.

All k should be less than or equal to the number of points in X, otherwise the
former will be capped at the latter with a warning.

Integer scalar specifying the number of threads to use for the search.

An integer, logical or character vector indicating the rows of query (or columns,
if transposed=TRUE) for which the nearest neighbors should be identified.

A logical scalar indicating whether X and query are transposed, in which case
both matrices are assumed to contain dimensions in the rows and data points in
the columns.

Further arguments to pass to buildIndex when X is not an external pointer.

A BiocNeighborParam object specifying how the index should be constructed.
If NULL, this defaults to a KmknnParam. Ignored if x contains a prebuilt index.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from
X with buildIndex. The resulting pointer object can be supplied as X to multiple queryKNN calls,
avoiding the need to repeat index construction in each call.

Value

Numeric vector of length equal to the number of points in query (or subset, if provided), contain-
ing the distance from each point to its k-th nearest neighbor. This is equivalent to but more memory
efficient than using queryKNN and subsetting to the last distance.

20

Author(s)

Aaron Lun

See Also

buildIndex, to build an index ahead of time.

Examples

Y <- matrix(rnorm(100000), ncol=20)
Z <- matrix(rnorm(20000), ncol=20)
out <- queryDistance(Y, query=Z, k=5)

head(out)

queryKNN

queryKNN

Query k-nearest neighbors

Description

Query a reference dataset for the k-nearest neighbors of each point in a query dataset.

Usage

queryKNN(

X,

query,

k,

get.index = TRUE,
get.distance = TRUE,
num. threads = 1,
subset = NULL,
transposed = FALSE,

BNPARAM = NULL

Arguments

X

query

The reference dataset to be queried. This should be a numeric matrix where rows
correspond to reference points and columns correspond to variables (i.e., dimen-
sions). Alternatively, a prebuilt BiocNeighborIndex object from buildIndex.

A numeric matrix of query points, containing the same number of columns as X.

A positive integer scalar specifying the number of nearest neighbors to retrieve.
Alternatively, an integer vector of length equal to the number of points in query,
specifying the number of neighbors to identify for each point. If subset is
provided, this should have length equal to the length of subset. Users should

queryKNN

get.index

get.distance

num. threads

subset

transposed

BNPARAM

Details

21

wrap this vector in an Asls class to distinguish length-1 vectors from integer
scalars.

All k should be less than or equal to the number of points in X, otherwise the
former will be capped at the latter with a warning.

A logical scalar indicating whether the indices of the nearest neighbors should
be recorded. Setting this to FALSE improves efficiency if the indices are not of
interest.

Alternatively, if k is an integer scalar, this may be a string containing "normal”
or "transposed”. The former is the same as TRUE, while the latter returns the
index matrix in transposed format.

A logical scalar indicating whether distances to the nearest neighbors should be
recorded. Setting this to FALSE improves efficiency if the distances are not of
interest.

Alternatively, if k is an integer scalar, this may be a string containing "normal”
or "transposed”. The former is the same as TRUE, while the latter returns the
distance matrix in transposed format.

Integer scalar specifying the number of threads to use for the search.

An integer, logical or character vector indicating the rows of query (or columns,
if transposed=TRUE) for which the nearest neighbors should be identified.

A logical scalar indicating whether X and query are transposed, in which case
both matrices are assumed to contain dimensions in the rows and data points in
the columns.

Further arguments to pass to buildIndex when X is not an external pointer.

A BiocNeighborParam object specifying how the index should be constructed.
If NULL, this defaults to a KmknnParam. Ignored if x contains a prebuilt index.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from
X with buildIndex. The resulting pointer object can be supplied as X to multiple queryKNN calls,
avoiding the need to repeat index construction in each call.

Value

List containing index (if get. index is not FALSE) and distance (if get.distance is not FALSE).

* If get.index=TRUE or "normal” and k is an integer scalar, index is an integer matrix with
k columns where each row corresponds to a point (denoted here as ¢) in query. The ¢-th row
contains the indices of points in X that are the nearest neighbors to point 7, sorted by increasing
distance from 4.

If get.index=FALSE or "transposed” and k is an integer scalar, index is as described above
but transposed, i.e., the i-th column contains the indices of neighboring points in X.

* If get.distance=TRUE or "normal” and k is an integer scalar, distance is a numeric matrix
of the same dimensions as index. The ¢-th row contains the distances of neighboring points
in X to the point 4, sorted in increasing order.

If get.distance=FALSE or "transposed” and k is an integer scalar, distance is as described
above but transposed, i.e., the i-th column contains the distances to neighboring points in X.

22 queryNeighbors

* If get.index is not FALSE and k is an integer vector, index is a list of integer vectors where
each vector corresponds to a point (denoted here as ¢) in X. The i-th vector has length k[i] and
contains the indices of points in X that are the nearest neighbors to point ¢, sorted by increasing
distance from 4.

» If get.distance is not FALSE and k is an integer vector, distance is a list of numeric vectors
of the same lengths as those in index. The i-th vector contains the distances of neighboring
points in X to the point ¢, sorted in increasing order.

Author(s)

Aaron Lun

See Also

buildIndex, to build an index ahead of time.

queryDistance, to obtain the distance from each query point to its k-th nearest neighbor.

Examples

Y <- matrix(rnorm(100000), ncol=20)
Z <- matrix(rnorm(20000), ncol=20)
out <- queryKNN(Y, query=Z, k=5)
head (out$index)

head(out$distance)

queryNeighbors Query neighbors within a threshold distance

Description

Find all points in a reference dataset that lie within a threshold distance of each point in a query
dataset.

Usage

queryNeighbors(
X,
query,
threshold,
get.index = TRUE,
get.distance = TRUE,
num.threads = 1,
subset = NULL,
transposed = FALSE,

BNPARAM = NULL

queryNeighbors

Arguments

X

query
threshold

get.index
get.distance
num. threads

subset

transposed

BNPARAM

Details

23

The reference dataset to be queried. This should be a numeric matrix where rows
correspond to reference points and columns correspond to variables (i.e., dimen-
sions). Alternatively, a prebuilt BiocNeighborIndex object from buildIndex.

A numeric matrix of query points, containing the same number of columns as X.

A positive numeric scalar specifying the maximum distance at which a point
is considered a neighbor. Alternatively, a vector containing a different distance
threshold for each query point.

A logical scalar indicating whether the indices of the neighbors should be recorded.
A logical scalar indicating whether distances to the neighbors should be recorded.
Integer scalar specifying the number of threads to use for the search.

An integer, logical or character vector indicating the rows of query (or columns,
if transposed=TRUE) for which the nearest neighbors should be identified.

A logical scalar indicating whether X and query are transposed, in which case
both matrices are assumed to contain dimensions in the rows and data points in
the columns.

Further arguments to pass to buildIndex when X is not an external pointer.

A BiocNeighborParam object specifying how the index should be constructed.
If NULL, this defaults to a KmknnParam. Ignored if x contains a prebuilt index.

This function identifies all points in X that within threshold of each point in query. For Euclidean
distances, this is equivalent to identifying all points in a hypersphere centered around the point
of interest. Not all implementations support this search mode, but we can use KmknnParam and

VptreeParam.

If threshold is a vector, each entry is assumed to specify a (possibly different) threshold for each
point in query. If subset is also specified, each entry is assumed to specify a threshold for each
point in subset. An error will be raised if threshold is a vector of incorrect length.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from
X with buildIndex. The resulting pointer object can be supplied as X to multiple queryKNN calls,
avoiding the need to repeat index construction in each call.

Value

A list is returned containing:

* index, if get.index=TRUE. This is a list of integer vectors where each entry corresponds to a
point (denoted here as ¢) in query. The vector for ¢ contains the set of row indices of all points
in X that lie within threshold of point i. Neighbors for ¢ are sorted by increasing distance

from 3.

* distance, if get.distance=TRUE. This is a list of numeric vectors where each entry corre-
sponds to a point (as above) and contains the distances of the neighbors from ¢. Elements of
each vector in distance match to elements of the corresponding vector in index.

24 VptreeParam

If both get.index=FALSE and get.distance=FALSE, an integer vector is returned of length equal
to the number of observations. The i-th entry contains the number of neighbors of ¢ within
threshold.

If subset is not NULL, each entry of the above vector/lists refers to a point in the subset, in the same
order as supplied in subset.

Author(s)

Aaron Lun

See Also

buildIndex, to build an index ahead of time.

Examples

Y <- matrix(rnorm(100000), ncol=20)

Z <- matrix(rnorm(20000), ncol=20)

out <- queryNeighbors(Y, query=Z, threshold=3)
summary (lengths(out$index))

VptreeParam The VptreeParam class

Description
A class to hold parameters for the vantage point (VP) tree algorithm for exact nearest neighbor
identification.

Usage

VptreeParam(distance = c("Euclidean”, "Manhattan”, "Cosine"))

S4 method for signature 'VptreeParam'
defineBuilder (BNPARAM)

Arguments

distance String specifying the distance metric to use. Cosine distances are implemented
as Euclidean distances on L2-normalized coordinates.

BNPARAM A VptreeParam instance.

VptreeParam 25

Details

In a VP tree (Yianilos, 1993), each node contains a subset of points that is split into two further
partitions. The split is determined by picking an arbitrary point inside that subset as the node center,
computing the distance to all other points from the center, and taking the median as the “radius”.
The left child of this node contains all points within the median distance from the radius, while
the right child contains the remaining points. This is applied recursively until all points resolve to
individual nodes. The nearest neighbor search traverses the tree and exploits the triangle inequality
between query points, node centers and thresholds to narrow the search space.

VP trees are often faster than more conventional KD-trees or ball trees as the former uses the
points themselves as the nodes of the tree, avoiding the need to create many intermediate nodes and
reducing the total number of distance calculations. Like KMKNN, it is also trivially extended to
find all neighbors within a threshold distance from a query point.

Value

The VptreeParam constructor returns an instance of the VptreeParam class.

The defineBuilder method returns an external pointer that can be used in buildIndex to construct
a VP tree index.

Author(s)

Aaron Lun

References
Yianilos PN (1993). Data structures and algorithms for nearest neighbor search in general metric
spaces. Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 311-321.
See Also

BiocNeighborParam, for the parent class and its available methods.

https://stevehanov.ca/blog/index.php?id=130, for a description of the algorithm.

Examples

(out <- VptreeParam())

https://stevehanov.ca/blog/index.php?id=130

Index

[[,BiocNeighborParam-method
(BiocNeighborParam), 5

[[<-,BiocNeighborParam-method
(BiocNeighborParam), 5

AnnoyIndex (AnnoyParam), 3
AnnoyIndex-class (AnnoyParam), 3
AnnoyParam, 3, 5
AnnoyParam-class (AnnoyParam), 3
AsIs, 9, 11,19, 21

BiocNeighborGenericIndex, 6, 7
BiocNeighborGenericIndex-class
(BiocNeighborIndex), 4
BiocNeighborlIndex, 4,6, 7,9, 10, 14, 19, 20,
23
BiocNeighborIndex-class
(BiocNeighborIndex), 4
BiocNeighborParam, 4, 5, 6-9, 11, 14, 17-19,
21,23,25
BiocNeighborParam-class
(BiocNeighborParam), 5
BiocNeighbors (BiocNeighbors-package), 2
BiocNeighbors-package, 2
bndistance (BiocNeighborParam), 5
buildIndex, 4, 5, 6, 7-15, 17-25
buildIndex,matrix,BiocNeighborParam-method
(buildIndex), 6
buildIndex,matrix,list-method
(buildIndex), 6
buildIndex,matrix,missing-method
(buildIndex), 6
buildIndex,matrix,NULL-method
(buildIndex), 6

defineBuilder,4,6,7,8,17, 18,25

defineBuilder,AnnoyParam-method
(AnnoyParam), 3

defineBuilder,ExhaustiveParam-method
(ExhaustiveParam), 8

26

defineBuilder,HnswParam-method
(HnswParam), 16
defineBuilder,KmknnParam-method
(KmknnParam), 17
defineBuilder,missing-method
(defineBuilder), 7
defineBuilder,NULL-method
(defineBuilder), 7
defineBuilder,VptreeParam-method
(VptreeParam), 24

ExhaustiveIndex (ExhaustiveParam), 8
ExhaustiveIndex-class
(ExhaustiveParam), 8
ExhaustiveParam, 5, 8
ExhaustiveParam-class
(ExhaustiveParam), 8

findDistance, 9, 12

findDistance,BiocNeighborGenericIndex,ANY-method

(findDistance), 9
findDistance,BiocNeighborGenericIndex-method

(findDistance), 9
findDistance,matrix, ANY-method

(findDistance), 9
findDistance,matrix-method

(findDistance), 9
findKNN, 4-7, 10, 10
findKNN,BiocNeighborGenericIndex, ANY-method

(findkKNN), 10
findKNN,BiocNeighborGenericIndex-method

(findKNN), 10
findKNN,matrix,ANY-method (findKNN), 10
findKNN,matrix-method (findkKNN), 10
findKNN,missing, ANY-method (findKNN), 10
findKNN,missing-method (findKNN), 10
findMutualNN, 12
findNeighbors, 14

findNeighbors,BiocNeighborGenericIndex,ANY-method

(findNeighbors), 14

INDEX

27

findNeighbors,BiocNeighborGenericIndex-methodqueryNeighbors,matrix-method

(findNeighbors), 14
findNeighbors,matrix, ANY-method
(findNeighbors), 14
findNeighbors,matrix-method
(findNeighbors), 14
findNeighbors,missing, ANY-method
(findNeighbors), 14
findNeighbors,missing-method
(findNeighbors), 14

HnswIndex (HnswParam), 16
HnswIndex-class (HnswParam), 16
HnswParam, 5, 16
HnswParam-class (HnswParam), 16

KmknnIndex (KmknnParam), 17
KmknnIndex-class (KmknnParam), 17
KmknnParam, 5-7, 9, 11, 14, 15,17, 19, 21, 23
KmknnParam-class (KmknnParam), 17

queryDistance, 18, 22

(queryNeighbors), 22
queryNeighbors,missing, ANY-method
(queryNeighbors), 22
queryNeighbors,missing-method

(queryNeighbors), 22

show, AnnoyParam-method (AnnoyParam), 3

show,BiocNeighborIndex-method
(BiocNeighborIndex), 4

show,BiocNeighborParam-method
(BiocNeighborParam), 5

show, HnswParam-method (HnswParam), 16

VptreeIndex (VptreeParam), 24
Vptreelndex-class (VptreeParam), 24
VptreeParam, 5, 15, 23,24
VptreeParam-class (VptreeParam), 24

queryDistance,BiocNeighborGenericIndex, ANY-method

(queryDistance), 18

queryDistance,BiocNeighborGenericIndex-method

(queryDistance), 18
queryDistance,matrix,ANY-method

(queryDistance), 18
queryDistance,matrix-method

(queryDistance), 18
queryKNN, 5, 6, 13, 19, 20

queryKNN,BiocNeighborGenericIndex, ANY-method

(queryKNN), 20

queryKNN,BiocNeighborGenericIndex-method

(queryKNN), 20
queryKNN,matrix, ANY-method (queryKkNN),
20
queryKNN, matrix-method (querykNN), 20
queryKNN,missing, ANY-method (querykNN),
20
queryKNN,missing-method (queryKNN), 20
queryNeighbors, 7, 22

queryNeighbors,BiocNeighborGenericIndex, ANY-method

(queryNeighbors), 22

queryNeighbors,BiocNeighborGenericIndex-method

(queryNeighbors), 22
queryNeighbors,matrix, ANY-method
(queryNeighbors), 22

	BiocNeighbors-package
	AnnoyParam
	BiocNeighborIndex
	BiocNeighborParam
	buildIndex
	defineBuilder
	ExhaustiveParam
	findDistance
	findKNN
	findMutualNN
	findNeighbors
	HnswParam
	KmknnParam
	queryDistance
	queryKNN
	queryNeighbors
	VptreeParam
	Index

