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Chapter 1

Introduction

CVODES [55] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers [39]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities. CVODES is a solver for stiff and nonstiff initial value problems (IVPs) for systems of ordinary
differential equation (ODEs). In addition to solving stiff and nonstiff ODE systems, CVODES has sensitivity analysis
capabilities, using either the forward or the adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that have been written at
LLNL in the past are VODE [14] and VODPK [17]. VODE is a general purpose solver that includes methods for both
stiff and nonstiff systems, and in the stiff case uses direct methods (full or banded) for the solution of the linear systems
that arise at each implicit step. Externally, VODE is very similar to the well known solver LSODE [52]. VODPK is a
variant of VODE that uses a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear
systems. VODPK is a powerful tool for large stiff systems because it combines established methods for stiff integration,
nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness,
in the form of the user-supplied preconditioner matrix [15]. The capabilities of both VODE and VODPK have been
combined in the C-language package CVODE [22].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjuc-
tion with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [54], FGMRES (Flexible
Generalized Minimum RESidual) [53], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [61], TFQMR (Transpose-Free
Quasi-Minimal Residual) [32], and PCG (Preconditioned Conjugate Gradient) [34] linear iterative methods. As Krylov
methods, these require almost no matrix storage for solving the Newton equations as compared to direct methods. How-
ever, the algorithms allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential
for an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct linear solver
methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES
as the best overall choice. However, users are encouraged to compare all options, especially if encountering conver-
gence failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that the number of
workspace vectors they require is fixed, while that number for GMRES depends on the desired Krylov subspace size.
FGMRES has an advantage in that it is designed to support preconditioners that vary between iterations (e.g. itera-
tive methods). PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organization has been
changed considerably. One key feature of the CVODE organization is that the linear system solvers comprise a layer
of code modules that is separated from the integration algorithm, allowing for easy modification and expansion of the
linear solver array. A second key feature is a separate module devoted to vector operations; this facilitated the extension
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to multiprosessor environments with minimal impacts on the rest of the solver, resulting in PVODE [19], the parallel
variant of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE. Sensitivity analysis
capabilities, both forward and adjoint, have been added to the main integrator. Enabling forward sensititivity computa-
tions in CVODES will result in the code integrating the so-called sensitivity equations simultaneously with the original
IVP, yielding both the solution and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis,
most useful when the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called adjoint equations
backward in time. CVODES provides the infrastructure needed to integrate any final-condition ODE dependent on the
solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across the SUNDIALS
suite. The key feature of the N_Vector module is that it is written in terms of abstract vector operations with the
actual vector functions attached by a particular implementation (such as serial or parallel) of N_Vector. This allows
writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which can be user-
supplied), as well as allowing more than one N_Vector module to be linked into an executable file. SUNDIALS
(and thus CVODES) is supplied with serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel N_Vector
implementations.

There were several motivations for choosing the C language for CVODE, and later for CVODES. First, a general
movement away from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure, and
dynamic memory allocation features in C are extremely useful in software of this complexity. Finally, we prefer C
over C++ for CVODES because of the wider availability of C compilers, the potentially greater efficiency of C, and the
greater ease of interfacing the solver to applications written in extended Fortran.

1.2 Changes from previous versions

1.2.1 Changes in v6.6.0

Updated the default CVODES behavior when returning the solution when the internal time has reached a user-specified
stop time. Previously, the output solution was interpolated to the value of tstop; the default is now to copy the internal
solution vector. Users who wish to revert to interpolation may call the routine CVodeSetInterpolateStopTime().

Updated the F2003 utility routines SUNDIALSFileOpen() and SUNDIALSFileClose () to support user specification
of stdout and stderr strings for the output file names.

1.2.2 Changes in v6.5.1

Added the function CVodeClearStopTime () to disable a previously set stop time.
Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.
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1.2.3 Changes in v6.5.0

Added the functions CVodeGetJac (), CVodeGetJacTime (), CVodeGetJacNumSteps () to assist in debugging sim-
ulations utilizing a matrix-based linear solver.

Added support for the SYCL backend with RAJA 2022 .x.y.
Fixed an underflow bug during root finding.

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats () function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added support for CUDA v12.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

1.2.4 Changes in v6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel oneAPI 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.2.5 Changes in v6.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections §7.10 and §8.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §6.14, §7.11, and §8.19 for more information.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed a memory leak where the projection memory would not be deallocated when calling CVodeFree ().

1.2. Changes from previous versions 3
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1.2.6 Changes in v6.3.0

Added the function CVodeGetUserData() to retrieve the user data pointer provided to CVodeSetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.2.7 Changes in v6.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated SUNNonlinSolSetPrintLevel Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNon-
linSolSetPrintLevel_FixedPoint(), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSet-
InfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSet-
PrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLin-
SolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_ SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(),
SUNLinSolSetPrintLevel _SPBCGS() it is recommended to use the SUNLogger APl instead. The SUNLinSolSet-
InfoFile_** and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option
SUNDIALS_LOGGING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

Added the function CVodePrintAllStats () to output all of the integrator, nonlinear solver, linear solver, and other
statistics in one call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value
output files.

Added support for integrating IVPs with constraints using BDF methods and projecting the solution onto the con-
straint manifold with a user defined projection function. This implementation is accompanied by additions to user
documentation and CVODES examples. See CVodeSetProjFn() for more information.

Added the functions CVodeSetEtaFixedStepBounds(), CVodeSetEtaMaxFirstStep(), CVodeSetEtaMax-
EarlyStep(), CVodeSetNumStepsEtaMaxEarlyStep (), CVodeSetEtaMax(), CVodeSetEtaMin(), CVodeSetE-
taMinErrFail (), CVodeSetEtaMaxErrFail (), CVodeSetNumFailsEtaMaxErrFail (), and CVodeSetEtaCon-
vFail () to adjust various parameters controlling changes in step size.

Added the functions CVodeSetDeltaGammaMaxLSetup () and CVodeSetDeltaGammaMaxBadJac () to adjust the ~y
change thresholds to require a linear solver setup or Jacobian/precondition update, respectively.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector NVector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.
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A bug was fixed in the functions CVodeGetNumNonlinSolvConvFails(), CVodeGetNonlinSolvStats(),
CVodeGetSensNumNonlinSolvConvFails(), CVodeGetSensNonlinSolvStats(), CVodeGetStgrSensNum-
NonlinSolvConvFails(),and CVodeGetStgrSensNonlinSolvStats () where the number of nonlinear solver fail-
ures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed with a stale
Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure was not in-
cluded in the nonlinear solver failure count. These functions have been updated to return the total number of nonlinear
solver failures. As such users may see an increase in the number of failures reported.

The functions CVodeGetNumStepSolveFails (), CVodeGetNumStepSensSolveFails (), and CVodeGetNumStep-
StgrSensSolveFails() have been added to retrieve the number of failed steps due to a nonlinear solver fail-
ure. The counts returned from these functions will match those previously returned by CVodeGetNumNonlin-
SolvConvFails(), CVodeGetNonlinSolvStats(), CVodeGetSensNumNonlinSolvConvFails(), CVodeGet-
SensNonlinSolvStats(), CVodeGetStgrSensNumNonlinSolvConvFails(), and CVodeGetStgrSensNonlin-
SolvStats().

1.2.8 Changes in v6.1.1

Fixed exported SUNDIALSConfig.cmake.

1.2.9 Changes in v6.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.2.10 Changes in v6.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5. sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

1.2. Changes from previous versions 5
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> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl () has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials: :hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewl/ithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:
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Removed Replacement

SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()

SUNKLU SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()

SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1 SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1 SUNLinSol_SPBCGSSetMaxl1 ()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()
SUNSPFGMRSetMaxRestarts SUNLinSol_SPFGMRSetMaxRestarts()
SUNSPGMR SUNLinSol_SPGMR()
SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType ()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUNMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

CVODES

Added a new function CVodeGetLinSolveStats() to get the CVODES linear solver statistics as a group.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODES after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODES statistics throughout

the simulation.

The previously deprecated function CVodeSetMaxStepsBetweenJac has been removed and replaced with CVode-

SetJacEvalFrequency().

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:
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Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS
CLASSICAL_GS

SUN_MODIFIED_GS
SUN_CLASSICAL_GS

ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn

DlsMat SUND1sMat

DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):

Deprecated Name

New Name

CVSpilsSetLinearSolver
CVSpilsSetEpsLin
CVSpilsSetPreconditioner
CVSpilsSetJacTimes
CVSpilsGetWorkSpace
CVSpilsGetNumPrecEvals
CVSpilsGetNumPrecSolves
CVSpilsGetNumLinIters
CVSpilsGetNumConvFails
CVSpilsGetNum]TSetupEvals
CVSpilsGetNumJtimesEvals
CVSpilsGetNumRhsEvals
CVSpilsGetLastFlag
CVSpilsGetReturnFlagName
CVSpilsSetLinearSolverB
CVSpilsSetEpsLinB
CVSpilsSetPreconditionerB
CVSpilsSetPreconditionerBS
CVSpilsSetJacTimesB
CVSpilsSetJacTimesBS
CVDlsSetLinearSolver
CVDlsSetJacFn
CVD1sGetWorkSpace

CVodeSetLinearSolver
CVodeSetEpsLin
CVodeSetPreconditioner
CVodeSetJacTimes
CVodeGetLinWorkSpace
CVodeGetNumPrecEvals
CVodeGetNumPrecSolves
CVodeGetNumLinIters
CVodeGetNumConvFails
CVodeGetNum]TSetupEvals
CVodeGetNumJtimesEvals
CVodeGetNumLinRhsEvals
CVodeGetLastLinFlag
CVodeGetLinReturnFlagName
CVodeSetLinearSolverB
CVodeSetEpsLinB
CVodeSetPreconditionerB
CVodeSetPreconditionerBS
CVodeSetJacTimesB
CVodeSetJacTimesBS
CVodeSetLinearSolver
CVodeSetJacFn
CVodeGetLinWorkSpace

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name New Name
CVD1sGetNumJacEvals CVodeGetNumJacEvals
CVD1sGetNumRhsEvals CVodeGetNumLinRhsEvals
CVDlsGetLastFlag CVodeGetLastLinFlag

CVD1lsGetReturnFlagName

CVDlsSetLinearSolverB
CVD1sSetJacFnB
CVD1sSetJacFnBS
DenseGETRF
DenseGETRS
denseGETRF
denseGETRS
DensePOTRF
DensePOTRS
densePOTRF
densePOTRS
DenseGEQRF
DenseORMQR
denseGEQRF
denseORMQR
DenseCopy
denseCopy
DenseScale
denseScale
denseAddIdentity
DenseMatvec
denseMatvec
BandGBTRF
bandGBTRF
BandGBTRS
bandGBTRS
BandCopy
bandCopy
BandScale
bandScale
bandAddIdentity
BandMatvec
bandMatvec
ModifiedGS
ClassicalGS
QRfact

QRsol
DlsMat_NewDenseMat
DlsMat_NewBandMat
DestroyMat
NewIntArray
NewIndexArray
NewRealArray
DestroyArray
AddIdentity
SetToZero

CVodeGetLinReturnFlagName
CVodeSetLinearSolverB
CVodeSetJacFnB
CVodeSetJacFnBS
SUND1sMat_DenseGETRF
SUND1sMat_DenseGETRS
SUND1sMat_denseGETRF
SUND1sMat_denseGETRS
SUND1sMat_DensePOTRF
SUND1sMat_DensePOTRS
SUND1sMat_densePOTRF
SUND1sMat_densePOTRS
SUND1sMat_DenseGEQRF
SUND1sMat_DenseORMQR
SUND1sMat_denseGEQRF
SUND1sMat_denseORMQR
SUND1sMat_DenseCopy
SUND1sMat_denseCopy
SUND1sMat_DenseScale
SUND1lsMat_denseScale
SUND1sMat_denseAddIdentity
SUND1sMat_DenseMatvec
SUND1sMat_denseMatvec
SUND1sMat_BandGBTRF
SUND1sMat_bandGBTRF
SUND1sMat_BandGBTRS
SUND1sMat_bandGBTRS
SUND1sMat_BandCopy
SUND1sMat_bandCopy
SUND1lsMat_BandScale
SUND1sMat_bandScale
SUND1sMat_bandAddIdentity
SUND1sMat_BandMatvec
SUND1sMat_bandMatvec
SUNModifiedGS
SUNClassicalGS
SUNQRFact

SUNQRsol
SUND1sMat_NewDenseMat
SUND1sMat_NewBandMat
SUND1lsMat_DestroyMat
SUND1sMat_NewIntArray
SUND1sMat_NewIndexArray
SUND1sMat_NewRealArray
SUNDlsMat_DestroyArray
SUND1sMat_AddIdentity
SUND1sMat_SetToZero

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name New Name

PrintMat SUNDlsMat_PrintMat
newDenselMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUNDlsMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUND1lsMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.2.11 Changes in v5.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See Chapter §8.9 for more details. This module is experimental and is subject to change from version
to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate that the next
call to SUN1inSolSolve will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

CVODES now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUN-
LinearSolver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-
related data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

Added the function CVodeSetN1sRhsFn to supply an alternative right-hand side function for use within nonlinear
system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.
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1.2.12 Changes in v5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See Section §6.12 for more details. This
module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See Section §8.8 for more details.

1.2.13 Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.2.14 Changes in v5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA N_Vector implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer operation, and that the pointer returned by N_VGetDeviceArrayPointer is a valid CUDA device
pointer.

1.2.15 Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.2.16 Changes in v5.4.0
Added the function CVodeSetLSNormFactor to specify the factor for converting between integrator tolerances
(WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new functions CVodeComputeState, and CVodeGetNonlinearSystemData which advanced users might find
useful if providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The CVodeF function for forward integration with check-
pointing is now subject to a restriction on the number of time steps allowed to reach the output time. This is the same
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restriction applied to the CVode function. The default maximum number of steps is 500, but this may be changed using
the CVodeSetMaxNumSteps function. This change fixes a bug that could cause an infinite loop in the CVodeF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the SUNNonlin-
earSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retreived by
calling CVodeGetNumNonlinSolvIters, CVodeGetSensNumNonlinSolvIters, CVodeGetStgrSensNumNonlin-
SolvIters, the cumulative number of failures with CVodeGetNumNonlinSolvConvFails, CVodeGetSensNumNon-
linSolvConvFails, CVodeGetStgrSensNumNonlinSolvConvFails, or both with CVodeGetNonlinSolvStats,
CVodeGetSensNonlinSolvStats, CVodeGetStgrSensNonlinSolvStats.

A minor inconsistency in checking the Jacobian evaluation frequency has been fixed. As a result codes using using
a non-default Jacobian update frequency through a call to CVodeSetMaxStepsBetweenJac will need to increase the
provided value by 1 to achieve the same behavior as before. For greater clarity the function CVodeSetMaxStepsBe-
tweenJac has been deprecated and replaced with CVodeSetJacEvalFrequency. Additionally, the function CVode-
SetLSetupFrequency has been added to set the frequency of calls to the linear solver setup function.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs such
as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA modules that
accept a SUNMemoryHelper object. Refer to §4.6.1, §10, §6.10 and §6.13 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

1.2.17 Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

Added the optional functions CVodeSetJacTimesRhsFn and CVodeSetJacTimesRhsFnB to specify an alternative
right-hand side function for computing Jacobian-vector products with the internal difference quotient approximation.

12 Chapter 1. Introduction



User Documentation for CVODES, v6.6.0

1.2.18 Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Fixed a memory leak from not deallocating the atol1Smin® and ato1QSmin® arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse matrix implementation
from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR linear solver has been updated
to use this matrix, therefore, users of this module will need to update their code. These modules are still considered to
be experimental, thus they are subject to breaking changes even in minor releases.

The functions CVodeSetLinearSolutionScaling and CVodeSetLinearSolutionScalingB were added to enable
or disable the scaling applied to linear system solutions with matrix-based linear solvers to account for a lagged value
of v in the linear system matrix I — ~J. Scaling is enabled by default when using a matrix-based linear solver with
BDF methods.

1.2.19 Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, SUNDIALSFileOpen() and SUNDIALSFileClose () for creating/destroying file pointers
that are useful when using the Fortran 2003 interfaces.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module when using Anderson accelera-
tion.

1.2.20 Changes in v5.0.0

Build system changes

* Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as
SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path
to the BLAS library should be included in the variable for the third party library e.g., SUPERLUDIST_LIBRARIES
when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.
NVECTOR module changes

» Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty ()
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to
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be set. Additionally, the function N_VCopyOps () has been added to copy the operation function pointers be-
tween vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.2 for more details.

Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have been cre-
ated to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accom-
panied by additions to user documentation and SUNDIALS examples. See §6.17 and §6.18 for more details.

One new required vector operation and ten new optional vector operations have been added to the N_Vector APL.
The new required operation, , returns the global length of an . The optional operations have been added to support
the new NVECTOR_MPIMANYVECTOR implementation. The operation must be implemented by subvectors that are
combined to create an NVECTOR_MPIMANYVECTOR, but is not used outside of this context. The remaining nine
operations are optional local reduction operations intended to eliminate unnecessary latency when performing
vector reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vec-
tor operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VLINormLocal (), N_VWSqrSumLocal (),
N_VWSgrSumMaskLocal (), N_VInvTestLocal (), N_VConstrMaskLocal (), N_VMinLocal(),and N_VMin-
QuotientLocal (). If an N_Vector implementation defines any of the local operations as , then the NVEC-
TOR_MPIMANYVECTOR will call standard N_Vector operations to complete the computation.

An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.19 for more details.

The and functions have been removed from the NVECTOR_CUDA and NVECTOR_RAJA implementations re-
spectively. Accordingly, the nvector_mpicuda.h, libsundials_nvecmpicuda.lib, libsundials_-
nvecmpicudaraja.lib, and files have been removed. Users should use the NVECTOR_MPIPLUSX module cou-
pled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The nec-
essary changes are minimal and should require few code modifications. See the programs in and for examples of
how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10 for more details.

Added new Fortran 2003 interfaces for most N_Vector modules. See §6 for more details on how to use the
interfaces.

Added three new N_Vector utility functions N_VGetVecAtIndexVectorArray (), N_VSetVecAtIndexVec-
torArray (), and N_VNewVectorArray () for working with arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMat-

NewEmpty () allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers
in the operations structure initialized to . When used in the constructor for custom objects this function will ease
the introduction of any new optional operations to the SUNMatrix API by ensuring only required operations need
to be set. Additionally, the function SUNMatCopyOps () has been added to copy the operation function pointers
between matrix objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMatrix API by ensuring all operations are copied when
cloning objects. See §7 for more details.

A new operation, SUNMatMatvecSetup (), was added to the SUNMatrix API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who
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have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
structure member to NULL. See §7.2 for more details.

* The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indiciating success/failure may return different values than previously. See §7.2.1 for more
details.

¢ A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §7.9 for more details.

¢ Added new Fortran 2003 interfaces for most SUNMatrix modules. See §7 for more details on how to use the
interfaces.

SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor allocates an
“empty” generic SUNLinearSolver with the object’s content pointer and the function pointers in the operations
structure initialized to . When used in the constructor for custom objects this function will ease the introduction
of any new optional operations to the SUNLinearSolver API by ensuring only required operations need to be
set. See §8.1.8 for more details.

* The return type of the SUNLinearSolver API function has changed from to to be consistent with the type used
to store row indices in dense and banded linear solver modules.

¢ Added a new optional operation to the SUNLinearSolver API, SUNLinSolLastFlag(), that returns a for
identifying the linear solver module.

* The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

* A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.

* Added a new SUNLinearSolver implementation, SUNLINEARSOLVER CUSOLVERSP, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

¢ Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic(),, SUN-
LinSol_KLUGetNumeric() and SUNLinSol_KLUGetCommon (), to provide user access to the underlying KLU
solver structures. See §8.5 for more details.

¢ Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See §8 for more details on how to use
the interfaces.

SUNNonlinearSolver module changes

* A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUN-
NonlinSolSetConvTestFN() allocates an “empty” generic SUNNonlinearSolver with the object’s content
pointer and the function pointers in the operations structure initialized to . When used in the constructor for cus-
tom objects this function will ease the introduction of any new optional operations to the SUNNonlinearSolver
API by ensuring only required operations need to be set. See §9.1.7 for more details.

* To facilitate the use of user supplied nonlinear solver convergence test functions the function in the SUNNonlin-
earSolver API has been updated to take a data pointer as input. The supplied data pointer will be passed to the
nonlinear solver convergence test function on each call.

 The inputs values passed to the first two inputs of the function SUNNonlinSolSolve() in the SUNNonlinear-
Solver have been changed to be the predicted state and the initial guess for the correction to that state. Ad-
ditionally, the definitions of SUNNonlinSolLSetupFn() and SUNNonlinSolLSolveFn() in the SUNNonlin-
earSolver API have been updated to remove unused input parameters. For more information on the nonlinear
system formulation see §9.2 and for more details on the API functions see §9.
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* Added a new SUNNonlinearSolver implementation, SUNNONLINSOL_PETSC, which interfaces to the PETSc

SNES nonlinear solver API. See §9.5 for more details.

¢ Added new Fortran 2003 interfaces for most SUNNonlinearSolver modules. See §4.5 for more details on how

to use the interfaces.

1.2.20.1 CVODES changes

Fixed a bug in the CVODES constraint handling where the step size could be set below the minimum step size.

Fixed a bug in the CVODES nonlinear solver interface where the norm of the accumulated correction was not
updated when using a non-default convergence test function.

Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars for the fused
vector scale operation stopped one iteration early.

Fixed a bug where the CVodeF function would return the wrong flag under certrain cirumstances.

Fixed a bug where the CVodeF function would not return a root in CV_NORMAL_STEP mode if the root occurred
after the desired output time.

Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario, CVODES will remove at least
one global reduction per time step.

The CVLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function CVLsLinSysFn was added as an alternative method for evaluating the
linear system M = I — vJ.

Added new functions, CVodeGetCurrentGamma, CVodeGetCurrentState, CVodeGetCurrentStateSens,
and CVodeGetCurrentSensSolveIndex which may be useful to users who choose to provide their own non-
linear solver implementations.

Added a Fortran 2003 interface to CVODES. See Chapter §4.5 for more details.

1.2.21 Changes in v4.1.0

An additional N_Vector implementation was added for the TPETRA vector from the Trilinos library to facilitate inter-
operability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file cvodes_impl .h is no longer installed. This means users who are directly manipulating
the CVodeMem structure will need to update their code to use CVODES’s public API.

Python is no longer required to run make test and make test_install.
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1.2.22 Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the CVODES library, 1ibsundials_cvodes.

1.2.23 Changes in v4.0.1

No changes were made in this release.

1.2.24 Changes in v4.0.0

CVODES?’ previous direct and iterative linear solver interfaces, CVDLS and CVSPILS, have been merged into a single
unified linear solver interface, CVLS, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how CVLS utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in Chapter §8. All CVODES example programs and the standalone linear solver examples
have been updated to use the unified linear solver interface.

The unified interface for the new CVLS module is very similar to the previous CVDLS and CVSPILS interfaces. To
minimize challenges in user migration to the new names, the previous C routine names may still be used; these will be
deprecated in future releases, so we recommend that users migrate to the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names
are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense,
SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUN-
LinSol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges
in user migration to the new names, the previous routine names may still be used; these will be deprecated in fu-
ture releases, so we recommend that users migrate to the new names soon. All CVODES example programs and the
standalone linear solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNonlin-
earSolver API This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNonlinearSolver API and SUNDIALS provided modules are described in Chapter §9
and follow the same object oriented design and implementation used by the N_Vector, SUNMatrix, and SUNLinear-
Solver modules. Currently two SUNNonlinearSolver implementations are provided, SUNNONLINSOL_NEWTON and
SUNNONLINSOL_FIXEDPOINT. These replicate the previous integrator specific implementations of a Newton iteration
and a fixed-point iteration (previously referred to as a functional iteration), respectively. Note the SUNNONLINSOL_-
FIXEDPOINT module can optionally utilize Anderson’s method to accelerate convergence. Example programs using
each of these nonlinear solver modules in a standalone manner have been added and all CVODES example programs
have been updated to use generic SUNNonlinearSolver modules.

With the introduction of SUNNonlinearSolver modules, the input parameter iter to CVodeCreate has been re-
moved along with the function CVodeSetIterType and the constants CV_NEWTON and CV_FUNCTIONAL. Instead of
specifying the nonlinear iteration type when creating the CVODES memory structure, CVODES uses the SUNNON-
LINSOL_NEWTON module implementation of a Newton iteration by default. For details on using a non-default or user-
supplied nonlinear solver see Chapters §5.1, §5.3, and §5.4. CVODES functions for setting the nonlinear solver options
(e.g., CVodeSetMaxNonlinIters) or getting nonlinear solver statistics (e.g., CVodeGetNumNonlinSolvIters) re-
main unchanged and internally call generic SUNNonlinearSolver functions as needed.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an N_Vector
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(see Chapter §6 for more details). The new operations are intended to increase data reuse in vector operations, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with ac-
celerators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an N_Vector implementation defines any of these operations as NULL, then
standard N_Vector operations will automatically be called as necessary to complete the computation. Multiple updates
to NVECTOR_CUDA were made:

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda to return the local vector length.

* Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

¢ Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
e Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPEN-
MPDEV. See §6.15 for more details. Two changes were made in the CVODE/CVODES/ARKODE initial step size
algorithm:

1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

1.2.25 Changes in v3.2.1

The changes in this minor release include the following:

* Fixed a bug in the CUDA N_Vector where the N_VInvTest operation could write beyond the allocated vector
data.

* Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib. CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can modified.

18 Chapter 1. Introduction



User Documentation for CVODES, v6.6.0

1.2.26 Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been added to CVODE
and CVODES. See Chapter §2 and the description of CVodeSetConstraints () for more details. Use of CVodeSet-
Constraints requires the N_Vector operations N_MinQuotient, N_VConstrMask, and N_VCompare that were not
previously required by CVODE and CVODES.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA N_Vector library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
* CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

* The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPTEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.2.27 Changes in v3.1.2

The changes in this minor release include the following:

» Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

* Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

* Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

» Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

» Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally
handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is
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still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~vJ manually (with zero
entries if needed).

Added new example, cvRoberts_FSA_dns_Switch.c, which demonstrates switching on/off forward sensitiv-
ity computations. This example came from the usage notes page of the SUNDIALS website.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by CVSpilsSet-
JacTimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be removed in the next major
release.

Changed the LICENSE install path to instdir/include/sundials.

1.2.28 Changes in v3.1.1

The changes in this minor release include the following:

Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for three inconsistent
roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple
times then the solver memory was reallocated (without being freed).

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used
(to avoid compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in N_Vector and SUNMatrix header files.

Fixed an indexing bug in the CUDA N_Vector implementation of N_VWrmsNormMask and revised the RAJA
N_Vector implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build system, and user
documentation.

1.2.29 Changes in v3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.2.30 Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries. Specific changes include:

Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented API.

Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK

dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented APIL
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* Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

* Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional N_Vector implementations were added — one for CUDA and one for RAJA vectors. These vectors are
supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to th web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing F9O_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

A bug fix was made in CVodeFree to call 1free unconditionally (if non-NULL).

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.2. Changes from previous versions 21


https://software.llnl.gov/RAJA/
https://xsdk.info

User Documentation for CVODES, v6.6.0

1.2.31 Changes in v2.9.0

Two additional N_Vector implementations were added — one for Hypre (parallel) ParVector vectors, and one for PETSc
vectors. These additions are accompanied by additions to various interface functions and to user documentation.

Each N_Vector module now includes a function, N_VGetVectorID, that returns the N_Vector module name.
A bug was fixed in the interpolation functions used in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to O in both the solver specifica-
tion function and in solver 1init function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done to return integers
from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and cor-
rections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR format
when using KLU.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

New examples were added for use of sparse direct solvers within sensitivity integrations and for use of OpenMP.

Minor corrections and additions were made to the CVODES solver, to the examples, to installation-related files, and to
the user documentation.

1.2.32 Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the CVODES solver. First,
in the serial case, an interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the
multi-threaded version of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the
serial version of the N_Vector module. As part of these additions, a sparse matrix (CSC format) structure was added
to CVODES.

Otherwise, only relatively minor modifications were made to the CVODES solver:

In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line was added to break
out of root-search loop if the initial interval size is below the tolerance ttol.

In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an illegal input error
for DGBTRF /DGBTRS.

Some minor changes were made in order to minimize the differences between the sources for private functions in
CVODES and CVODE.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian: With a call to
CVD1sSetDenseJacFnBS or CVD1sSetBandJacFnBS, the user can specify a user-supplied Jacobian function of type
CVD1s***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

In CVodeQuadSensInit, the line cv_mem->cv_£fQS_data = ... was corrected (missing Q).

In the User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph was added in Sec-
tion 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was revised to include the use of
CVodeGetAdjY.

Two minor bugs were fixed regarding the testing of input on the first call to CVode — one involving tstop and one
involving the initialization of *tret.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward sensitivities, options
have been added to allow for user-supplied pset, psolve, and jtimes functions.
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In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and example programs.

In the example cvsHessian_ASA_FSA, an error was corrected in the function £B2: y2 in place of y3 in the third term
of Ith(yBdot,6).

Two new N_Vector modules have been added for thread-parallel computing environments — one for OpenMP, denoted
NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

1.2.33 Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output 1sflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray / NewLintArray, for int
and long int arrays, respectively. In a minor change to the user interface, the type of the index which in CVODES
was changed from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.

A large number of minor errors have been fixed. Among these are the following: In CVSetTgBDF, the logic was
changed to avoid a divide by zero. After the solver memory is created, it is set to zero before being filled. In each linear
solver interface function, the linear solver memory is freed on an error return, and the **Free function now includes a
line setting to NULL the main memory pointer to the linear solver memory. In the rootfinding functions CVRcheck1 /
CVRcheck2, when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of shifting the
t location t1lo slightly. In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_-
MATH, so that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

1.2.34 Changes in v2.6.0

Two new features related to the integration of ODE IVP problems were added in this release: (a) a new linear solver
module, based on BLAS and LAPACK for both dense and banded matrices, and (b) an option to specify which direction
of zero-crossing is to be monitored while performing rootfinding.

This version also includes several new features related to sensitivity analysis, among which are: (a) support for in-
tegration of quadrature equations depending on both the states and forward sensitivity (and thus support for forward
sensitivity analysis of quadrature equations), (b) support for simultaneous integration of multiple backward problems
based on the same underlying ODE (e.g., for use in an forward-over-adjoint method for computing second order deriva-
tive information), (c) support for backward integration of ODEs and quadratures depending on both forward states and
sensitivities (e.g., for use in computing second-order derivative information), and (d) support for reinitialization of the
adjoint module.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization of all linear solver
modules into two families (besides the existing family of scaled preconditioned iterative linear solvers, the direct solvers,
including the new LAPACK-based ones, were also organized into a direct family); (b) maintaining a single pointer to
user data, optionally specified through a Set-type function; and (c) a general streamlining of the preconditioner modules
distributed with the solver. Moreover, the prototypes of all functions related to integration of backward problems were
modified to support the simultaneous integration of multiple problems. All backward problems defined by the user are
internally managed through a linked list and identified in the user interface through a unique identifier.
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1.2.35 Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3). At the user
interface level, the main impact is in the mechanism of including SUNDIALS header files which must now include the
relative path (e.g. #include <cvode/cvode.h>). Additional changes were made to the build system: all exported
header files are now installed in separate subdirectories of the instaltion include directory.

In the adjoint solver module, the following two bugs were fixed: in CVodeF the solver was sometimes incorrectly taking
an additional step before returning control to the user (in CV_NORMAL mode) thus leading to a failure in the interpolated
output function; in CVodeB, while searching for the current check point, the solver was sometimes reaching outside the
integration interval resulting in a segmentation fault.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m X n matrices (m < n), while the factorization and solution functions were renamed to
DenseGETRF / denGETRF and DenseGETRS / denGETRS, respectively. The factorization and solution functions in
the generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.

1.2.36 Changes in v2.4.0

CVSPBCG and CVSPTFQMR modules have been added to interface with the Scaled Preconditioned Bi-CGstab (SP-
BCG) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR) linear solver modules, respec-
tively (for details see Chapter §5.1). At the same time, function type names for Scaled Preconditioned Iterative Linear
Solvers were added for the user-supplied Jacobian-times-vector and preconditioner setup and solve functions.

A new interpolation method was added to the CVODES adjoint module. The function CVadjMalloc has an additional
argument which can be used to select the desired interpolation scheme.

The deallocation functions now take as arguments the address of the respective memory block pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes
(cvodes_ and sundials_). When using the default installation procedure, the header files are exported under various
subdirectories of the target include directory. For more details see Appendix §11.

1.2.37 Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

1.2.38 Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one. An optional user-supplied routine for setting the error weight vector was added. Additionally, to resolve
potential variable scope issues, all SUNDIALS solvers release user data right after its use. The build systems has been
further improved to make it more robust.
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1.2.39 Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the rootfinding procedure
on the integration first step.

1.2.40 Changes in v2.1.1

This CVODES release includes bug fixes related to forward sensitivity computations (possible loss of accuray on a
BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In addition, we have added the
option of activating and deactivating forward sensitivity calculations on successive CVODES runs without memory
allocation/deallocation.

Other changes in this minor SUNDIALS release affect the build system.

1.2.41 Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, CVODES now provides a set of routines (with prefix CVodeSet) to change
the default values for various quantities controlling the solver and a set of extraction routines (with prefix CVodeGet)
to extract statistics after return from the main solver routine. Similarly, each linear solver module provides its own set
of Set- and Get-type routines. For more details see §5.1.5.10 and §5.1.5.12.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians, preconditioner infor-
mation, and sensitivity right hand sides) were simplified by reducing the number of arguments. The same information
that was previously accessible through such arguments can now be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed during the integration
of the ODE system.

Installation of CVODES (and all of SUNDIALS) has been completely redesigned and is now based on configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided as a separate
document. We expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of CVODES. The most casual user, with a small IVP problem only, can
get by with reading §2.1, then Chapter §5.1 up to §5.2 only, and looking at examples in [56]. In addition, to solve a
forward sensitivity problem the user should read §2.7, followed by Chapter §5.3 and look at examples in [56].

In a different direction, a more expert user with an IVP problem may want to (a) use a package preconditioner (§5.2.7),
(b) supply his/her own Jacobian or preconditioner routines (§5.1.6), (c) do multiple runs of problems of the same
size (CVodeReInit()), (d) supply a new N_Vector module (§6), or even (e) supply new SUNLinearSolver and/or
SUNMatrix modules (Chapters §7 and §8). An advanced user with a forward sensitivity problem may also want to
(a) provide his/her own sensitivity equations right-hand side routine §5.3.3, (b) perform multiple runs with the same
number of sensitivity parameters (§5.3.2.1, or (c) extract additional diagnostic information (§5.3.2.7). A user with
an adjoint sensitivity problem needs to understand the IVP solution approach at the desired level and also go through
§2.8 for a short mathematical description of the adjoint approach, Chapter §5.4 for the usage of the adjoint module in
CVODES, and the examples in [56].

The structure of this document is as follows:
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In Chapter §2, we give short descriptions of the numerical methods implemented by CVODES for the solution
of initial value problems for systems of ODEs, continue with short descriptions of preconditioning §2.3, stability
limit detection (§2.4), and rootfinding (§2.5), and conclude with an overview of the mathematical aspects of
sensitivity analysis, both forward (§2.7) and adjoint (§2.8).

The following chapter describes the structure of the SUNDIALS suite of solvers (§3) and the software organiza-
tion of the CVODES solver (§3.1).

Chapter §5.1 is the main usage document for CVODES for simulation applications. It includes a complete
description of the user interface for the integration of ODE initial value problems. Readers that are not interested
in using CVODES for sensitivity analysis can then skip the next two chapters.

Chapter §5.3 describes the usage of CVODES for forward sensitivity analysis as an extension of its IVP integra-
tion capabilities. We begin with a skeleton of the user main program, with emphasis on the steps that are required
in addition to those already described in Chapter §5.1. Following that we provide detailed descriptions of the
user-callable interface routines specific to forward sensitivity analysis and of the additonal optional user-defined
routines.

Chapter §5.4 describes the usage of CVODES for adjoint sensitivity analysis. We begin by describing the
CVODES checkpointing implementation for interpolation of the original IVP solution during integration of the
adjoint system backward in time, and with an overview of a user’s main program. Following that we provide com-
plete descriptions of the user-callable interface routines for adjoint sensitivity analysis as well as descriptions of
the required additional user-defined routines.

Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the N_Vector implementations provided with SUNDIALS.

Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS: a dense implementation
(§§7.3), a banded implementation (§§7.6) and a sparse implementation (§§7.8).

Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

Finally, in the appendices, we provide detailed instructions for the installation of CVODES, within the structure
of SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from CVODES
functions (Appendix §12).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as CVodeInit) within textual explanations appear in typewriter type style; fields in C structures (such
as content) appear in italics; and packages or modules, such as CVDLS, are written in all capitals.

Warning: Usage and installation instructions that constitute important warnings are marked in yellow boxes like
this one.
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1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2023, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.
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Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
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Chapter 2

Mathematical Considerations

CVODES solves ODE initial value problems (IVPs) in real /V-space, which we write in the abstract form

y=rty), ylte) =wvo @1

where y € R¥ and f : R x RY — R¥. Here we use 9 to denote dy/dt. While we use ¢ to denote the independent
variable, and usually this is time, it certainly need not be. CVODES solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself.

For problems (2.1) where the analytical solution y(¢) satisfies an implicit constraint g(¢,y) = 0 (including the initial
condition, g(to, yo) = 0) for g(¢,y) : R x RN — RM with M < N, CVODES may be configured to explicitly enforce
these constraints via solving the modified problem

t’ 3 t - 3
y=1rty), ylto) =yo 2.2)
0=g(ty
Additionally, if (2.1) depends on some parameters p € R™7, i.e.
] = t? )
y= [ty p) 23)

y(to) = vo(p),

CVODES can also compute first order derivative information, performing either forward sensitivity analysis or adjoint
sensitivity analysis. In the first case, CVODES computes the sensitivities of the solution with respect to the parameters
p, while in the second case, CVODES computes the gradient of a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in CVODES are variable-order, variable-step multistep methods, based on formulas of the form

K; Ko
Z an,iyn_i + hn Z ﬁn,iyn_i =0. (24)
=0 =0

Here the y™ are computed approximations to y(¢,,), and h,, = t,, — t,,_1 is the step size. The user of CVODES must
choose appropriately one of two multistep methods. For nonstiff problems, CVODES includes the Adams-Moulton
formulas, characterized by K; = 1 and K5 = g—1 above, where the order ¢ varies between 1 and 12. For stiff problems,
CVODES includes the Backward Differentiation Formulas (BDF) in so-called fixed-leading coefficient (FLC) form,
given by K1 = q and Ks = 0, with order ¢ varying between 1 and 5. The coefficients are uniquely determined by the
method type, its order, the recent history of the step sizes, and the normalization «,, o = —1. See [18] and [42].
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For either choice of formula, a nonlinear system must be solved (approximately) at each integration step. This nonlinear
system can be formulated as either a rootfinding problem

Fy")=y" = hnBnof(tn,y") —an =0, (2.5)

or as a fixed-point problem
G(") = haBrof(tn, y") +an =y". (2.6)

where a, = >, (¥ " + B Bn " 0).

In the process of controlling errors at various levels, CVODES uses a weighted root-mean-square norm, denoted | -
|wrwms, for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative
and absolute tolerances input by the user, namely

W; = 1/[rtol - |y;| + atol;] . 2.7

Because 1/, represents a tolerance in the component y;, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.1.1 Nonlinear Solve

CVODES provides several nonlinear solver choices as well as the option of using a user-defined nonlinear solver (see
§9). By default CVODES solves (2.5) with a Newton iteration which requires the solution of linear systems

M[yn(m-&-l) _ yn(m)] — _F(yn('m)) (2.8)

in which
M~I—~J, J=0f/0y, and ~v=h,0ho- 2.9)

The exact variation of the Newton iteration depends on the choice of linear solver and is discussed below and in §9.3.
For nonstiff systems, a fixed-point iteration (previously referred to as a functional iteration in this guide) solving (2.6)
is also available. This involves evaluations of f only and can (optionally) use Anderson’s method [9, 30, 49, 62] to
accelerate convergence (see §9.4 for more details). For any nonlinear solver, the initial guess for the iteration is a
predicted value y™(°) computed explicitly from the available history data.

For nonlinear solvers that require the solution of the linear system (2.8) (e.g., the default Newton iteration), CVODES
provides several linear solver choices, including the option of a user-supplied linear solver module (see §8). The linear
solver modules distributed with SUNDIALS are organized in two families, a direct family comprising direct linear
solvers for dense, banded, or sparse matrices, and a spils family comprising scaled preconditioned iterative (Krylov)
linear solvers. The methods offered through these modules are as follows:

 dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [58] and an interface to the oneMKL library [2],

* band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

* sparse direct solver interfaces to various libraries, including KLU [3, 23], SuperLU_MT [8, 25, 46], SuperLU_-
Dist [7, 33, 47, 48], and cuSPARSE [6],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or
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* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF integrator and a precon-
ditioned Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear
iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form
of the user-supplied preconditioner matrix [15].

In addition, CVODES also provides a linear solver module which only uses a diagonal approximation of the Jacobian
matrix.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
iteration matrix M is fixed throughout the nonlinear iterations. However, in the case that a matrix-free iterative linear
solver is used, the default Newton iteration is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. With the
default Newton iteration, the matrix M and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,

* more than 20 steps have been taken since the last update,

* the value 7 of ~ at the last update satisfies |v/5 — 1| > 0.3,
 anon-fatal convergence failure just occurred, or

* an error test failure just occurred.

When an update of M or P occurs, it may or may not involve a reevaluation of J (in M) or of Jacobian data (in P),
depending on whether Jacobian error was the likely cause of the update. Reevaluating J (or instructing the user to
update Jacobian data in P) occurs when:

e starting the problem,
» more than 50 steps have been taken since the last evaluation,

* aconvergence failure occurred with an outdated matrix, and the value 7 of -y at the last update satisfies |y/7—1| <
0.2, or

* a convergence failure occurred that forced a step size reduction.

The default stopping test for nonlinear solver iterations is related to the subsequent local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. As described below, the final computed
value y"("™) will have to satisfy a local error test ||y™("™) —™(0)|| < €. Letting 4" denote the exact solution of (2.5), we
want to ensure that the iteration error y™ — y™(") is small relative to e, specifically that it is less than 0.1¢. (The safety
factor 0.1 can be changed by the user.) For this, we also estimate the linear convergence rate constant R as follows. We
initialize R to 1, and reset R = 1 when M or P is updated. After computing a correction d,,, = 3™("™) — 4*(m=1) e
update Rif m > 1 as

R = max{0.3R, [[0m]|/[|om—1]}-
Now we use the estimate
L R o e R e T (S 1 [
Therefore the convergence (stopping) test is
R|[6m|| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration diverged if any
10 I/ 10m—1]] > 2 with m > 1. If convergence fails with JJ or P current, we are forced to reduce the step size, and
we replace h,, by h, = n¢t * hy, where the default is 7. = 0.25. The integration is halted after a preset number of
convergence failures; the default value of this limit is 10, but this can be changed by the user.
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When an iterative method is used to solve the linear system, its errors must also be controlled, and this also involves
the local error test constant. The linear iteration error in the solution vector §,, is approximated by the preconditioned
residual vector. Thus to ensure (or attempt to ensure) that the linear iteration errors do not interfere with the nonlinear
error and local integration error controls, we require that the norm of the preconditioned residual be less than 0.05 -
(0.1e).

When the Jacobian is stored using either the SUNMATRIX _DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian may be supplied by a user routine, or approximated by difference quotients, at the user’s option. In the latter case,
we use the usual approximation

Jij = filt,y +oje5) — fi(t,y)]/oj .

The increments o; are given by
oj = max{ﬁ |yj|,00/Wj} ,

where U is the unit roundoff, o is a dimensionless value, and WV, is the error weight defined in (2.7). In the dense case,
this scheme requires /N evaluations of f, one for each column of .J. In the band case, the columns of .J are computed
in groups, by the Curtis-Powell-Reid algorithm, with the number of f evaluations equal to the bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both, with user-supplied
routines for the preconditioning setup and solve operations, and optionally also for the required matrix-vector products
Juv. If a routine for Jv is not supplied, these products are computed as

Jv=[f(t,y+ov)— f(t,y)]/o. (2.10)

The increment o is 1/||v]|, so that ov has norm 1.

2.1.2 Local Error Test

A critical part of CVODES — making it an ODE “solver” rather than just an ODE method, is its control of local
error. Atevery step, the local error is estimated and required to satisfy tolerance conditions, and the step is redone with
reduced step size whenever that error test fails. As with any linear multistep method, the local truncation error LTE, at
order g and step size h, satisfies an asymptotic relation

LTE = Ch9+1yatD) 4 O(h+2)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error in the predictor
™), These are combined to get a relation

LTE = C'[y" — y" O] + O(h?*?).

The local error test is simply |[LTE| < 1. Using the above, it is performed on the predictor-corrector difference A,, =
y™m) — y(0) (with y™("™) the final iterate computed), and takes the form

1An]l < e=1/1C".
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2.1.3 Step Size and Order Selection

If the local error test passes, the step is considered successful. If it fails, the step is rejected and a new step size h' is
computed based on the asymptotic behavior of the local error, namely by the equation

(BRI H[ Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails three times, the
order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The ratio n = h’/h is limited above
t0 Nmax_ef (default 0.2) after two error test failures, and limited below to 7min o (default 0.1) after three. After seven
failures, CVODES returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODES periodically adjusts the order, with the goal
of maximizing the step size. The integration starts out at order 1 and varies the order dynamically after that. The basic
idea is to pick the order ¢ for which a polynomial of order g best fits the discrete data involved in the multistep method.
However, if either a convergence failure or an error test failure occurred on the step just completed, no change in step
size or order is done. At the current order g, selecting a new step size is done exactly as when the error test fails, giving
a tentative step size ratio

W [h = (e/6] A +D =,

We consider changing order only after taking ¢ + 1 steps at order ¢, and then we consider only orders ¢’ = ¢ — 1 (if
q > 1)orq = q+ 1 (if ¢ < 5). The local truncation error at order ¢’ is estimated using the history data. Then a
tentative step size ratio is computed on the basis that this error, LTE(q’), behaves asymptotically as he'*+1. With safety
factors of 1/6 and 1/10 respectively, these ratios are:

h'/h = [1/6||LTE(q — 1)|[]"/* = 1y
and
R /h = [1/10|LTE(g + D[]/ = gy .
The new order and step size are then set according to

n = max{nq—1, Mg, Ng+17 »

with ¢’ set to the index achieving the above maximum. However, if we find that < 7max g (default 1.5), we do not
bother with the change. Also, 7 is always limited to 9max_gs (default 10), except on the first step, when it is limited to
Thmax_fs = 104‘

The various algorithmic features of CVODES described above, as inherited from VODE and VODPK, are documented
in [14, 17, 38]. They are also summarized in [39].

Normally, CVODES takes steps until a user-defined output value ¢ = ¢, is overtaken, and then it computes y(tou) by
interpolation. However, a “one step”” mode option is available, where control returns to the calling program after each
step. There are also options to force CVODES not to integrate past a given stopping point ¢ = tyop.

2.1.4 Inequality Constraints

CVODES permits the user to impose optional inequality constraints on individual components of the solution vector
y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
Newton iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, CVODES estimates
anew step size k' using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). If a step fails to satisfy the constraints repeatedly within a step attempt
or fails with the minimum step size then the integration is halted and an error is returned. In this case the user may
need to employ other strategies as discussed in §5.1.5.2 to satisfy the inequality constraints.
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2.2 IVPs with constraints

For IVPs whose analytical solutions implicitly satisfy constraints as in (2.2), CVODES ensures that the solution satisfies
the constraint equation by projecting a successfully computed time step onto the invariant manifold. As discussed in
[29] and [57], this approach reduces the error in the solution and retains the order of convergence of the numerical
method. Therefore, in an attempt to advance the solution to a new point in time (i.e., taking a new integration step),
CVODES performs the following operations:

1. predict solution
2. solve nonlinear system and correct solution
3. project solution

4. test error

5. select order and step size for next step

and includes several recovery attempts in case there are convergence failures (or difficulties) in the nonlinear solver or
in the projection step, or if the solution fails to satisfy the error test. Note that at this time projection is only supported
with BDF methods and the projection function must be user-defined. See §5.1.5.8 and CVodeSetProjFn() for more
information on providing a projection function to CVODE.

When using a coordinate projection method the solution y,, is obtained by projecting (orthogonally or otherwise) the
solution y,, from step 2 above onto the manifold given by the constraint. As such y,, is computed as the solution of the
nonlinear constrained least squares problem

minimize ||yn — Jn|

2.11
subjectto  g(tn,yn) = 0. @11

The solution of (2.11) can be computed iteratively with a Newton method. Given an initial guess y7(,,0) the iterations are
computed as

it =yl + sy

n
where the increment 5y§f ) is the solution of the least-norm problem
minimize ||dy{V|

subject to G, y%) 6y = —g(tn,y )

n

2.12)

where G(t,y) = 0g(t,y)/0y.

If the projected solution satisfies the error test then the step is accepted and the correction to the unprojected solution,
Ap = Yn — Un, is used to update the Nordsieck history array for the next step.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of the linear system, e.g., the default Newton iteration (§9.3),
CVODES makes repeated use of a linear solver to solve linear systems of the form Mx = —r, where z is a correction
vector and 7 is a residual vector. If this linear system solve is done with one of the scaled preconditioned iterative linear
solvers supplied with SUNDIALS, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Az = b can be preconditioned
on the left, as (P~ ' A)z = P~'b; on the right, as (AP~') Pz = b; or on both sides, as (P; ' APy ') Prx = P; 'b.
The Krylov method is then applied to a system with the matrix P~' A, or AP~!, or P; ' APy, instead of A. In order
to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product P;, Pr, in the last case,
should in some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix
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P, or matrices Pr, and Pg, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for example,
see [15] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side, or on both sides,
although we know of no situation where preconditioning on both sides is clearly superior to preconditioning on one side
only (with the product P, Pr). Moreover, for a given preconditioner matrix, the merits of left vs. right preconditioning
are unclear in general, and the user should experiment with both choices. Performance will differ because the inverse
of the left preconditioner is included in the linear system residual whose norm is being tested in the Krylov algorithm.
As a rule, however, if the preconditioner is the product of two matrices, we recommend that preconditioning be done
either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with CVODES are based on approximations to the system Jacobian, J = Jf/dy. Since
the matrix involved is M = I —~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = I — ~.J. Because the Krylov iteration occurs within a nonlinear solver iteration and further also within
a time integration, and since each of these iterations has its own test for convergence, the preconditioner may use a
very crude approximation, as long as it captures the dominant numerical feature(s) of the system. We have found that
the combination of a preconditioner with the Newton-Krylov iteration, using even a fairly poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.4 BDF stability limit detection

CVODES includes an algorithm, STALD (STAbility Limit Detection), which provides protection against potentially
unstable behavior of the BDF multistep integration methods in certain situations, as described below.

When the BDF option is selected, CVODES uses Backward Differentiation Formula methods of orders 1 to 5. At order
1 or 2, the BDF method is A-stable, meaning that for any complex constant A in the open left half-plane, the method
is unconditionally stable (for any step size) for the standard scalar model problem §y = Ay. For an ODE system, this
means that, roughly speaking, as long as all modes in the system are stable, the method is also stable for any choice of
step size, at least in the sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case, in order for the
method to be stable at step size h on the scalar model problem, the product hA must lie within a region of absolute
stability. That region excludes a portion of the left half-plane that is concentrated near the imaginary axis. The size of
that region of instability grows as the order increases from 3 to 5. What this means is that, when running BDF at any
of these orders, if an eigenvalue A of the system lies close enough to the imaginary axis, the step sizes h for which the
method is stable are limited (at least according to the linear stability theory) to a set that prevents A\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region is much narrower
than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly damped oscillations. A
pure undamped oscillation corresponds to an eigenvalue on the imaginary axis. Problems with modes of that kind call
for different considerations, since the oscillation generally must be followed by the solver, and this requires step sizes
(h ~ 1/v, where v is the frequency) that are stable for BDF anyway. But for a weakly damped oscillatory mode, the
oscillation in the solution is eventually damped to the noise level, and at that time it is important that the solver not be
restricted to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection option is appropriate
are ODE systems resulting from semi-discretized PDE:s (i.e., PDEs discretized in space) with advection and diffusion,
but with advection dominating over diffusion. Diffusion alone produces pure decay modes, while advection tends to
produce undamped oscillatory modes. A mix of the two with advection dominant will have weakly damped oscillatory
modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region boundary that is limiting
the step sizes in the presence of a weakly damped oscillation [36]. The algorithm supplements (but differs greatly from)
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the existing algorithms in CVODES for choosing step size and order based on estimated local truncation errors. The
STALD algorithm works directly with history data that is readily available in CVODES. If it concludes that the step
size is in fact stability-limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The STALD algorithm has been tested in combination with the VODE solver on linear advection-dominated
advection-diffusion problems [37], where it works well. The implementation in CVODES has been successfully tested
on linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some computational overhead to the CVODES solution. (In timing tests, these
overhead costs have ranged from 2% to 7% of the total, depending on the size and complexity of the problem, with
lower relative costs for larger problems.) Therefore, it should be activated only when there is reasonable expectation
of modes in the user’s system for which it is appropriate. In particular, if a CVODES solution with this option turned
off appears to take an inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution
time scale, then there is a good chance that step sizes are being limited by stability, and that turning on the option will
improve the efficiency of the solution.

2.5 Rootfinding

The CVODES solver has been augmented to include a rootfinding feature. This means that, while integrating the Initial
Value Problem (2.1), CVODES can also find the roots of a set of user-defined functions g; (¢, y) that depend both on ¢
and on the solution vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found
to have a root in any given interval, the various root locations are found and reported in the order that they occur on the
t axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(¢, y(t)),
denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it will probably be
missed by CVODES. If such a root is desired, the user should reformulate the root function so that it changes sign at
the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to hone in on the root(s) with a modified secant method [35]. In addition, each time g is computed, CVODES
checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is found at a
point £, CVODES computes g at ¢ 4+ ¢ for a small increment J, slightly further in the direction of integration, and if
any g;(t + d) = 0 also, CVODES stops and reports an error. This way, each time CVODES takes a time step, it is
guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, CVODES
has an interval (¢;,, tn;] in which roots of the g;(¢) are to be sought, such that ¢; is further ahead in the direction of
integration, and all g;(¢;,) # 0. The endpoint 5 is either ¢,,, the end of the time step last taken, or the next requested
output time t,, if this comes sooner. The endpoint ¢;, is either ¢,,_1, the last output time ¢, (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,, if
an exact zero was found. The algorithm checks g; at tj; for zeros and for sign changes in (¢, t;). If no sign changes
were found, then either a root is reported (if some g;(¢5,;) = 0) or we proceed to the next time interval (starting at ¢5;).
If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given
by

7 =100 U * (|t,| + |h]) (U = unit roundof) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (¢tn:)|/|9: (tni) — g:(ti0)], corresponding to the closest to ¢;, of the secant method
values. At each pass through the loop, a new value t,,;4 is set, strictly within the search interval, and the values of
9i(tmia) are checked. Then either ¢;, or tp; is reset to ¢,,;4 according to which subinterval is found to include the sign
change. If there is none in (¢;,, t;niq) but some g;(tmiq) = 0, then that root is reported. The loop continues until
|thi — tio| < 7, and then the reported root location is tp;.
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In the loop to locate the root of g;(t), the formula for ¢,,;4 is
tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,;4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs. high, i.e., toward ¢;, vs. toward ¢5;) in
which the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two
sides were the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,,;4 is closer to
1, when o < 1 and closer to t;,; when o > 1. If the above value of ¢,,;4 is within 7/2 of ¢;, or ¢, it is adjusted
inward, such that its fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being
the midpoint), and the actual distance from the endpoint is at least /2.

2.6 Pure Quadrature Integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity analysis run
(see §2.8) it is of interest to compute integral quantities of the form

2(t) = / q(t,y(7),p)dr. (2.13)

to

The most effective approach to compute z(t) is to extend the original problem with the additional ODEs (obtained by
applying Leibnitz’s differentiation rule):

2:q(t7yap)7 Z(t()):O

Note that this is equivalent to using a quadrature method based on the underlying linear multistep polynomial repre-
sentation for y(t).

This can be done at the “user level” by simply exposing to CVODES the extended ODE system (2.3) + (2.13). However,
in the context of an implicit integration solver, this approach is not desirable since the nonlinear solver module will
require the Jacobian (or Jacobian-vector product) of this extended ODE. Moreover, since the additional states z do not
enter the right-hand side of the ODE (2.13) and therefore the right-hand side of the extended ODE system, it is much
more efficient to treat the ODE system (2.13) separately from the original system (2.3) by “taking out” the additional
states z from the nonlinear system (2.5) that must be solved in the correction step of the LMM. Instead, “corrected”
values 2" are computed explicitly as

Qn .0

)

K2 Kl
1 o By
Zn = - (hnﬁn,oq(t'ru ynap) + hn Zﬂn,izn ! + Z an,izn Z) )
i=1 i=1

once the new approximation y" is available.

The quadrature variables z can be optionally included in the error test, in which case corresponding relative and absolute
tolerances must be provided.

2.7 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale models depend on various parameters, through the right-
hand side vector and/or through the vector of initial conditions, as in (2.3). In addition to numerically solving the ODEs,
it may be desirable to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior of the simulation
or to evaluate optimization gradients (in the setting of dynamic optimization, parameter estimation, optimal control,
etc.).
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The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) = dy(t)/Op; and satisfies
the following forward sensitivity equations (or sensitivity equations for short):

of | of oy 9y(p)
dy S opi’ silfo) = Op;

, (2.14)

5 =

obtained by applying the chain rule of differentiation to the original ODEs (2.3).

When performing forward sensitivity analysis, CVODES carries out the time integration of the combined system, (2.3)
and (2.14), by viewing it as an ODE system of size N (N, + 1), where N is the number of model parameters p;, with
respect to which sensitivities are desired (Vg < NN,). However, major improvements in efficiency can be made by
taking advantage of the special form of the sensitivity equations as linearizations of the original ODEs. In particular,
for stiff systems, for which CVODES employs a Newton iteration, the original ODE system and all sensitivity systems
share the same Jacobian matrix, and therefore the same iteration matrix M in (2.9).

The sensitivity equations are solved with the same linear multistep formula that was selected for the original ODEs and,
if Newton iteration was selected, the same linear solver is used in the correction phase for both state and sensitivity
variables. In addition, CVODES offers the option of including (full error control) or excluding (partial error control)
the sensitivity variables from the local error test.

2.7.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the combined ODE and
sensitivity system for the vector § = [y, $1, ..., Sn.]-

* Staggered Direct

In this approach [21], the nonlinear system (2.5) is first solved and, once an acceptable numerical solution is
obtained, the sensitivity variables at the new step are found by directly solving (2.14) after the (BDF or Adams)
discretization is used to eliminate s;. Although the system matrix of the above linear system is based on exactly
the same information as the matrix M in (2.9), it must be updated and factored at every step of the integration, in
contrast to an evalutaion of M which is updated only occasionally. For problems with many parameters (relative
to the problem size), the staggered direct method can outperform the methods described below [45]. However,
the computational cost associated with matrix updates and factorizations makes this method unattractive for
problems with many more states than parameters (such as those arising from semidiscretization of PDEs) and is
therefore not implemented in CVODES.

e Simultaneous Corrector

In this method [50], the discretization is applied simultaneously to both the original equations (2.3) and the
sensitivity systems (2.14) resulting in the following nonlinear system

F(gn) = gn - hnﬁn,Of(tn; gn) - dn = 07

where f = [f(t,y,p)s ..., (Of JOy)(t,y,p)si + (Of /Opi)(t,y,p),...], and &, is comprised of the terms in the
discretization that depend on the solution at previous integration steps. This combined nonlinear system can be
solved using a modified Newton method as in (2.8) by solving the corrector equation

at each iteration, where
M
*")/Jl M
M — —’YJQ 0 M ,
*’YJNS 0 . 0 M
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0 0 0
M is defined asin (2.9), and J; = a—y KJ;) S; + ( 81{)} . It can be shown that 2-step quadratic convergence

can be retained by using only the block-diagonal portion of M in the corrector equation (2.15). This results in a

0
decoupling that allows the reuse of M without additional matrix factorizations. However, the products (f> S5

dy
0
and the vectors —f must still be reevaluated at each step of the iterative process (2.15) to update the sensitivity
Pi
portions of the residual G.

 Staggered corrector

In this approach [31], as in the staggered direct method, the nonlinear system (2.5) is solved first using the Newton
iteration (2.8). Then a separate Newton iteration is used to solve the sensitivity system (2.14):

M[Sﬁ(m+1) _ sﬁ(m)] _

K2 ?

|:37; Y <8y (tﬂmy 7p)52 + 8pz (t"’y 7p) Qi | s

(2.16)

where a;n = 3o o(an,;js; " + hnfy,;8; 7). In other words, a modified Newton iteration is used to solve a

linear system. In this approach, the vectors (0f/0p;) need be updated only once per integration step, after the
state correction phase (2.8) has converged. Note also that Jacobian-related data can be reused at all iterations
(2.16) to evaluate the products (Of/0y)s;.

CVODES implements the simultaneous corrector method and two flavors of the staggered corrector method which
differ only if the sensitivity variables are included in the error control test. In the full error control case, the first variant
of the staggered corrector method requires the convergence of the iterations (2.16) for all IV, sensitivity systems and
then performs the error test on the sensitivity variables. The second variant of the method will perform the error test for
each sensitivity vector s;, (i = 1,2,. .., N,) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors s; fails a convergence or error
test.

An important observation is that the staggered corrector method, combined with a Krylov linear solver, effectively
results in a staggered direct method. Indeed, the Krylov solver requires only the action of the matrix M on a vector
and this can be provided with the current Jacobian information. Therefore, the modified Newton procedure (2.16) will
theoretically converge after one iteration.

2.7.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, CVODES provides an automated estimation of absolute tolerances for
the sensitivity variables based on the absolute tolerance for the corresponding state variable. The relative tolerance
for sensitivity variables is set to be the same as for the state variables. The selection of absolute tolerances for the
sensitivity variables is based on the observation that the sensitivity vector s; will have units of [y]/[p;]. With this, the
absolute tolerance for the j-th component of the sensitivity vector s; is set to atol;/|p;|, where atol; are the absolute
tolerances for the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute tolerances is
equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector s; with weights based on s;
be the same as the weighted root-mean-square norm of the vector of scaled sensitivities 5; = |p;|s; with weights based
on the state variables (the scaled sensitivities 5; being dimensionally consistent with the state variables). However, this
choice of tolerances for the s; may be a poor one, and the user of CVODES can provide different values as an option.
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2.7.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.14): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or directional derivatives). CVODES
provides all the software hooks for implementing interfaces to automatic differentiation (AD) or complex-step approx-
imation; future versions will include a generic interface to AD-generated functions. At the present time, besides the
option for analytical sensitivity right-hand sides (user-provided), CVODES can evaluate these quantities using various
finite difference-based approximations to evaluate the terms (0 f /Qy)s; and (9 f /Op;), or using directional derivatives
to evaluate [(Of/0y)s; + (Of/Opi)]. As is typical for finite differences, the proper choice of perturbations is a deli-
cate matter. CVODES takes into account several problem-related features: the relative ODE error tolerance rtol, the
machine unit roundoff U, the scale factor p;, and the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0 f/Jy)s; and Of/Op; in the right-hand side of (2.14)
can be evaluated either separately:

of [ty +oysi,p) — f(t,y — aysi,p)

s 3] : 2.17)
87‘](‘ ~ f(t7yap+0-iei) _f(tvyvp_o'iei) (2 18)
Op; 20 ’ '

1
0; = |pi|v/max(rtol,U), o, =

max(1/oi, ||sill/|pil)
or simultaneously:
gS' af ~ f(t7y+03iap+03i)_f(t73/_<75i7p_0€i)
oy~ ap; 20 ’

o =min(o;, 0y),

or by adaptively switching between (2.17) + (2.18) and (2.19), depending on the relative size of the finite difference
increments o; and o,,. In the adaptive scheme, if p = max(o;/0,0,/0;), we use separate evaluations if p > ppaq
(an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o5, oy, o) and switching between finite difference and directional
derivative formulas have also been implemented for one-sided difference formulas. Forward finite differences can be
applied to (0f/0y)s; and O f/Op; separately, or the single directional derivative formula

of | of _ flt,y+osi,ptoe)— f(t,y,p)
5+ —— =
dy Op; o

can be used. In CVODES, the default value of p,,,, = 0 indicates the use of the second-order centered directional
derivative formula (2.19) exclusively. Otherwise, the magnitude of p,,,, and its sign (positive or negative) indicates
whether this switching is done with regard to (centered or forward) finite differences, respectively.

2.7.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.6), CVODES does not carry their
sensitivities automatically. Instead, we provide a more general feature through which integrals depending on both the
states y of (2.3) and the state sensitivities s; of (2.14) can be evaluated. In other words, CVODES provides support for
computing integrals of the form:

z(¢) :/l(j(T,y(T),Sl(T),...,SNP(T),p)dT.

to

If the sensitivities of the quadrature variables z of (2.13) are desired, these can then be computed by using:

inQySi_FQpiv izlv"'7Np7
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as integrands for Z, where ¢, and ¢, are the partial derivatives of the integrand function g of (2.13).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver phase and “cor-
rected” values z" are obtained through explicit formulas.

2.8 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with respect to Ng param-
eters is roughly equivalent to solving an ODE system of size (1 + Ng)N. This can become prohibitively expensive,
especially for large-scale problems, if sensitivities with respect to many parameters are desired. In this situation, the
adjoint sensitivity method is a very attractive alternative, provided that we do not need the solution sensitivities s;, but
rather the gradients with respect to model parameters of a relatively few derived functionals of the solution. In other
words, if y(¢) is the solution of (2.3), we wish to evaluate the gradient dG/dp of

T
G(p) = / g(t,y,p)dt, (2.19)
to

or, alternatively, the gradient dg/dp of the function g(¢, y, p) at the final time T". The function g must be smooth enough
that dg/0y and Og/Jp exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For details on the derivation
see [20]. Introducing a Lagrange multiplier A, we form the augmented objective function

T
umzaw—z'vw—fm%mmu

where * denotes the conjugate transpose. The gradient of G with respect to p is

dG  dI /T T
=5 wrasd- [ NG gs-pa,
dp dp o 14 ) to Yy 14
where subscripts on functions f or g are used to denote partial derivatives and s = [sq,...,sy,] is the matrix of
solution sensitivities. Applying integration by parts to the term A\*$, and by requiring that \ satisfy
() ()
dy dy (2.20)
ANT)=0,

the gradient of G with respect to p is nothing but

i A*(to)s(to) + (gp + X" fp)dt. (2.21)
to

The gradient of ¢(T',y,p) with respect to p can be then obtained by using the Leibnitz differentiation rule. Indeed,

from (2.19),

dg d dG

T)=——
dp( ) dT dp

and therefore, taking into account that dG/dp in (2.21) depends on T both through the upper integration limit and
through ), and that A\(T") = 0,

dg

T
D) = (t0)a(to) + 9,(T) + /t gt (2.22)
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where p is the sensitivity of A\ with respect to the final integration limit 7". Thus y satisfies the following equation,
obtained by taking the total derivative with respect to T" of (2.20):

()
- ().,

The final condition on (T follows from (9A/dt) + (OA/OT) = 0 at T, and therefore, 1u(T) = —A(T).

(2.23)

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification of the parameters p; this
implies that, once the solution A is found, the formula (2.21) can then be used to find the gradient of G with respect to
any of the parameters p. The same holds true for the system (2.23) and the formula (2.22) for gradients of g(7T',y, p).
The second important remark is that the adjoint systems (2.20) and (2.23) are terminal value problems which depend
on the solution y(¢) of the original IVP (2.3). Therefore, a procedure is needed for providing the states y obtained
during a forward integration phase of (2.3) to CVODES during the backward integration phase of (2.20) or (2.23). The
approach adopted in CVODES, based on checkpointing, is described below.

2.9 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires, at the current time,
the states y which were computed during the forward integration phase. Since CVODES implements variable-step
integration formulas, it is unlikely that the states will be available at the desired time and so some form of interpolation
is needed. The CVODES implementation being also variable-order, it is possible that during the forward integration
phase the order may be reduced as low as first order, which means that there may be points in time where only y and g are
available. These requirements therefore limit the choices for possible interpolation schemes. CVODES implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial interpolation
method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size of the vectors y and y
that would need to be stored make this approach computationally intractable. Thus, CVODES settles for a compromise
between storage space and execution time by implementing a so-called checkpointing scheme. At the cost of at most
one additional forward integration, this approach offers the best possible estimate of memory requirements for adjoint
sensitivity analysis. To begin with, based on the problem size N and the available memory, the user decides on the
number Ny of data pairs (y, ¢) if cubic Hermite interpolation is selected, or on the number Ny of y vectors in the
case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, after every N, integration steps a checkpoint is formed by saving enough
information (either in memory or on disk) to allow for a hot restart, that is a restart which will exactly reproduce the
forward integration. In order to avoid storing Jacobian-related data at each checkpoint, a reevaluation of the iteration
matrix is forced before each checkpoint. At the end of this stage, we are left with IV, checkpoints, including one at ;.
During the backward integration stage, the adjoint variables are integrated from 7T to ¢y going from one checkpoint to
the previous one. The backward integration from checkpoint 7 4 1 to checkpoint ¢ is preceded by a forward integration
from ¢ to ¢ + 1 during which the N4 vectors y (and, if necessary ¥) are generated and stored in memory for interpolation
(see Fig. 2.1).

Note: The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation
at the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint,
in which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
§2.1, the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT. The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences
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are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams

meth( )d f( T WhiCh the Ordel' can reaCh 12.
\
p

Fig. 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during the integration of the
adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward integration phase to uncer-
tainty in the final number of checkpoints. However, N, is much smaller than the number of steps taken during the
forward integration, and there is no major penalty for writing/reading the checkpoint data to/from a temporary file.
Note that, at the end of the first forward integration stage, interpolation data are available from the last checkpoint to
the end of the interval of integration. If no checkpoints are necessary (/V; is larger than the number of integration steps
taken in the solution of (2.3)), the total cost of an adjoint sensitivity computation can be as low as one forward plus
one backward integration. In addition, CVODES provides the capability of reusing a set of checkpoints for multiple
backward integrations, thus allowing for efficient computation of gradients of several functionals (2.19).

Finally, we note that the adjoint sensitivity module in CVODES provides the necessary infrastructure to integrate
backwards in time any ODE terminal value problem dependent on the solution of the IVP (2.3), including adjoint
systems (2.20) or (2.23), as well as any other quadrature ODEs that may be needed in evaluating the integrals in (2.21)
or (2.22). In particular, for ODE systems arising from semi-discretization of time-dependent PDEs, this feature allows
for integration of either the discretized adjoint PDE system or the adjoint of the discretized PDE.

2.10 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute second-order deriva-
tive information. Considering the ODE problem (2.3) and some model output functional, ¢g(y) then the Hessian
d?g/dp? can be obtained in a forward sensitivity analysis setting as

d?%g .
d7pZ = (gy ® INP) Ypp + yp GyyYp »
where ® is the Kronecker product. The second-order sensitivities are solution of the matrix ODE system:

Ypp = (fy & INp) “Ypp + (IN & yg) “JyyYp
62yo
Ypp(to) = op?

where y,, is the first-order sensitivity matrix, the solution of N, systems (2.14), and y,,,, is a third-order tensor. It is easy
to see that, except for situations in which the number of parameters N, is very small, the computational cost of this
so-called forward-over-forward approach is exorbitant as it requires the solution of N,, 4 Ng additional ODE systems
of the same dimension NV as (2.3).
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Note: For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters
p. Moreover, we only consider the case in which the dependency of the original ODE (2.3) on the parameters p is
through its initial conditions only. For details on the derivation in the general case, see [51].

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-over-adjoint ap-
proach. This method is based on using the same “trick” as the one used in computing gradients of pointwise functionals
with the adjoint method, namely applying a formal directional forward derivation to one of the gradients of (2.21) or
(2.22). With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gradient with
forward sensitivity analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) = ttof g(t,y) dt. It can be shown that the product between the Hessian of G (with
respect to the parameters p) and some vector u can be computed as

0%G
szu = [(A\T @ In,) yppu + yy 1] t=to

where )\, i, and s are solutions of
— = f'f“"’ (/\T ®In) fyys +gyyss plty) =0
—A=fIA+gl Aty =0
§=fys; s(to) = yopu

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,. The forward-
over-adjoint approach hinges crucially on the fact that s can be computed at the cost of a forward sensitivity analysis
with respect to a single parameter (the last ODE problem above) which is possible due to the linearity of the forward
sensitivity equations (2.14).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two backward integra-
tions of a system of ODE:s of size /N. For more details, including the corresponding formulas for a pointwise model
functional output, see [51].

To allow the foward-over-adjoint approach described above, CVODES provides support for:
* the integration of multiple backward problems depending on the same underlying forward problem (2.3), and

* the integration of backward problems and computation of backward quadratures depending on both the states y
and forward sensitivities (for this particular application, s) of the original problem (2.3).
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Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 CVODES organization

The CVODES package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

The overall organization of the CVODES package is shown in Fig. 3.3. The basic elements of the structure are a module
for the basic integration algorithm (including forward sensitivity analysis), a module for adjoint sensitivity analysis,
and support for the solution of nonlinear and linear systems that arise in the case of a stiff system.

The central integration module, implemented in the files CVODES .h, cvode_impl.h, and CVODES. c, deals with the
evaluation of integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to user
output points, among other issues.

CVODES utilizes generic linear and nonlinear solver modules defined by the SUNLinearSolver API (see Chapter §8)
and SUNNonlinearSolver API (see Chapter §9), respectively. As such, CVODES has no knowledge of the method
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Fig. 3.1: High-level diagram of the SUNDIALS suite.
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Fig. 3.2: Directory structure of the SUNDIALS source tree.
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Fig. 3.3: Overall structure diagram of the CVODES package. Modules specific to CVODES begin with “CV” (CVLS,
CVNLS, CVDIAG, CVBBDPRE, and CVBANDPRE)), all other items correspond to generic SUNDIALS vector, ma-
trix, and solver modules.

being used to solve the linear and nonlinear systems that arise. For any given user problem, there exists a single nonlinear
solver interface and, if necessary, one of the linear system solver interfaces is specified, and invoked as needed during
the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward sensitivity equations
simultaneously with the original IVP. The sensitivity variables may be included in the local error control mechanism of
the main integrator. CVODES provides three different strategies for dealing with the correction stage for the sensitivity
variables: CV_SIMULTANEOUS, CV_STAGGERED and CV_STAGGERED1 (see §2.7 and §5.3.2.1). The CVODES package
includes an algorithm for the approximation of the sensitivity equations right-hand sides by difference quotients, but
the user has the option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea. c) provides the infrastructure needed for the backward integration of any
system of ODEs which depends on the solution of the original IVP, in particular the adjoint system and any quadratures
required in evaluating the gradient of the objective functional. This module deals with the setup of the checkpoints,
the interpolation of the forward solution during the backward integration, and the backward integration of the adjoint
equations.

At present, the package includes two linear solver interfaces. The primary linear solver interface, CVLS, supports
both direct and iterative linear solvers built using the generic SUNLinearSolver API (see Chapter §8). These solvers
may utilize a SUNMatrix object (see Chapter §7) for storing Jacobian information, or they may be matrix-free. Since
CVODES can operate on any valid SUNLinearSolver implementation, the set of linear solver modules available to
CVODES will expand as new SUNLinearSolver modules are developed.

Additionally, CVODES includes the diagonal linear solver interface, CVDIAG, that creates an internally generated
diagonal approximation to the Jacobian.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, CVODES includes algorithms
for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.
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For users employing matrix-free iterative linear solvers, CVODES includes an algorithm for the approximation by
difference quotients of the product Mv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [15, 17], together with the example and demonstration programs included with CVODES,
offer considerable assistance in building preconditioners.

CVODES’ linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solu-
tion phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the
integration, and only as required to achieve convergence.

CVODES also provides two preconditioner modules, for use with any of the Krylov iterative linear solvers. The first
one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS and
provides a banded difference-quotient Jacobian-based preconditioner, with corresponding setup and solve routines.
The second preconditioner module, CVBBDPRE, works in conjunction with NVECTOR_PARALLEL and generates a
preconditioner that is a block-diagonal matrix with each block being a banded matrix.

All state information used by CVODES to solve a given problem is saved in a structure, and a pointer to that structure
is returned to the user. There is no global data in the CVODES package, and so, in this respect, it is reentrant. State
information specific to the linear solver is saved in a separate structure, a pointer to which resides in the CVODES
memory structure. The reentrancy of CVODES was motivated by the anticipated multicomputer extension, but is also
essential in a uniprocessor setting where two or more problems are solved by intermixed calls to the package from
within a single user program.
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Using SUNDIALS

As discussed in §3, the six solvers packages (CVODE(S), IDA(S), ARKODE, KINSOL) that make up SUNDIALS
are built upon common classes/modules for vectors, matrices, and algebraic solvers. In addition, the six packages all
leverage some other common infrastructure, which we discuss in this section.

4.1 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

* ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

e Will return < 0O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

(continues on next page)
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(continued from previous page)

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free(SUNContext *ctx)
Frees the SUNContext object.

Arguments:
e ctx — pointer to a valid SUNContext object, NULL upon successful return.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
* ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.
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Returns:
e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —a valid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.1.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

¢ Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Ttis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;

(continues on next page)
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(continued from previous page)

int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx);
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.
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4.1.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>

{

public:

explicit Context(void* comm = nullptr)

{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

1

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.1. The SUNContext Type
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4.2 SUNDIALS Status Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.2.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPI is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §11.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).
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4.2.2 Logger API

The central piece of the Logger API is the SUNLogger type:
typedef struct SUNLogger_ *SUNLogger

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE

Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (void *comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (void *comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

* comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
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¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger —a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger — a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

* Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:

* logger —a SUNLogger object.
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e 1vl — the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
* label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

e 1v1 - the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger —a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.
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4.2.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.3 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [12] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.3.2).

4.3.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §11.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.
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4.3.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDTIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e. an instance of the struct

typedef struct _SUNProfiler *SUNProfiler

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(void *comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

* p—a SUNProfiler object
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* name — a name for the profiling region
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

e p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.3.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

VA

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

(continues on next page)
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umax = N_VMaxNorm(uw);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.3.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.4 SUNDIALS Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
* patch — SUNDIALS release patch version number.
¢ label — string to hold the SUNDIALS release label.
¢ [en — allocated length of the label character array.
Return value:

e 0 if successful
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* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5 SUNDIALS Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, and farkode_mristep_mod modules provide in-
terfaces to the ARKStep, ERKStep, and MRIStep integrators respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

¢ CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.
¢ IDA via the fida_mod module.

e IDAS via the fidas_mod module.
e KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fnvecpenmp_mod.<so|a>,
libsundials_nvecopenmp.<so|a>, libsundials_fcvode_mod.<so|a> and 1libsundials_cvode.<so|a>.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.5.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.5.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation (§6, §7, §8, and §9 respectively). For details
on where the Fortran 2003 module (.mod) files and libraries are installed see §11.

The Fortran 2003 interface modules were generated with SWIG Fortran [43], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.
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Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module

Fortran 2003 Module Name

ARKODE

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP

CVODE

CVODES

IDA

IDAS

KINSOL

NVECTOR
NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE
SUNMATRIX_SPARSE
SUNLINSOL
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

farkode_mod
farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
fcvode_mod

fcvodes_mod

fida_mod

fidas_mod

fkinsol_mod
fsundials_nvector_mod
fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsundials_matrix_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod

Not interfaced

Not interfaced
fsunmatrix_sparse_mod
fsundials_linearsolver_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsundials_nonlinearsolver_mod
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced
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4.5.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double-precision the sunindextype size is 64-bits.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real (c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real (c_double), dimension(*)
realtype* return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
realtypel[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

T in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)
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4.5.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.5.1 discusses
equivalencies of data types in the two languages.

4.5.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
X => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.5.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
realtype” xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial(N, sunctx);

/% capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:
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type(N_Vector), pointer :: x

real (c_double), pointer :: xdataptr(:)

real (c_double) :: xdata(N)
integer(c_long) i1 leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.5.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.
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4.5.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.5.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it X, b

! Disassociate A
A = nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.5.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possi-
ble to directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages
with sensitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIn-
dexVectorArray () that can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, X);

/* Fill each array with ones */
for (dint i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, Xx)

(continues on next page)
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! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray () (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

4.5.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_futils_mod.

FILE *SUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Arguments:

e filename — the path to the file, that should have Fortran type character (kind=C_CHAR, len=%).
There are two special filenames: stdout and stderr — these two filenames will result in output going
to the standard output file and standard error file, respectively.

¢ mode — the I/O mode to use for the file. This should have the Fortran type character (kind=C_CHAR,
len=%*). The string begins with one of the following characters:

— rto open a text file for reading

— r+ to open a text file for reading/writing

— wto truncate a text file to zero length or create it for writing

— w+ to open a text file for reading/writing or create it if it does not exist

— ato open a text file for appending, see documentation of fopen for your system/compiler

— a+toopen atext file for reading/appending, see documentation for fopen for your system/compiler
Return value:

¢ The function returns a type (C_PTR) which holds a C FILE*.

void SUNDIALSFileClose(fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Arguments:

e fp — the C FILE* that was previously obtained from fopen. This should have the Fortran type
type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALSFileOpen() then
that stream will not be closed by this function.
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4.5.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran
18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.5.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v = yarr(2)

! fill in the RHS function:

[0 0]*[(-1+ur2-r(t))/C*w] + [ 0 1
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

(continues on next page)
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! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.6 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs (see Chapters §6, §7, §8, and §9) or through user-supplied callback functions. Thus,
under the model, the overall structure of the user’s calling program, and the way users interact with the SUNDIALS
packages is similar to using SUNDIALS in CPU-only environments.

4.6.1 SUNDIALS GPU Programming Model

As described in [11], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [4], AMD ROCm/HIP [1], and Intel oneAPI [2]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDI-
ALS operates on data through these APIs.

In addition, SUNDIALS provides a memory management helper module (see §10) to support applications which im-
plement their own memory management or memory pooling.
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Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! x! x!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFOMR X! X! X! x! x!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON X! x! x! x! X!
SUNNONLINSOL_FIXEDPOINT X! X! X! X! X!

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.
3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.6. Features for GPU Accelerated Computing
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4.6.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.
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Chapter 5

Using CVODES

5.1 Using CVODES for IVP Solution

This chapter is concerned with the use of CVODES for the solution of initial value problems (IVPs). The following
sections treat the header files and the layout of the user’s main program, and provide descriptions of the CVODES
user-callable functions and user-supplied functions.

The sample programs described in the companion document [56] may also be helpful. Those codes may be used as
templates (with the removal of some lines used in testing) and are included in the CVODES package.

Users with applications written in Fortran should see §4.5, which describes interfacing with CVODES from Fortran.

The user should be aware that not all SUNLinearSolver and SUNMatrix modules are compatible with all N_Vec-
tor implementations. Details on compatibility are given in the documentation for each SUNMatrix module (§7) and
each SUNLinearSolver module (§8). For example, NVECTOR_PARALLEL is not compatible with the dense, banded,
or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver modules. Please
check §7 and §8 to verify compatibility between these modules. In addition to that documentation, we note that the
CVBANDPRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector implementations, and the preconditioner module CVBBDPRE can only be used with NVEC-
TOR_PARALLEL. It is not recommended to use a threaded vector module with SuperLU_MT unless it is the NVECTOR_-
OPENMP module, and SuperLU_MT is also compiled with OpenMP.

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

5.1.1 Access to library and header files

At this point, it is assumed that the installation of CVODES, following the procedure described in §11, has been
completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by CVODES. The relevant library files
are

<libdir>/libsundials_cvodes.<so|a>
<libdir>/libsundials_nvec*.<so|a>
<libdir>/libsundials_sunmat*.<so|a>
<libdir>/1libsundials_sunlinsol*.<so|a>
<libdir>/libsundials_sunnonlinsol*.<so|a>
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where the file extension .so is typically for shared libraries and . a for static libraries. The relevant header files are
located in the subdirectories

<incdir>/cvodes
<incdir>/sundials
<incdir>/nvector
<incdir>/sunmatrix
<incdir>/sunlinsol
<incdir>/sunnonlinsol

The directories 1libdir and incdir are the install library and include directories, respectively. For a default in-
stallation, these are <instdir>/1ib and <instdir>/include, respectively, where instdir is the directory where
SUNDIALS was installed (§11).

Warning: Note that an application cannot link to both the CVODES and CVODE libraries because both con-
tain user-callable functions with the same names (to ensure that CVODES is backward compatible with CVODE).
Therefore, applications that contain both ODE problems and ODEs with sensitivity analysis, should use CVODES.

5.1.2 Data Types

The header file sundials_types.h contains the definition of the types:
» realtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices
* booleantype — the type used for logic operations within SUNDIALS

e SUNOutputFormat — an enumerated type for SUNDIALS output formats

5.1.2.1 Floating point types

type realtype

The type realtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest value repre-
sentable as a realtype, SMALL_REAL to be the smallest value representable as a realtype, and UNIT_ROUNDOFF to
be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that needs the ability
to branch on the definition of realtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to 1.0F
if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro internally to
declare all of its floating-point constants.
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Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double, fabsf when
realtype is float, and fabsl when realtype is long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros is
precision-independent except for any calls to precision-specific library functions. Our example programs use real-
type, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double in their code
(assuming that this usage is consistent with the typedef for realtype) and call the appropriate math library functions
directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying the code to use
realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use the corresponding precision
(see §11.1.2).

5.1.2.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.1.2).

5.1.2.3 Boolean type

type booleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type booleantype
as an int.

The advantage of using the name booleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type booleantype are intended to have
only the two values SUNFALSE (0) and SUNTRUE (1).

5.1.2.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats
enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV

The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2, ...
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Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

5.1.3 Header files

The calling program must include several header files so that various macros and data types can be used. The header
file that is always required is:

* cvodes/cvodes.h the main header file for CVODES, which defines the several types and various constants,
and includes function prototypes. This includes the header file for CVLS, cvodes/cvodes_1s.h.

Note that cvodes.h includes sundials_types.h, which defines the types, realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §6 for the appropriate name. This file in turn includes the header file sundials_nvector.h which defines the
abstract data type.

If using a non-default nonlinear solver module, or when interacting with a SUNNonlinearSolver module directly, the
calling program must also include a SUNNonlinearSolver implementation header file, of the form sunnonlinsol/
sunnonlinsol_*.h where is the name of the nonlinear solver module (see §9 for more information). This file in turn
includes the header file which defines the abstract data type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.8) (e.g., the default Newton
iteration), then a linear solver module header file will be required.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example (see [56]),
preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_SPGMR linear solver is
used, the header is included for access to the underlying generic dense matrix arithmetic routines.

5.1.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP. Most of
the steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implemen-
tations used. For the steps that are not, refer to §6, §7, §8, and §9 for the specific name of the function to be called or
macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate For example, call MPI_Init to initialize
MPI if used, or set the number of threads to use within the threaded vector functions if used.

2. Create the SUNDIALS context object Call SUNContext_Create() to allocate the SUNContext object.

3. Set problem dimensions etc. This generally includes the problem size N, and may include the local vector length
Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

4. Set vector of initial values To set the vector of initial values, use the appropriate functions defined by the par-
ticular N_Vector implementation.

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y®).

For HYPRE and PETSC vector wrappers, first create and initialize the underlying vector, and then create an
N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a HYPRE or PETSC
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10.

11.

12.

13.

14.

15.

vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for these
vector wrappers.

See §6 for details.

Create CVODES object Call CVodeCreate () to create the CVODES memory block and to specify the linear
multistep method. CVodeCreate () returns a pointer to the CVODES memory structure.

See §5.1.5.1 for details.

Initialize CVODES solver Call CVodeInit () to provide required problem specifications, allocate internal
memory for CVODES, and initialize CVODES. CVodeInit () returns a flag, the value of which indicates either
success or an illegal argument value.

See §5.1.5.1 for details.

Specify integration tolerances Call CVodeSStolerances() or CVodeSVtolerances() to specify either a
scalar relative tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodellFtolerances () to specify a function which sets directly the
weights used in evaluating WRMS vector norms.

See §5.1.5.2 for details.

Create matrix object If a nonlinear solver requiring a linear solve will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must be created by
calling the appropriate constructor function defined by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where *** is the name of the matrix (see §7 for details).

Create linear solver object If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton
iteration), then the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular SUNLinearSolver implementation.

For any of the SUNDIALS-supplied SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_*(...); where * can be replaced with “Dense”,
“SPGMR”, or other options, as discussed in §5.1.5.5 and §8.

Set linear solver optional inputs Call functions from the selected linear solver module to change optional inputs
specific to that linear solver. See the documentation for each SUNLinearSolver module in §8 for details.

Attach linear solver module If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton
iteration), then initialize the CVLS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with a call ier = CVodeSetLinearSolver(cvode_mem, NLS) (for details see §5.1.5.5):

Alternately, if the CVODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the linear
solver module and attach it to CVODES with the call to CVodeSetLinearSolver().

Set optional inputs Call CVodeSet*** functions to change any optional inputs that control the behavior of
CVODES from their default values. See §5.1.5.10 for details.

Create nonlinear solver object (optional) If using a non-default nonlinear solver (see §5.1.5.6), then create the
desired nonlinear solver object by calling the appropriate constructor function defined by the particular SUN-
NonlinearSolver implementation (e.g., NLS = SUNNonlinSol_***(...); where *** is the name of the
nonlinear solver (see §9 for details).

Attach nonlinear solver module (optional) If using a non-default nonlinear solver, then initialize the nonlinear
solver interface by attaching the nonlinear solver object by calling ier = CVodeSetNonlinearSolver (see
§5.1.5.6 for details).

Set nonlinear solver optional inputs (optional) Call the appropriate set functions for the selected nonlinear
solver module to change optional inputs specific to that nonlinear solver. These must be called after CVodeInit ()
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if using the default nonlinear solver or after attaching a new nonlinear solver to CVODES, otherwise the optional
inputs will be overridden by CVODES defaults. See §9 for more information on optional inputs.

16. Specify rootfinding problem (optional) Call CVodeRootInit () to initialize a rootfinding problem to be solved
during the integration of the ODE system. See §5.1.5.7, and see §5.1.5.10 for relevant optional input calls.

17. Advance solution in time For each point at which output is desired, call ier = CVode(cvode_mem, tout,
yout, tret itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector y® above) will contain y(t). See CVode () for details.

18. Get optional outputs Call CV*Get* functions to obtain optional output. See §5.1.5.12 for details.
19. Destroy objects

Upon completion of the integration call the following functions, as necessary, to destroy any objects created
above:

» Call N_VDestroy() to free vector objects.

» Call SUNMatDestroy () to free matrix objects.

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

L]

Call CVodeFree () to free the memory allocated by CVODES.

Call SUNContext_Free() to free the SUNDIALS context.
20. Finalize MPI, if used Call MPI_Finalize to terminate MPI.

5.1.5 User-callable functions

This section describes the CVODES functions that are called by the user to setup and then solve an IVP. Some of these
are required. However, starting with §5.1.5.10, the functions listed involve optional inputs/outputs or restarting, and
those paragraphs may be skipped for a casual use of CVODES. In any case, refer to §5.1.4 for the correct order of these
calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.1.5.10).

5.1.5.1 CVODES initialization and deallocation functions
The following three functions must be called in the order listed. The last one is to be called only after the IVP solution
is complete, as it frees the CVODES memory block created and allocated by the first two calls.

void *CVodeCreate (int Imm, SUNContext sunctx)
The function CVodeCreate () instantiates a CVODES solver object and specifies the solution method.

Arguments:

e 1mm — specifies the linear multistep method and must be one of two possible values: CV_ADAMS or
CV_BDF.

* sunctx —the SUNContext object (see §4.1)
Return Value:

e If successful, CVodeCreate () returns a pointer to the newly created CVODES memory block. Oth-
erwise, it returns NULL.
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Notes:
The recommended choices for 1mm are CV_ADAMS for nonstiff problems and CV_BDF for stiff problems.
The default Newton iteration is recommended for stiff problems, and the fixed-point solver (previously re-
ferred to as the functional iteration in this guide) is recommended for nonstiff problems. For details on how

to attach a different nonlinear solver module to CVODES see the description of CVodeSetNonlinear-
Solver().

int CVodeInit (void *cvode_mem, CVRhsFn f, realtype t0, N_Vector y0)

The function CVodeInit provides required problem and solution specifications, allocates internal memory, and
initializes CVODES.

Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().

e f —is the C function which computes the right-hand side function f in the ODE. This function has the
form £(t, y, ydot, user_data) (for full details see §5.1.6.1).

* t0 —is the initial value of t.
¢ y0 —is the initial value of y.
Return Value:
* CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeInit has an illegal value.

Notes:
If an error occurred, CVodeInit also sends an error message to the error handler function.

void CVodeFree (void **cvode_mem);

The function CVodeFree frees the memory allocated by a previous call to CVodeCreate ().
Arguments:

* Pointer to the CVODES memory block.
Return Value:

¢ The function CVodeFree has no return value.

5.1.5.2 CVODES tolerance specification functions
One of the following three functions must be called to specify the integration tolerances (or directly specify the weights
used in evaluating WRMS vector norms). Note that this call must be made after the call to CVodeInit ().

int CVodeSStolerances (void *cvode_mem, realtype reltol, realtype abstol)

The function CVodeSStolerances specifies scalar relative and absolute tolerances.
Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
* reltol —is the scalar relative error tolerance.
* abstol —is the scalar absolute error tolerance.

Return value:
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e CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.

e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSVtolerances (void *cvode_mem, realtype reltol, N_Vector abstol)

The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute tolerances.
Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().

* reltol —is the scalar relative error tolerance.

* abstol — is the vector of absolute error tolerances.
Return value:

* CV_SUCCESS - The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized.

e CV_NO_MALLOC — The allocation function returned NULL.

e CV_ILL_INPUT - The relative error tolerance was negative or the absolute tolerance had a negative
component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

int CVodeWFtolerances (void *cvode_mem, CVEw!Fn efun)

The function CVodeWFtolerances specifies a user-supplied function efun that sets the multiplicative error
weights W_i for use in the weighted RMS norm, which are normally defined by (2.7).

Arguments:
¢ cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
¢ efun — is the C function which defines the ewt vector (see CVEwtFn).
Return value:
e CV_SUCCESS — The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
* CV_NO_MALLOC — The allocation function returned NULL.

5.1.5.3 General advice on choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~2. On the other hand, reltol should not
be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around 10~19).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y[i] starts at some nonzero value, but in time decays to zero, then pure relative error control on y[i] makes no
sense (and is overly costly) after y[i] is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector)
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needs to be set to that noise level. If the different components have different noise levels, then abstol should be a
vector. See the example cvsRoberts_dns in the CVODES package, and the discussion of it in the CVODES Examples
document [56]. In that problem, the three components vary betwen 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate noise levels are
completely problem-dependent. The user or modeler hopefully has some idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the error committed on
each individual time step. The final (global) errors are some sort of accumulation of those per-step errors. A good rule
of thumb is to reduce the tolerances by a factor of .01 from the actual desired limits on errors. So if you want .01%
accuracy (globally), a good choice is reltol = 10~5. But in any case, it is a good idea to do a few experiments with
the tolerances to see how the computed solution values vary as tolerances are reduced.

5.1.5.4 Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (hence unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again this
requires some knowledge of the noise level of these components, which may or may not be different for different
components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there (for
the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context of the
output medium. Then the internal values carried by the solver are unaffected. Remember that a small negative value in
y returned by CVODES, with magnitude comparable to abstol or less, is equivalent to zero as far as the computation
is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector y to a non-negative
value, as a “solution” to this problem. This can cause instability. If the f routine cannot tolerate a zero or negative
value (e.g. because there is a square root or log of it), then the offending value should be changed to zero or a tiny
positive number in a temporary variable (not in the input y vector) for the purposes of computing f (¢, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function. However, because this option involves some extra overhead cost,
it should only be exercised if the use of absolute tolerances to control the computed values is unsuccessful.

5.1.5.5 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.8) (e.g., the default
Newton iteration), there are two CVODES linear solver interfaces currently available for this task: CVLS and CVDIAG.

The first corresponds to the main linear solver interface in CVODES, that supports all valid SUNLinearSolver mod-
ules. Here, matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian
matrix J = df/dy, the Newton matrix M = I — ~J, and factorizations used throughout the solution process. Con-
versely, matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equa-
tions, and only require the action of the matrix on a vector, Mv. With most of these methods, preconditioning can be
done on the left only, the right only, on both the left and right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver sections in §5.1.5.10 and §5.1.6.

If preconditioning is done, user-supplied functions define linear operators corresponding to left and right preconditioner
matrices P; and P, (either of which could be the identity matrix), such that the product P; P, approximates the matrix
M =1—~Jof (2.9).

The CVDIAG linear solver interface supports a direct linear solver, that uses only a diagonal approximation to .J.
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To specify a generic linear solver to CVODES, after the call to CVodeCreate () but before any calls to CVode (),
the user’s program must create the appropriate SUNLinearSolver object and call the function CVodeSetLinear-
Solver(), as documented below. To create the SUNLinearSolver object, the user may call one of the SUNDIALS-
packaged SUNLinearSolver module constructor routines via a call of the form SUNLinearSolver LS = SUNLin-
Sol_*(...);

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in §7 and §8.

Once this solver object has been constructed, the user should attach it to CVODES via a call to CVodeSetLinear-
Solver(). The first argument passed to this function is the CVODES memory pointer returned by CVodeCreate();
the second argument is the desired SUNLinearSolver object to use for solving linear systems. The third argument is
an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers,
the third argument should be NULL). A call to this function initializes the CVLS linear solver interface, linking it to the
main CVODES integrator, and allows the user to specify additional parameters and routines pertinent to their choice
of linear solver.

To instead specify the CVODES-specific diagonal linear solver interface, the user’s program must call CVDiag(), as
documented below. The first argument passed to this function is the CVODES memory pointer returned by CVode-
Create().

int CVodeSetLinearSolver (void *cvode_mem, SUNLinearSolver LS, SUNMatrix )

The function CVodeSetLinearSolver attaches a generic SUNLinearSolver object LS and corresponding tem-
plate Jacobian SUNMatrix object J (if applicable) to CVODES, initializing the CVLS linear solver interface.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e LS — SUNLinearSolver object to use for solving linear systems of the form (2.8).

e J — SUNMatrix object for used as a template for the Jacobian (or NULL if not applicable).
Return value:

* CVLS_SUCCESS — The CVLS initialization was successful.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_ILL_INPUT — The CVLS interface is not compatible with the LS or J input objects or is incom-
patible with the current N_Vector module.

CVLS_SUNLS_FAIL — A call to the LS object failed.

CVLS_MEM_FAIL — A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size (see §7 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices M = I —~J, even if J itself has zeros in nonzero locations
of I. The reasoning for this is that M is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store M then it will need to be resized internally by CVODES.

The previous routines CVD1sSetLinearSolver and CVSpilsSetLinearSolver are now wrappers for
this routine, and may still be used for backward-compatibility. However, these will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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int CVDiag(void *cvode_mem)

The function CVDiag selects the CVDIAG linear solver. The user’s main program must include the cvode_-
diag.h header file.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CVDIAG_SUCCESS — The CVDIAG initialization was successful.
e CVDIAG_MEM_NULL - The cvode_mem pointer is NULL.
e CVDIAG_ILL_INPUT — The CVDIAG solver is not compatible with the current N_Vector module.
e CVDIAG_MEM_FAIL — A memory allocation request failed.

Notes:
The CVDIAG solver is the simplest of all of the available CVODES linear solvers. The CVDIAG solver
uses an approximate diagonal Jacobian formed by way of a difference quotient. The user does not have the
option of supplying a function to compute an approximate diagonal Jacobian.

5.1.5.6 Nonlinear solver interface function

By default CVODES uses the SUNNonlinearSolver implementation of Newton’s method defined by the SUNNON-
LINSOL_NEWTON module. To specify a different nonlinear solver in CVODES, the user’s program must create a
SUNNonlinearSolver object by calling the appropriate constructor routine. The user must then attach the SUNNon-
linearSolver object by calling CVodeSetNonlinearSolver (), as documented below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver () must be called after CVodeInit().
If any calls to CVode () have been made, then CVODES will need to be reinitialized by calling CVodeReInit () to
ensure that the nonlinear solver is initialized correctly before any subsequent calls to CVode ().

The first argument passed to the routine CVodeSetNonlinearSolver() is the CVODES memory pointer returned by
CVodeCreate () and the second argument is the SUNNonlinearSolver object to use for solving the nonlinear system
(2.8) or (2.6). A call to this function attaches the nonlinear solver to the main CVODES integrator.

int CVodeSetNonlinearSolver (void *cvode_mem, SUNNonlinearSolver NLS)
The function CVodeSetNonLinearSolver attaches a SUNNonlinearSolver object (NLS) to CVODES.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e NLS — SUNNonlinearSolver object to use for solving nonlinear systems (2.5) or (2.6).
Return value:

e CV_SUCCESS - The nonlinear solver was successfully attached.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The SUNNonlinearSolver object is NULL, does not implement the required non-
linear solver operations, is not of the correct type, or the residual function, convergence test function,
or maximum number of nonlinear iterations could not be set.

Notes:
When forward sensitivity analysis capabilities are enabled and the CV_STAGGERED or CV_STAGGERED1
corrector method is used this function sets the nonlinear solver method for correcting state variables (see
§5.3.2.3 for more details).

5.1. Using CVODES for IVP Solution 85



User Documentation for CVODES, v6.6.0

5.1.5.7 Rootfinding initialization function

While solving the IVP, CVODES has the capability to find the roots of a set of user-defined functions. To activate the
root finding algorithm, call the following function. This is normally called only once, prior to the first call to CVode (),
but if the rootfinding problem is to be changed during the solution, CVodeRootInit () can also be called prior to a
continuation call to CVode ().

int CVodeRootInit (void *cvode_mem, int nrtfn, CVRootFn g)

The function CVodeRootInit specifies that the roots of a set of functions g; (¢, y) are to be found while the IVP
is being solved.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
e nrtfn - is the number of root functions g;.

g —is the C function which defines the nrtfn functions g; (¢, y) whose roots are sought. See §5.1.6.5
for details.

Return value:
* CV_SUCCESS — The call was successful.
e CV_MEM_NULL — The cvode_mem argument was NULL.
e CV_MEM_FAIL — A memory allocation failed.
e CV_ILL_INPUT - The function g is NULL, but nrtfn>0.

Notes:
If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no rootfinding problem
but the prior one did, then call CVodeRootInit with nrtfn=0.

5.1.5.8 Projection initialization function

When solving an IVP with a constraint equation, CVODES has the capability to project the solution onto the constraint
manifold after each time step. To activate the projection capability with a user-defined projection function, call the
following set function:

int CVodeSetProjFn(void *cvode_mem, CVProjFn proj)

The function CVodeSetProjFn enables or disables projection with a user-defined projection function.
Arguments:

* cvode_mem — is a pointer to the CVODES memory block returned by CVodeCreate().

* proj —is the C function which defines the projection. See CVProjFn for details.
Return value:

e CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The cvode_mem argument was NULL.

e CV_MEM_FAIL — A memory allocation failed.

e CV_ILL_INPUT - The projection function is NULL or the method type is not CV_BDF.

Notes:
At this time projection is only supported with BDF methods. If a new IVP is to be solved with a call to
CVodeReInit, where the new IVP does not have a constraint equation but the prior one did, then call
CVodeSetProjFrequency with an input of 0 to disable projection.
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New in version 6.2.0.

5.1.5.9 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where CVODES is to return a solution. But these modes are
modified if the user has set a stop time (with CVodeSetStopTime ()) or requested rootfinding.

int CVode (void *cvode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)

The function CVode integrates the ODE over an interval in t.

Arguments:

cvode_mem — pointer to the CVODES memory block.

tout — the next time at which a computed solution is desired.
yout — the computed solution vector.

tret — the time reached by the solver (output).

itask — a flag indicating the job of the solver for the next user step. The CV_NORMAL option causes
the solver to take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to take just one internal step and then return the solution at the point reached by
that step.

Return value:

CV_SUCCESS — CVode succeeded and no roots were found.

CV_TSTOP_RETURN — CVode succeeded by reaching the stopping point specified through the optional
input function CVodeSetStopTime ().

CV_ROOT_RETURN — CVode succeeded and found one or more roots. In this case, tret is the location
of the root. If nrtfn > 1, call CVodeGetRootInfo() to see which g; were found to have a root.

CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

CV_NO_MALLOC — The CVODES memory was not allocated by a call to CVodeInit ().

CV_ILL_INPUT - One of the inputs to CVode was illegal, or some other input to the solver was illegal
or missing. The latter category includes the following situations:

(a) The tolerances have not been set.
(b) A component of the error weight vector became zero during internal time-stepping.

(c) The linear solver initialization function (called by the user after calling CVodeCreate()) failed
to set the linear solver-specific 1solve field in cvode_mem.

(d) A root of one of the root functions was found both at a point ¢ and also very near ¢.

CV_TOO_CLOSE — The initial time ¢y and the output time ¢,,,; are too close to each other and the user
did not specify an initial step size.

CV_TOO_MUCH_WORK — The solver took mxstep internal steps but still could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.
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e CV_ERR_FAILURE - Either error test failures occurred too many times (MXNEF = 7) during one inter-
nal time step, or with |h| = Apin.

* CV_CONV_FAILURE - Either convergence test failures occurred too many times (MXNCF = 10) during
one internal time step, or with |h| = hypin.

e CV_LINIT_FAIL — The linear solver interface’s initialization function failed.

e CV_LSETUP_FAIL — The linear solver interface’s setup function failed in an unrecoverable manner.
e CV_LSOLVE_FAIL — The linear solver interface’s solve function failed in an unrecoverable manner.
e CV_CONSTR_FAIL — The inequality constraints were violated and the solver was unable to recover.
e CV_RHSFUNC_FAIL — The right-hand side function failed in an unrecoverable manner.

* CV_FIRST_RHSFUNC_FAIL — The right-hand side function had a recoverable error at the first call.

e CV_REPTD_RHSFUNC_ERR — Convergence test failures occurred too many times due to repeated re-
coverable errors in the right-hand side function. This flag will also be returned if the right-hand side
function had repeated recoverable errors during the estimation of an initial step size.

e CV_UNREC_RHSFUNC_ERR — The right-hand function had a recoverable error, but no recovery was
possible. This failure mode is rare, as it can occur only if the right-hand side function fails recoverably
after an error test failed while at order one.

e CV_RTFUNC_FAIL — The rootfinding function failed.

Notes:

The vector yout can occupy the same space as the vector y® of initial conditions that was passed to
CVodeInit.

In the CV_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough
scale of the independent variable.

If a stop time is enabled (through a call to CVodeSetStopTime), then CVode returns the solution at tstop.
Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reenabled
only though a new call to CVodeSetStopTime).

All failure return values are negative and so the test flag < 0 will trap all CVode failures.

On any error return in which one or more internal steps were taken by CVode, the returned values of tret
and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from the previous CVode return.

5.1.5.10 Optional input functions

There are numerous optional input parameters that control the behavior of the CVODES solver. CVODES provides
functions that can be used to change these optional input parameters from their default values. The main inputs are
divided into the following categories:

* Table 5.1 lists the main CVODES optional input functions,

Table 5.2 lists the CVLS linear solver interface optional input functions,
Table 5.3 lists the CVNLS nonlinear solver interface optional input functions,
Table 5.4 lists the CVODES step size adaptivity optional input functions, and
Table 5.5 lists the rootfinding optional input functions.

Table 5.6 lists the projection optional input functions.
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These optional inputs are described in detail in the remainder of this section. Note that the diagonal linear solver module
has no optional inputs. For the most casual use of CVODES, the reader can skip to §5.1.6..

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors.

The optional input calls can, unless otherwise noted, be executed in any order. However, if the user’s program calls
either CVodeSetErrFile () or CVodeSetErrHandlerFn(), then that call should appear first, in order to take effect
for any later error message. Finally, a call to an CVodeSet*** function can, unless otherwise noted, be made at any
time from the user’s calling program and, if successful, takes effect immediately.

Main solver optional input functions

Table 5.1: Optional inputs for CVODES

Optional input Function name Default
Pointer to an error file CVodeSetErrFile() stderr
Error handler function CVodeSetErrHandlerFn() internal fn.
User data CVodeSetUserData() NULL
Maximum order for BDF method CVodeSetMaxOrd() 5
Maximum order for Adams method CVodeSetMaxOrd() 12
Maximum no. of internal steps before ¢, CVodeSetMaxNumSteps () 500
Maximum no. of warnings for t,, + h =t,, CVodeSetMaxHnilWarns () 10

Flag to activate stability limit detection CVodeSetStabLimDet () SUNFALSE
Initial step size CVodeSetInitStep() estimated
Minimum absolute step size CVodeSetMinStep () 0.0
Maximum absolute step size CVodeSetMaxStep() 00

Value of ts¢0p CVodeSetStopTime () undefined
Interpolate at ¢4t CVodeSetInterpolateStopTime() SUNFALSE
Disable the stop time CVodeClearStopTime () N/A
Maximum no. of error test failures CVodeSetMaxErrTestFails() 7

Inequality constraints on solution CVodeSetConstraints()

int CVodeSetErrFile (void *cvode_mem, FILE *errfp)

The function CVodeSetErrFile specifies a pointer to the file where all CVODES messages should be directed
when the default CVODES error handler function is used.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* errfp — pointer to output file.
Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value for errfp is stderr. Passing a value of NULL disables all future error message output
(except for the case in which the CVODES memory pointer is NULL). This use of CVodeSetErrFile is
strongly discouraged.
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Warning: If CVodeSetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

int CVodeSetErrHandlerFn (void *cvode_mem, CVErrHandlerFn ehfun, void *eh_data)

The function CVodeSetErrHandlerFn specifies the optional user-defined function to be used in handling error
messages.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e ehfun —is the C error handler function of type CVErrHandlerFn.
* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:
* CV_SUCCESS — The function ehfun and data pointer eh_data have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
Error messages indicating that the CVODES solver memory is NULL will always be directed to stderr.

int CVodeSetUserData(void *cvode_mem, void *user_data)

The function CVodeSetUserData specifies the user data block user_data and attaches it to the main CVODES
memory block.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* user_data — pointer to the user data.
Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:

If specified, the pointer to user_data is passed to all user-supplied functions that have it as an
argument. Otherwise, a NULL pointer is passed.

Warning: If user_data is needed in user linear solver or preconditioner functions, the call to CVode-
SetUserData must be made before the call to specify the linear solver.

int CVodeSetMonitorFn(void *cvode_mem, CVMonitorFn monitorfn)

The function CVodeSetMonitorFn specifies a user function, monitorfn, to be called at some interval of suc-
cessfully completed CVODES time steps.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e monitorfn — user-supplied monitor function (NULL by default); a NULL input will turn off monitoring.

Return value:
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e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The frequency with which the monitor function is called can be set with the function CVodeSetMonitor-
Frequency.

Warning: Modifying the solution in this function will result in undefined behavior. This function
is only intended to be used for monitoring the integrator. SUNDIALS must be built with the CMake
option SUNDIALS_BUILD_WITH_MONITORING, to utilize this function. See §11 for more information.

int CVodeSetMonitorFrequency (void *cvode_mem, long int nst)

The function CVodeSetMonitorFrequency specifies the interval, measured in successfully completed
CVODES time-steps, at which the monitor function should be called.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nst — number of successful steps inbetween calls to the monitor function 0 by default; a O input will
turn off monitoring.

Return value:
* CV_SUCCESS — The optional value has been successfully set.
e CV_MEM_NULL — The CVODES memory block was not initialized CVodeCreate ().

Notes:
The monitor function that will be called can be set with CVodeSetMonitorFn.

Warning: Modifying the solution in this function will result in undefined behavior. This function
is only intended to be used for monitoring the integrator. SUNDIALS must be built with the CMake
option SUNDIALS_BUILD_WITH_MONITORING, to utilize this function. See §11 for more information.

int CVodeSetMaxOrd (void *cvode_mem, int maxord)
The function CVodeSetMaxOrd specifies the maximum order of the linear multistep method.

Arguments:

e cvode_mem — pointer to the CVODES memory block.

* maxord — value of the maximum method order. This must be positive.
Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The specified value maxord is < 0, or larger than its previous value.

Notes:
The default value is ADAMS_Q_MAX = 12 for the Adams-Moulton method and BDF_Q_MAX = 5 for the
BDF method. Since maxord affects the memory requirements for the internal CVODES memory block, its
value cannot be increased past its previous value.
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An input value greater than the default will result in the default value.

int CVodeSetMaxNumSteps (void *cvode_mem, long int mxsteps)

The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken by the solver in its
attempt to reach the next output time.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* mxsteps — maximum allowed number of steps.
Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
Passing mxsteps = 0 results in CVODES using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int CVodeSetMaxHnilWarns (void *cvode_mem, int mxhnil)

The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued by the solver warning
that £ + h = ¢ on the next internal step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* mxhnil — maximum number of warning messages (> 0).
Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 10. A negative value for mxhnil indicates that no warning messages should be issued.

int CVodeSetStabLimDet (void *cvode_mem, booleantype stldet)

The function CVodeSetStabLimDet indicates if the BDF stability limit detection algorithm should be used. See
§2.4 for further details.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* stldet — flag controlling stability limit detection (SUNTRUE = on; SUNFALSE = off).
Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The linear multistep method is not set to CV_BDF.

Notes:
The default value is SUNFALSE. If stldet = SUNTRUE when BDF is used and the method order is greater
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than or equal to 3, then an internal function, CVsldet, is called to detect a possible stability limit. If such
a limit is detected, then the order is reduced.

int CVodeSetInitStep (void *cvode_mem, realtype hin)
The function CVodeSetInitStep specifies the initial step size.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hin — value of the initial step size to be attempted. Pass 0.0 to use the default value.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
By default, CVODES estimates the initial step size to be the solution & of the equation 0.5h%jj = 1, where
4j is an estimated second derivative of the solution at .

int CVodeSetMinStep (void *cvode_mem, realtype hmin)
The function CVodeSetMinStep specifies a lower bound on the magnitude of the step size.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hmin — minimum absolute value of the step size (> 0.0).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes:
The default value is 0.0.

int CVodeSetMaxStep (void *cvode_mem, realtype hmax)
The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step size.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ hmax — maximum absolute value of the step size (> 0.0).
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_ILL_INPUT - Either hmax is nonpositive or it is smaller than the minimum allowable step size.

Notes:
Pass hmax = 0.0 to obtain the default value co.
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int CVodeSetStopTime (void *cvode_mem, realtype tstop)

The function CVodeSetStopTime specifies the value of the independent variable ¢ past which the solution is not
to proceed.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e tstop — value of the independent variable past which the solution should not proceed.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The value of tstop is not beyond the current ¢ value, £,,.

Notes:
The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reenabled
only though a new call to CVodeSetStopTime).

A stop time not reached before a call to CVodeReInit () will remain active but can be disabled by calling
CVodeClearStopTime().

int CVodeSetInterpolateStopTime (void *cvode_mem, booleantype interp)

The function CVodeSetInterpolateStopTime specifies that the output solution should be interpolated when
the current ¢ equals the specified tstop (instead of merely copying the internal solution y,,).

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* interp - flag indicating to use interpolation (1) or copy (0).
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.6.0.

int CVodeClearStopTime (void *cvode_mem)
Disables the stop time set with CVodeSetStopTime().

Arguments:

* cvode_mem — pointer to the CVODES memory block.
Return value:

» CV_SUCCESS if successful

e CV_MEM_NULL if the CVODES memory is NULL

Notes:
The stop time can be reenabled though a new call to CVodeSetStopTime ().

New in version 6.5.1.
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int CVodeSetMaxErrTestFails (void *cvode_mem, int maxnef)

The function CVodeSetMaxErrTestFails specifies the maximum number of error test failures permitted in
attempting one step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* maxnef — maximum number of error test failures allowed on one step (> 0).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 7.

int CVodeSetConstraints (void *cvode_mem, N_Vector constraints)

The function CVodeSetConstraints specifies a vector defining inequality constraints for each component of
the solution vector y.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

e constraints — vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;.

1.0 then y; will be constrained to be y; > 0.0.

-1.0 then y; will be constrained to be y; < 0.0.

2.0 then y; will be constrained to be y; > 0.0.

-2.0 then y; will be constrained to be y; < 0.0.
Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The constraints vector contains illegal values or the simultaneous corrector option
has been selected when doing forward sensitivity analysis.

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous corrector option is cur-
rently disallowed and will result in an illegal input return.
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Linear solver interface optional input functions

Table 5.2: Optional inputs for the CVLS linear solver interface

Optional input Function name Default

Max allowed -y change without a linear solver setup CVodeSetDel taGamma- 0.3
MaxLSetup()

Max allowed « change to update the Jacobian / preconditioner CVodeSetDeltaGamma- 0.2

after a NLS failure MaxBadJac()

Linear solver setup frequency CVodeSetLSetupFre- 20
quency ()

Jacobian / preconditioner update frequency CVodeSetJacEvalFre- 51
quency ()

Jacobian function CVodeSetJacFn() DQ

Linear System function CVodeSetLinSysFn() internal

Enable or disable linear solution scaling CVodeSetLinearSolution- on
Scaling()

Jacobian-times-vector functions CVodeSetJacTimes () NULL, DQ

Jacobian-times-vector DQ RHS function CVodeSetJacTimesRhsFn() NULL

Preconditioner functions CVodeSetPreconditioner() NULL,

NULL
Ratio between linear and nonlinear tolerances CVodeSetEpsLin() 0.05
Newton linear solve tolerance conversion factor CVodeSetLSNormFactor () vector
length

The mathematical explanation of the linear solver methods available to CVODES is provided in §2.1. We group the user-
callable routines into four categories: general routines concerning the overall CVLS linear solver interface, optional
inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and optional inputs for iterative
linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive, whereas the “iterative”
tag can apply to either case.

Asdiscussedin §2.1, CVODES strives to reuse matrix and preconditioner data for as many solves as possible to amortize
the high costs of matrix construction and factorization. To that end, CVODES provides user-callable routines to modify
this behavior. Recall that the Newton system matrices are M (¢,y) = I — vJ(¢,y), where the right-hand side function

of(t
has Jacobian matrix J(t,y) = M

dy

The matrix or preconditioner for M can only be updated within a call to the linear solver ‘setup’ routine. In general,
the frequency with which this setup routine is called may be controlled with the msbp argument to CVodeSetLSe-
tupFrequency (). When this occurs, the validity of M for successive time steps intimately depends on whether the
corresponding «y and J inputs remain valid.

At each call to the linear solver setup routine the decision to update M with a new value of v, and to reuse or reevaluate
Jacobian information, depends on several factors including:

* the success or failure of previous solve attempts,

* the success or failure of the previous time step attempts,

* the change in 7y from the value used when constructing M, and

* the number of steps since Jacobian information was last evaluated.

Jacobian information is considered out-of-date when msbj or more steps have been completed since the last update,
in which case it will be recomputed during the next linear solver setup call. The value of msbj is controlled with the
msbj argument to CVodeSetJacEvalFrequency().
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For linear-solvers with user-supplied preconditioning the above factors are used to determine whether to recommend
updating the Jacobian information in the preconditioner (i.e., whether to set jok to SUNFALSE in calling the user-
supplied preconditioner setup function (see §5.1.6.12). For matrix-based linear solvers these factors determine whether

of (t,y)

the matrix J(t,y) = ———== should be updated (either with an internal finite difference approximation or a call to

dy
the user-supplied Jacobian function (see §5.1.6.7); if not then the previous value is reused and the system matrix
M(t,y) =~ I —~J(t,y) is recomputed using the current -y value.

int CVodeSetDeltaGammaMaxLSetup (void *cvode_mem, realtype dgmax_lsetup)

The function CVodeSetDeltaGammaMaxLSetup specifies the maximum allowed ~ change that does not require
alinear solver setup call. If |gamma_current / gamma_previous - 1| > dgmax_lsetup, the linear solver
setup function is called.

If dgmax_lsetup is < 0, the default value (0.3) will be used.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* dgmax_lsetup — the vy change threshold.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.2.0.

int CVodeSetDeltaGammaMaxBadJac (void *cvode_mem, realtype dgmax_jbad)

The function CVodeSetDeltaGammaMaxBadJac specifies the maximum allowed ~ change after a NLS failure
that requires updating the Jacobian / preconditioner. If gamma_current < dgmax_jbad, the Jacobian evalua-
tion and/or preconditioner setup functions will be called.

Positive values of dgmax_jbad specify the threshold, all other values will result in using the default value (0.2).
Arguments:

* cvode_mem — pointer to the CVODE memory block.

* dgmax_jbad — the v change threshold.
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODE memory block was not initialized through a previous call to CVodeCre-
ate().

New in version 6.2.0.

int CVodeSetLSetupFrequency (void *cvode_mem, long int msbp)

The function CVodeSetLSetupFrequency specifies the frequency of calls to the linear solver setup function.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* msbp — the linear solver setup frequency.
Return value:

* CV_SUCCESS - The optional value has been successfully set.
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e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The frequency msbp is negative.

Notes:
Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the
setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp = 0, the default value of 20 will be used. Otherwise an error is returned.

int CVodeSetJacEvalFrequency (void *cvode_mem, long int msbj)

The function CVodeSetJacEvalFrequency Specifies the number of steps after which the Jacobian information
is considered out-of-date, msbj from §2.1.1.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* msbj — the Jacobian re-computation or preconditioner update frequency.
Return value:

e CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

e CVLS_ILL_INPUT - The frequency msbj is negative.

Notes:
If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current
step number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the
next linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.1.1 for more information on when linear solver setups are performed.

If msbj = 0, the default value of 51 will be used. Otherwise an error is returned.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

When using matrix-based linear solver modules, the CVLS solver interface needs a function to compute an approxima-
tion to the Jacobian matrix J(¢,y) or the linear system M = I — ~J. The function to evaluate J (¢, y) must be of type
CVLsJacFn. The user can supply a Jacobian function, or if using a SUNMATRIX_DENSE or SUNMATRIX_BAND
matrix J, can use the default internal difference quotient approximation that comes with the CVLS solver. To specify
a user-supplied Jacobian function jac, CVLS provides the function CVodeSetJacFn(). The CVLS interface passes
the pointer user_data to the Jacobian function. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian function, without using global data in
the program. The pointer user_data may be specified through CVodeSetUserData().

int CVodeSetJacFn(void *cvode_mem, CVLsJacFn jac)

The function CVodeSetJacFn specifies the Jacobian approximation function to be used for a matrix-based solver
within the CVLS interface.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* jac — user-defined Jacobian approximation function.

Return value:
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e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

By default, CVLS uses an internal difference quotient function for the SUNMATRIX DENSE and SUN-
MATRIX_BAND modules. If NULL is passed to jac, this default function is used. An error will occur if no
jac is supplied when using other matrix types.

The function type CVLsJacFn is described in §5.1.6.7.

The previous routine CVD1sSetJacFn is now a wrapper for this routine, and may still be used for backward-
compatibility. However, this will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

To specify a user-supplied linear system function 1insys, CVLS provides the function CVodeSetLinSysFn(). The
CVLS interface passes the pointer user_data to the linear system function. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied linear system function,
without using global data in the program. The pointer user_data may be specified through CVodeSetUserData().

int CVodeSetLinSysFn(void *cvode_mem, CVLsLinSysFn linsys)

The function CVodeSetLinSysFn specifies the linear system approximation function to be used for a matrix-
based solver within the CVLS interface.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ linsys — user-defined linear system approximation function.
Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
* CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

By default, CVLS uses an internal linear system function leveraging the SUNMatrix API to form the system
M = I — ~J using either an internal finite difference approximation or user-supplied function to compute
the Jacobian. If 1insys is NULL, this default function is used.

The function type CVLsLinSysFn is described in §5.1.6.7.

When using a matrix-based linear solver the matrix information will be updated infrequently to reduce matrix construc-
tion and, with direct solvers, factorization costs. As a result the value of v may not be current and, with BDF methods,
a scaling factor is applied to the solution of the linear system to account for the lagged value of . See §8.2.1 for more
details. The function CVodeSetLinearSolutionScaling () can be used to disable this scaling when necessary, e.g.,
when providing a custom linear solver that updates the matrix using the current vy as part of the solve.

int CVodeSetLinearSolutionScaling(void *cvode_mem, booleantype onoff)

The function CVodeSetLinearSolutionScaling() enables or disables scaling the linear system solution to
account for a change in + in the linear system. For more details see §8.2.1.

Arguments:
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* cvode_mem — pointer to the CVODES memory block.
* onoff — flag to enable (SUNTRUE) or disable (SUNFALSE) scaling.
Return value:
e CVLS_SUCCESS — The flag value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
* CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

e CVLS_ILL_INPUT - The attached linear solver is not matrix-based or the linear multistep method type
is not BDF.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver.

By default scaling is enabled with matrix-based linear solvers when using BDF methods.

When using matrix-free linear solver modules, the CVLS solver interface requires a function to compute an approxi-
mation to the product between the Jacobian matrix J (¢, y) and a vector v. The user can supply a Jacobian-times-vector
approximation function or use the default internal difference quotient function that comes with the CVLS interface.

A user-defined Jacobian-vector product function must be of type CVLsJacTimesVecFn and can be specified through a
call to CVodeSetJacTimes () (see §5.1.6.9 for specification details). The evaluation and processing of any Jacobian-
related data needed by the user’s Jacobian-times-vector function may be done in the optional user-supplied function
jtsetup (see §5.1.6.10 for specification details). The pointer user_data received through CVodeSetUserData () (or
a pointer to NULL if user_data was not specified) is passed to the Jacobian-times-vector setup and product functions,
jtsetup and jtimes, each time they are called. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied functions without using global data in the program.

int CVodeSetJacTimes (void *cvode_mem, CVLsJacTimesSetupFn jtsetup, CVLsJacTimesVecFn jtimes)

The function CVodeSetJacTimes specifies the Jacobian-vector setup and product functions.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* jtsetup — user-defined Jacobian-vector setup function of type CVLsJacTimesSetupFn.

* jtimes — user-defined Jacobian-vector product function of type CVLsJacTimesVecFn.
Return value:

e CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

e CVLS_SUNLS_FAIL — An error occurred when setting up the system matrix-times-vector routines in
the SUNLinearSolver object used by the CVLS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to omit jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup
inputs.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().
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The previous routine CVSpilsSetJacTimes is now a wrapper for this routine, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new routine name soon.

When using the internal difference quotient the user may optionally supply an alternative right-hand side function for
use in the Jacobian-vector product approximation by calling CVodeSetJacTimesRhsFn (). The alternative right-hand
side function should compute a suitable (and differentiable) approximation to the right-hand side function provided
to CVodeInit(). For example, as done in [27], the alternative function may use lagged values when evaluating a
nonlinearity in the right-hand side to avoid differencing a potentially non-differentiable factor.

int CVodeSetJacTimesRhsFn (void *cvode_mem, CVRAsFn jtimesRhsFn)

The function CVodeSetJacTimesRhsFn specifies an alternative ODE right-hand side function for use in the
internal Jacobian-vector product difference quotient approximation.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

¢ jtimesRhsFn —is the C function which computes the alternative ODE right-hand side function to use
in Jacobian-vector product difference quotient approximations. This function has the form f(t, vy,
ydot, user_data) (for full details see §5.1.6.1).

Return value:
* CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_ILL_INPUT - The internal difference quotient approximation is disabled.

Notes:
The default is to use the right-hand side function provided to CVodeInit () in the internal difference quo-
tient. If the input right-hand side function is NULL, the default is used.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to CVODES using the
function CVodeSetPreconditioner(). The psetup function supplied to this routine should handle evaluation and
preprocessing of any Jacobian data needed by the user’s preconditioner solve function, psolve. The user data pointer
received through CVodeSetUserData() (or a pointer to NULL if user data was not specified) is passed to the psetup
and psolve functions. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied preconditioner functions without using global data in the program.

Also, as described in §2.1, the CVLS interface requires that iterative linear solvers stop when the norm of the precon-
ditioned residual satisfies

€€
< —

where € is the nonlinear solver tolerance, and the default e;, = 0.05; this value may be modified by the user through
the CVodeSetEpsLin() function.

int CVodeSetPreconditioner (void *cvode_mem, CVLsPrecSetupFn psetup, CVLsPrecSolveFn psolve)

The function CVodeSetPreconditioner specifies the preconditioner setup and solve functions.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* psetup — user-defined preconditioner setup function. Pass NULL if no setup is necessary.
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* psolve —user-defined preconditioner solve function.
Return value:
* CVLS_SUCCESS — The optional values have been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

* CVLS_SUNLS_FAIL — An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the CVLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

The function type CVLsPrecSolveFn is described in §5.1.6.11.
The function type CVLsPrecSetupFn is described in §5.1.6.12.

The previous routine CVSpilsSetPreconditioner is now a wrapper for this routine, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

int CVodeSetEpsLin(void *cvode_mem, realtype eplifac)

The function CVodeSetEpsLin specifies the factor by which the Krylov linear solver’s convergence test constant
is reduced from the nonlinear solver test constant.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* eplifac - linear convergence safety factor (> 0).
Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_ILL_INPUT - The factor eplifac is negative.

Notes:
The default value is 0.05.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

If eplifac = 0.0 is passed, the default value is used.

The previous routine CVSpilsSetEpsLin is now a wrapper for this routine, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new routine name soon.

int CVodeSetLSNormFactor (void *cvode_mem, realtype nrmfac)

The function CVodeSetLSNormFactor specifies the factor to use when converting from the integrator tolerance
(WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac *
tol_WRMS.

Arguments:
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* cvode_mem — pointer to the CVODES memory block.
» nrmfac — the norm conversion factor. If nrmfac is:
— > 0 then the provided value is used.

— = 0 then the conversion factor is computed using the vector length, i.e., nrmfac = N_-
VGetLength(y) (default).

— < 0 then the conversion factor is computed using the vector dot product, i.e., nrmfac = N_-
VDotProd(v,v) where all the entries of v are one.

Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (CVODES v5.0.0) the value of nrmfac
was computed using the vector dot product i.e., the nrmfac < 0 case.

Nonlinear solver interface optional input functions

Table 5.3: Optional inputs for the CVNLS nonlinear solver interface

Optional input Function name Default
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters() 3
Maximum no. of convergence failures CVodeSetMaxConvFails() 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef() 0.1
ODE RHS function for nonlinear system evaluations CVodeSetNIsRhsFn() NULL

The following functions can be called to set optional inputs controlling the nonlinear solver.

int CVodeSetMaxNonlinIters (void *cvode_mem, int maxcor)

The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear solver iterations permit-
ted per step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* maxcor — maximum number of nonlinear solver iterations allowed per step (> 0).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — The SUNNonlinearSolver module is NULL.

Notes:
The default value is 3.
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int CVodeSetMaxConvFails (void *cvode_mem, int maxncf)

The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver convergence failures
permitted during one step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* maxncf — maximum number of allowable nonlinear solver convergence failures per step (> 0).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 10.

int CVodeSetNonlinConvCoef (void *cvode_mem, realtype nlscoef)
The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear convergence test (see

§2.1).
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nlscoef — coefficient in nonlinear convergence test (> 0).
Return value:

e CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 0.1.

int CVodeSetN1sRhsFn (void *cvode_mem, CVRAsFn f)

The function CVodeSetN1sRhsFn specifies an alternative right-hand side function for use in nonlinear system
function evaluations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

e f — is the alternative C function which computes the right-hand side function f in the ODE (for full
details see CVRhsFn).

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default is to use the implicit right-hand side function provided to CVodeInit () in nonlinear system
function evaluations. If the input right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after CVodeSetNonlinear-
Solver().
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Time step adaptivity optional input functions

Table 5.4: Optional inputs for CVODES time step adaptivity

Optional input Function name De-
fault

Fixed step size factor bounds 7yin_gx and Mmax fx CVodeSetEtaFixedStep- 0 and
Bounds () 1.5

Largest allowed step size change factor in the first step 7max_fs CVodeSetEtaMaxFirstStep () 10%

Largest allowed step size change factor for early steps Nmax es CVodeSetEtaMaxEarlyStep() 10

Number of time steps to use the early step size change factor CVodeSetNumStepsEtaMax- 10
EarlyStep()

Largest allowed step size change factor after a successful step CVodeSetEtaMax() 10

nmax_gs

Smallest allowed step size change factor after a successful step CVodeSetEtalin() 1.0

TImin

Smallest allowed step size change factor after an error test fail CVodeSetEtaMinErrFail() 0.1

Tlmin_ef

Largest allowed step size change factor after multiple error test CVodeSetEtaMaxErrFail() 0.2

fails Tlmax_ef

Number of error failures necessary for 7y ax_of CVodeSetNumFailsEtaMaxEr- 2
rFail()

Step size change factor after a nonlinear solver convergence fail- CVodeSetEtaConvFail () 0.25

ure 7t

The following functions can be called to set optional inputs to control the step size adaptivity.

Note: The default values for the step size adaptivity tuning parameters have a long history of success and changing
the values is generally discouraged. However, users that wish to experiment with alternative values should be careful
to make changes gradually and with testing to determine their effectiveness.

int CVodeSetEtaFixedStepBounds (void *cvode_mem, realtype eta_min_fx, realtype eta_max_fx)

The function CVodeSetEtaFixedStepBounds specifies the interval lower (1yiy,_fx) and upper (Nmax_g<) bounds
in which the step size will remain unchanged i.e., if Nmin_tx < 7 < Mmax_fx, then n = 1.

The default values are nyin_tx = 0 and Ppax i = 1.5
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_min_£fx — value of the lower bound of the fixed step interval. If eta_min_£fx is < 0 or > 1, the
default value is used.

* eta_max_fx — value of the upper bound of the fixed step interval. If eta_max_£fx is < 1, the default
value is used.

Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.2.0.
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int CVodeSetEtaMaxFirstStep (void *cvode_mem, realtype eta_max_fs)

The function CVodeSetEtaMaxFirstStep specifies the maximum step size factor after the first time step,

Nmax_fs-
The default value is 7pax s = 10%.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_max_£fs — value of the maximum step size factor after the first time step. If eta_max_£fsis <1,
the default value is used.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.2.0.

int CVodeSetEtaMaxEarlyStep (void *cvode_mem, realtype eta_max_es)

The function CVodeSetEtaMaxEarlyStepEtallax specifies the maximum step size factor for steps early in the
integration, Mmax es-

The default value is Nmax_es = 10.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_max_es — value of the maximum step size factor for early in the integration. If eta_max_es is
< 1, the default value is used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note: The factor for the first time step is set by CVodeSetEtaMaxFirstStep().

The number of time steps that use the early integration maximum step size factor 7max_es can be set with CVode-
SetNumStepsEtaMaxEarlyStep().

New in version 6.2.0.

int CVodeSetNumStepsEtaMaxEarlyStep (void *cvode_mem, long int small_nst)

The function CVodeSetNumStepsEtaMaxEarlyStep specifies the number of steps to use the early integration
maximum step size factor, Mmax_es-

The default value is 10.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* small_nst — value of the maximum step size factor for early in the integration. If small_nstis < 0,
the default value is used. If the small_nst is O, then the value set by CVodeSetEtaMax () is used.

Return value:
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e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note: The factor nyax es can be set with CVodeSetEtaMaxEarlyStep().

New in version 6.2.0.

int CVodeSetEtaMax (void *cvode_mem, realtype eta_max_gs)

The function CVodeSetEtaMax specifies the maximum step size factor, Jmax_gs-
The default value is 7max_gs = 10.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e eta_max_gs — value of the maximum step size factor. If eta_max_gs is < 1, the default value is
used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note: The factor for the first time step is set by CVodeSetEtaMaxFirstStep().

The factor for steps early in the integration is set by CVodeSetEtaMaxEarlyStep().

New in version 6.2.0.

int CVodeSetEtaMin (void *cvode_mem, realtype eta_min)

The function CVodeSetEtalMin specifies the minimum step size factor, Myin -
The default value is Ny = 1.0.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
e eta_min — value of the minimum step size factor. If eta_minis < 0 or > 1, the default value is used.
Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.2.0.

int CVodeSetEtaMinErrFail (void *cvode_mem, realtype eta_min_ef)

The function CVodeSetEtaMinErrFail specifies the minimum step size factor after an error test failure, iy _ef-
The default value is Nin of = 0.1.
Arguments:

* cvode_mem — pointer to the CVODES memory block.
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e eta_min_ef — value of the minimum step size factor after an error test failure. If eta_min_efis <0
or > 1, the default value is used.

Return value:
e CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.2.0.

int CVodeSetEtaMaxErrFail (void *cvode_mem, realtype eta_max_ef)

The function CVodeSetEtalMaxErrFail specifies the maximum step size factor after multiple error test failures,

Mmax_ef -
The default value is yin_of = 0.2.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_max_ef — value of the maximum step size factor after an multiple error test failures. If eta_-
min_ef is < 0 or > 1, the default value is used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note: The number of error test failures necessary to enforce the maximum step size factor 1y,i, or can be set
with CVodeSetNumFailsEtaMaxErrFail ().

New in version 6.2.0.

int CVodeSetNumFailsEtaMaxErrFail (void *cvode_mem, int small_nef)

The function CVodeSetNumFailsEtaMaxErrFail specifies the number of error test failures necessary to en-
force the maximum step size factor Nyax_ef-

The default value is 2.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* small_nst — value of the maximum step size factor for early in the integration. If small_nstis < 0,
the default value is used. If the small_nst is O, then the value set by CVodeSetEtalax () is used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note: The factor ny,ax of can be set with CVodeSetEtaMaxErrFail ().

New in version 6.2.0.
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int CVodeSetEtaConvFail (void *cvode_mem, realtype eta_cf)

The function CVodeSetEtaConvFail specifies the step size factor after a nonlinear solver failure 7).
The default value is 1.t = 0.25.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e eta_cf - value of the maximum step size factor after a nonlinear solver failure. If eta_cfis < 0 or
> 1, the default value is used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.2.0.

Rootfinding optional input functions

Table 5.5: Optional inputs for CVODES step size adaptivity

Optional input Function name Default

Direction of zero-crossing CVodeSetRootDirection() both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn() none

The following functions can be called to set optional inputs to control the rootfinding algorithm.

int CVodeSetRootDirection(void *cvode_mem, int *rootdir)
The function CVodeSetRootDirection specifies the direction of zero-crossings to be located and returned.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

e rootdir — state array of length nrtfn, the number of root functions g;, as specified in the call to the
function CVodeRootInit (). A value of 0 for rootdir[i] indicates that crossing in either direction
for g; should be reported. A value of +1 or —1 indicates that the solver should report only zero-
crossings where g; is increasing or decreasing, respectively.

Return value:
e CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - rootfinding has not been activated through a call to CVodeRootInit ().

Notes:
The default behavior is to monitor for both zero-crossing directions.

int CVodeSetNoInactiveRootWarn (void *cvode_mem)

The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root function appears to be
identically zero at the beginning of the integration.

Arguments:
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* cvode_mem — pointer to the CVODES memory block.
Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
CVODES will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the
initial time (i.e., g; is zero at the initial time and after the first step), CVODES will issue a warning which
can be disabled with this optional input function.

Projection optional input functions

Table 5.6: Optional inputs for the CVODE projection interface

Optional input Function name Default
Enable or disable error estimate projection CVodeSetProjErrEst () SUNTRUE
Projection frequency CVodeSetProjFrequency () 1
Maximum number of projection failures CVodeSetMaxNumProjFails() 10
Projection solve tolerance CVodeSetEpsProj () 0.1

Step size reduction factor after a failed projection CVodeSetProjFailEta() 0.25

The following functions can be called to set optional inputs to control the projection when solving an IVP with con-
straints.

int CVodeSetProjErrEst (void *cvode_mem, booleantype onoff)

The function CVodeSetProjErrEst enables or disables projection of the error estimate by the projection func-
tion.

Arguments:

* cvode_mem — is a pointer to the CVODES memory block.

* onoff —is a flag indicating if error projection should be enabled (SUNTRUE) or disabled (SUNFALSE).
Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

int CVodeSetProjFrequency (void *cvode_mem, long int freq)

The function CVodeSetProjFrequency specifies the frequency with which the projection is performed.
Arguments:

* cvode_mem — is a pointer to the CVODES memory block.
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» freq - is the frequency with which to perform the projection. The default is 1 (project every step), a
value of 0 will disable projection, and a value < 0 will restore the default.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

int CVodeSetMaxNumProjFails (void *cvode_mem, int max_fails)

The function CVodeSetMaxNumProjFails specifies the maximum number of projection failures in a step at-
tempt before an unrecoverable error is returned.

Arguments:
* cvode_mem — is a pointer to the CVODES memory block.

» max_fails — is the maximum number of projection failures. The default is 10 and an input value < 1
will restore the default.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

int CVodeSetEpsProj (void *cvode_mem, realtype eps)

The function CVodeSetEpsProj specifies the tolerance for the nonlinear constrained least squares problem
solved by the projection function.

Arguments:
* cvode_mem — is a pointer to the CVODES memory block.

* eps — is the tolerance (default 0.1) for the the nonlinear constrained least squares problem solved by
the projection function. A value < 0 will restore the default.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

int CVodeSetProjFailEta(void *cvode_mem, realtype eta)

The function CVodeSetProjFailEta specifies the time step reduction factor to apply on a projection function
failure.

Arguments:
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* cvode_mem — is a pointer to the CVODES memory block.

* eps —is the time step reduction factor to apply on a projection function failure (default 0.25). A value
< 0 or > 1 will restore the default.

Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

5.1.5.11 Interpolated output function

An optional function CVodeGetDKky is available to obtain additional output values. This function should only be called
after a successful return from CVode as it provides interpolated values either of y or of its derivatives (up to the current
order of the integration method) interpolated to any value of ¢ in the last internal step taken by CVODES.

The call to the function has the following form:

int CVodeGetDky (void *cvode_mem, realtype t, int k, N_Vector dky)
k

d
The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e. F’ij (t), wheret,,—h, <

t < ty, t, denotes the current internal time reached, and h,, is the last internal step size successfully used by the
solver. The user may request k =0, 1, ..., gy, where g, is the current order (optional output qlast).

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* t — the value of the independent variable at which the derivative is to be evaluated.

* k — the derivative order requested.

» dky — vector containing the derivative. This vector must be allocated by the user.
Return value:

e CV_SUCCESS - CVodeGetDky succeeded.

e CV_BAD_K -k is notin the range 0,1, ..., qy.

* CV_BAD_T - t is not in the interval [t,, — Ry, tp].

* CV_BAD_DKY — The dky argument was NULL.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
It is only legal to call the function CVodeGetDky after a successful return from CVode(). See
CVodeGetCurrentTime (), CVodeGetLastOrder (), and CVodeGetLastStep() in the next section for
access to t,, gy, and h,, respectively.
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5.1.5.12 Optional output functions

CVODES provides an extensive set of functions that can be used to obtain solver performance information. Table 5.7
lists all optional output functions in CVODES, which are then described in detail in the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining how successful the
CVODES solver is in doing its job. For example, the counters nsteps and nfevals provide a rough measure of the
overall cost of a given run, and can be compared among runs with differing input options to suggest which set of options
is most efficient. The ratio nniters/nsteps measures the performance of the nonlinear solver in solving the nonlinear
systems at each time step; typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of
a matrix-based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian or preconditioner being
used. Thus, for example, njevals/nniters can indicate if a user-supplied Jacobian is inaccurate, if this ratio is larger
than for the case of the corresponding internal Jacobian. The ratio nliters/nniters measures the performance of
the Krylov iterative linear solver, and thus (indirectly) the quality of the preconditioner.

Table 5.7: Optional outputs from CVODES, CVLS, and CVDIAG

Optional output

Function name

CVODES main solver

Size of CVODES real and integer workspaces
Cumulative number of internal steps

No. of calls to r.h.s. function

No. of calls to linear solver setup function

No. of local error test failures that have occurred
No. of failed steps due to a nonlinear solver failure
Order used during the last step

Order to be attempted on the next step

No. of order reductions due to stability limit detection
Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling

Error weight vector for state variables

Estimated local error vector

No. of nonlinear solver iterations

No. of nonlinear convergence failures

All CVODES integrator statistics

CVODES nonlinear solver statistics

User data pointer

Array showing roots found

No. of calls to user root function

Print all statistics

Name of constant associated with a return flag
CVLS linear solver interface

Stored Jacobian of the ODE RHS function

Time at which the Jacobian was evaluated

Step number at which the Jacobian was evaluated
Size of real and integer workspaces

No. of Jacobian evaluations

No. of r.h.s. calls for finite diff. Jacobian[-vector] evals.

No. of linear iterations

CVodeGetWorkSpace ()
CVodeGetNumSteps ()
CVodeGetNumRhsEvals ()
CVodeGetNumLinSolvSetups ()
CVodeGetNumErrTestFails ()
CVodeGetNumStepSolveFails()
CVodeGetLastOrder()
CVodeGetCurrentOrder ()
CVodeGetNumStabLimOrderReds ()
CVodeGetActualInitStep()
CVodeGetLastStep()
CVodeGetCurrentStep ()
CVodeGetCurrentTime ()
CVodeGetTolScaleFactor()
CVodeGetErrWeights ()
CVodeGetEstLocalErrors()
CVodeGetNumNonlinSolvIters()
CVodeGetNumNonlinSolvConvFails()
CVodeGetIntegratorStats()
CVodeGetNonlinSolvStats()
CVodeGetUserData()
CVodeGetRootInfo()
CVodeGetNumGEvals ()
CVodePrintAllStats()
CVodeGetReturnFlagName ()

CVodeGetJac()
CVodeGetJacTime ()
CVodeGetJacNumSteps ()
CVodeGetLinWorkSpace ()
CVodeGetNumJacEvals ()
CVodeGetNumLinRhsEvals ()
CVodeGetNumLinIters()

continues on next page
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Table 5.7 — continued from previous page

Optional output

Function name

No. of linear convergence failures

No. of preconditioner evaluations

No. of preconditioner solves

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations

Get all linear solver statistics in one function call
Last return from a linear solver function

Name of constant associated with a return flag
CVDIAG linear solver interface

CVodeGetNumLinConvFails ()
CVodeGetNumPrecEvals()
CVodeGetNumPrecSolves ()
CVodeGetNumJTSetupEvals()
CVodeGetNumJtimesEvals ()
CVodeGetLinSolvStats()
CVodeGetLastLinFlag()
CVodeGetLinReturnFlagName ()

Size of CVDIAG real and integer workspaces CVDiagGetWorkSpace ()
No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals ()
Last return from a CVDIAG function CVDiagGetLastFlag()

Name of constant associated with a return flag CVDiagGetReturnFlagName ()

Main solver optional output functions

CVODES provides several user-callable functions that can be used to obtain different quantities that may be of interest
to the user, such as solver workspace requirements, solver performance statistics, as well as additional data from the
CVODES memory block (a suggested tolerance scaling factor, the error weight vector, and the vector of estimated local
errors). Functions are also provided to extract statistics related to the performance of the CVODES nonlinear solver
used. As a convenience, additional information extraction functions provide the optional outputs in groups. These
optional output functions are described next.

int CVodeGetWorkSpace (void *cvode_mem, long int *lenrw, long int *leniw)
The function CVodeGetWorkSpace returns the CVODES real and integer workspace sizes.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* lenrw — the number of realtype values in the CVODES workspace.
* leniw — the number of integer values in the CVODES workspace.
Return value:
e CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
In terms of the problem size N, the maximum method order maxord, and the number nrtfn of root func-
tions (see §5.1.5.7) the actual size of the real workspace, in realtype words, is given by the following:

* base value: lenrw = 96 + (maxord + 5)N, + 3nrtfn;
* using CVodeSVtolerances(): lenrw = lenrw 4+ N,;
 with constraint checking (see CVodeSetConstraints()): lenrw = lenrw + N,;
where N,. is the number of real words in one N_Vector (= N).
The size of the integer workspace (without distinction between int and long int words) is given by:
* base value: leniw = 40 + (maxord + 5)N; + nrtfn;

* using CVodeSVtolerances(): leniw = leniw + N;;
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 with constraint checking: lenrw = lenrw + N;;

where [V, is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL and 2*npes for
NVECTOR_PARALLEL and npes processors).

For the default value of maxord, no rootfinding, no constraints, and without using CVodeSVtolerances(),
these lengths are given roughly by:

¢ For the Adams method: lenrw = 96 + 17N and leniw = 57
¢ For the BDF method: 1lenrw = 96 + 10V and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity integration is enabled.
See §5.2.1 and §5.3.2.1 for more details.

int CVodeGetNumSteps (void *cvode_mem, long int *nsteps)

The function CVodeGetNumSteps returns the cumulative number of internal steps taken by the solver (total so
far).

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nsteps — number of steps taken by CVODES.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumRhsEvals (void *cvode_mem, long int *nfevals)
The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand side function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nfevals — number of calls to the user’s f function.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made to £ by a linear
solver or preconditioner module.

int CVodeGetNumLinSolvSetups (void *cvode_mem, long int *nlinsetups)

The function CVodeGetNumLinSolvSetups returns the number of calls made to the linear solver’s setup func-
tion.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nlinsetups — number of calls made to the linear solver setup function.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.
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e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumErrTestFails (void *cvode_mem, long int *netfails)
The function CVodeGetNumErrTestFails returns the number of local error test failures that have occurred.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* netfails — number of error test failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumStepSolveFails (void *cvode_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e ncnf — number of step failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetLastOrder (void *cvode_mem, int *qlast)

The function CVodeGetLastOrder returns the integration method order used during the last internal step.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* glast — method order used on the last internal step.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetCurrentOrder (void *cvode_mem, int *qcur)

The function CVodeGetCurrentOrder returns the integration method order to be used on the next internal step.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* gqcur — method order to be used on the next internal step.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().
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int CVodeGetLastStep(void *cvode_mem, realtype *hlast)

The function CVodeGetLastStep returns the integration step size taken on the last internal step.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hlast — step size taken on the last internal step.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetCurrentStep (void *cvode_mem, realtype *hcur)

The function CVodeGetCurrentStep returns the integration step size to be attempted on the next internal step.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hcur - step size to be attempted on the next internal step.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetActualInitStep(void *cvode_mem, realtype *hinused)
The function CVodeGetActualInitStep returns the value of the integration step size used on the first step.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* hinused — actual value of initial step size.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
Even if the value of the initial integration step size was specified by the user through a call to CVodeSe-
tInitStep(), this value might have been changed by CVODES to ensure that the step size is within the
prescribed bounds (h,in < hg < hmaz), OF to satisfy the local error test condition.

int CVodeGetCurrentTime (void *cvode_mem, realtype *tcur)
The function CVodeGetCurrentTime returns the current internal time reached by the solver.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* tcur - current internal time reached.

Return value:

* CV_SUCCESS — The optional output value has been successfully set.
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e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumStabLimOrderReds (void *cvode_mem, long int *nslred)

The function CVodeGetNumStabLimOrderReds returns the number of order reductions dictated by the BDF
stability limit sdetection algorithm (see §2.4).

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nslred — number of order reductions due to stability limit detection.
Return value:

e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet () was not called), then
nslred =0.

int CVodeGetTolScaleFactor (void *cvode_mem, realtype *tolsfac)

The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s tolerances should be
scaled when too much accuracy has been requested for some internal step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetErrWeights (void *cvode_mem, N_Vector eweight)

The function CVodeGetErrieights returns the solution error weights at the current time. These are the recip-
rocals of the W; given by (2.7).

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* eweight — solution error weights at the current time.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Warning: The user must allocate memory for eweight.
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int CVodeGetEstLocalErrors(void *cvode_mem, N_Vector ele)

The function CVodeGetEstLocalErrors returns the vector of estimated local errors.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* ele — estimated local errors.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Warning: The user must allocate memory for ele.
The values returned in ele are valid only if CVode () returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErriieights (), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the RMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

int CVodeGetIntegratorStats(void *cvode_mem, long int *nsteps, long int *nfevals, long int *nlinsetups, long
int *netfails, int *qlast, int *qcur, realtype *hinused, realtype *hlast, realtype
*hcur, realtype *tcur)

The function CVodeGetIntegratorStats returns the CVODES integrator statistics as a group.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nsteps — number of steps taken by CVODES.
* nfevals — number of calls to the user’s f function.
e nlinsetups — number of calls made to the linear solver setup function.
e netfails — number of error test failures.
e glast — method order used on the last internal step.
* gcur — method order to be used on the next internal step.
* hinused - actual value of initial step size.
* hlast — step size taken on the last internal step.
* hcur - step size to be attempted on the next internal step.
e tcur — current internal time reached.
Return value:
* CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().
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int CVodeGetNumNonlinSolvIters(void *cvode_mem, long int *nniters)

The function CVodeGetNumNonlinSolvIters returns the number of nonlinear iterations performed.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nniters — number of nonlinear iterations performed.
Return value:

* CV_SUCCESS — The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — The SUNNonlinearSolver module is NULL.

int CVodeGetNumNonlinSolvConvFails (void *cvode_mem, long int *nncfails)

The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear convergence failures that
have occurred.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nncfails — number of nonlinear convergence failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNonlinSolvStats(void *cvode_mem, long int *nniters, long int *nncfails)
The function CVodeGetNonlinSolvStats returns the CVODES nonlinear solver statistics as a group.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e nniters — number of nonlinear iterations performed.
* nncfails — number of nonlinear convergence failures.
Return value:
e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — The SUNNonlinearSolver module is NULL.

int CVodeGetUserData (void *cvode_mem, void **user_data)

The function CVodeGetUserData returns the user data pointer provided to CVodeSetUserData().
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* user_data — memory reference to a user data pointer.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.
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e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

New in version 6.3.0.

int CVodePrintAllStats(void *cvode_mem, FILE *outfile, SUNOutputFormat fmt)

The function CVodePrintAllStats outputs all of the integrator, nonlinear solver, linear solver, and other statis-
tics.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* outfile — pointer to output file.
e fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl,
valuel,key2,value2,...

Return value:
* CV_SUCCESS — The output was successfully.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — An invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 6.2.0.

char *CVodeGetReturnFlagName (int flag)
The function CVodeGetReturnFlagName returns the name of the CVODES constant corresponding to flag.

Arguments:
e flag - return flag from a CVODES function.
Return value:

* A string containing the name of the corresponding constant

Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

int CVodeGetRootInfo (void *cvode_mem, int *rootsfound)
The function CVodeGetRootInfo returns an array showing which functions were found to have a root.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root.
Fori=0,...,nrtfn — 1, rootsfound[i] # 0 if g; has a root, and rootsfound[i] = 0 if not.

Return value:
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* CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
Note that, for the components g; for which a root was found, the sign of rootsfound[i] indicates the
direction of zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a
decreasing g;.

Warning: The user must allocate memory for the vector rootsfound.

int CVodeGetNumGEvals (void *cvode_mem, long int *ngevals)

The function CVodeGetNumGEvals returns the cumulative number of calls made to the user-supplied root func-
tion g.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* ngevals — number of calls made to the user’s function g thus far.
Return value:

e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Projection optional output functions

The following optional output functions are available for retrieving information and statistics related the projection
when solving an IVP with constraints.

int CVodeGetNumProjEvals(void *cvode_mem, long int *nproj)

The function CVodeGetNumProjEvals returns the current total number of projection evaluations.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nproj — the number of calls to the projection function.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

int CVodeGetNumProjFails (void *cvode_mem, long int *npfails)

The function CVodeGetNumProjFails returns the current total number of projection evaluation failures.
Arguments:

* cvode_mem — pointer to the CVODES memory block.
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* npfails — the number of projection failures.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL, i.e., the projection functionality has not been
enabled.

New in version 6.2.0.

CVLS linear solver interface optional output functions

The following optional outputs are available from the CVLS modules: workspace requirements, number of calls to the
Jacobian routine, number of calls to the right-hand side routine for finite-difference Jacobian or Jacobian-vector product
approximation, number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector setup and product routines, and last return value from
a linear solver function. Note that, where the name of an output would otherwise conflict with the name of an optional
output from the main solver, a suffix (for Linear Solver) has been added (e.g. lenrwLS).

int CVodeGetJac (void *cvode_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the ODE right-hand side function.

Parameters
» cvode_mem — the CVODES memory structure
e J — the Jacobian matrix
Return values
* CVLS_SUCCESS - the output value has been successfully set
e CVLS_MEM_NULL - cvode_mem was NULL

* CVLS_LMEM_NULL — the linear solver interface has not been initialized

Warning: This function is provided for debugging purposes and the values in the returned matrix should
not be altered.

int CVodeGetJacTime (void *cvode_mem, sunrealtype *t_J)

Returns the time at which the internally stored copy of the Jacobian matrix of the ODE right-hand side function
was evaluated.

Parameters
» cvode_mem — the CVODES memory structure
* t_J — the time at which the Jacobian was evaluated
Return values
» CVLS_SUCCESS - the output value has been successfully set
» CVLS_MEM_NULL - cvode_mem was NULL

e CVLS_LMEM_NULL - the linear solver interface has not been initialized
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int CVodeGetJacNumSteps (void *cvode_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE right-hand side function was evaluated.

Parameters

» cvode_mem — the CVODES memory structure

* nst_J — the value of the internal step counter at which the Jacobian was evaluated
Return values

* CVLS_SUCCESS - the output value has been successfully set

e CVLS_MEM_NULL - cvode_mem was NULL

* CVLS_LMEM_NULL - the linear solver interface has not been initialized

int CVodeGetLinWorkSpace (void *cvode_mem, long int *lenrwLS, long int *leniwLS)

The function CVodeGetLinWorkSpace returns the sizes of the real and integer workspaces used by the CVLS
linear solver interface.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e lenrwLS — the number of realtype values in the CVLS workspace.

* leniwLS — the number of integer values in the CVLS workspace.
Return value:

e CVLS_SUCCESS — The optional output values have been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of CVLS is not included in this report.

The previous routines CVD1sGetWorkspace and CVSpilsGetWorkspace are now wrappers for this rou-
tine, and may still be used for backward-compatibility. However, these will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

int CVodeGetNumJacEvals (void *cvode_mem, long int *njevals)

The function CVodeGetNumJacEvals returns the number of calls made to the CVLS Jacobian approximation
function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ njevals — the number of calls to the Jacobian function.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
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Notes:
The previous routine CVD1sGetNumJacEvals is now a wrapper for this routine, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new routine name soon.

int CVodeGetNumLinRhsEvals (void *cvode_mem, long int *nfevalsLS)

The function CVodeGetNumLinRhsEvals returns the number of calls made to the user-supplied right-hand side
function due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approx-
imation.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nfevalsLS — the number of calls made to the user-supplied right-hand side function.
Return value:

* CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
The value nfevalsLS is incremented only if one of the default internal difference quotient functions is
used.

The previous routines CVD1sGetNumRhsEvals and CVSpilsGetNumRhsEvals are now wrappers for this
routine, and may still be used for backward-compatibility. However, these will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

int CVodeGetNumLinIters(void *cvode_mem, long int *nliters)

The function CVodeGetNumLinIters returns the cumulative number of linear iterations.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nliters — the current number of linear iterations.
Return value:

e CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
The previous routine CVSpilsGetNumLinIters is now a wrapper for this routine, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new routine name soon.

int CVodeGetNumLinConvFails (void *cvode_mem, long int *nlcfails)

The function CVodeGetNumLinConvFails returns the cumulative number of linear convergence failures.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nlcfails — the current number of linear convergence failures.
Return value:

* CVLS_SUCCESS — The optional output value has been successfully set.
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e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
The previous routine CVSpilsGetNumConvFails is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new routine name soon.

int CVodeGetNumPrecEvals (void *cvode_mem, long int *npevals)

The function CVodeGetNumPrecEvals returns the number of preconditioner evaluations, i.e., the number of
calls made to psetup with jok = SUNFALSE.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e npevals — the current number of calls to psetup.
Return value:
e CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
The previous routine CVSpilsGetNumPrecEvals is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new routine name soon.

int CVodeGetNumPrecSolves (void *cvode_mem, long int *npsolves)

The function CVodeGetNumPrecSolves returns the cumulative number of calls made to the preconditioner solve
function, psolve.

Arguments:
¢ cvode_mem — pointer to the CVODES memory block.
¢ npsolves — the current number of calls to psolve.
Return value:
e CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetNumJTSetupEvals (void *cvode_mem, long int *njtsetup)

The function CVodeGetNumJTSetupEvals returns the cumulative number of calls made to the Jacobian-vector
setup function jtsetup.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ njtsetup — the current number of calls to jtsetup.
Return value:
e CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
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int CVodeGetNum]timesEvals(void *cvode_mem, long int *njvevals)

The function CVodeGetNumJtimesEvals returns the cumulative number of calls made to the Jacobian-vector
function jtimes.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ njvevals — the current number of calls to jtimes.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetLinSolvStats(void *cvode_mem, long int *njevals, long int *nfevalsLS, long int *nliters, long int
*nlcfails, long int *npevals, long int *npsolves, long int *njtsetups, long int *njtimes)

The function CVodeGetLinSolvStats returns CVODES linear solver statistics.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ njevals — the current number of calls to the Jacobian function.

e nfevalsLS — the current number of calls made to the user-supplied right-hand side function by the
linear solver.

* nliters — the current number of linear iterations.
e nlcfails — the current number of linear convergence failures.
e npevals — the current number of calls to psetup.
¢ npsolves — the current number of calls to psolve.
e njtsetup — the current number of calls to jtsetup.
¢ njtimes — the current number of calls to jtimes.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetLastLinFlag(void *cvode_mem, long int *1sflag)
The function CVodeGetLastLinFlag returns the last return value from a CVLS routine.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* 1sflag — the value of the last return flag from a CVLS function.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
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Notes:

If the CVLS setup function failed (i.e., CVode () returned CV_LSETUP_FATIL) when using the SUNLINSOL_-
DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is equal to the column index (numbered
from one) at which a zero diagonal element was encountered during the LU factorization of the (dense or
banded) Jacobian matrix.

If the CVLS setup function failed when using another SUNLinearSolver module, then 1sflag will be
SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or SUNLS_PACKAGE_FAIL_UNREC.

If the CVLS solve function failed (i.e., CVode () returned CV_LSOLVE_FATIL), then 1sflag contains the
error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL, indicating
that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable
failure in the Jv function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve func-
tion psolve failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure
(SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be singular
during the QR solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an
unrecoverable failure in an external iterative linear solver package.

The previous routines CVD1sGetLastFlag and CVSpilsGetLastFlag are now wrappers for this routine,
and may still be used for backward-compatibility. However, these will be deprecated in future releases, so
we recommend that users transition to the new routine name soon.

int CVodeGetLinReturnFlagName (long int Isflag)

The function CVodeGetLinReturnFlagName returns the name of the CVLS constant corresponding to 1sflag.

Arguments:

e 1sflag— areturn flag from a CVLS function.

Return value:

* The return value is a string containing the name of the corresponding constant. If 1 < Isflag < N (LU
factorization failed), this routine returns “NONE”.

Notes:

The previous routines CVD1sGetReturnFlagName and CVSpilsGetReturnFlagName are now wrappers
for this routine, and may still be used for backward-compatibility. However, these will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

Diagonal linear solver interface optional output functions

The following optional outputs are available from the CVDIAG module: workspace requirements, number of calls to
the right-hand side routine for finite-difference Jacobian approximation, and last return value from a CVDIAG function.
Note that, where the name of an output would otherwise conflict with the name of an optional output from the main
solver, a suffix (for Linear Solver) has been added here (e.g. 1lenrwLS).

int CVDiagGetWorkSpace (void *cvode_mem, long int *lenrwLS, long int *leniwL.S)

The function CVDiagGetWorkSpace returns the CVDIAG real and integer workspace sizes.

Arguments:

* cvode_mem — pointer to the CVODES memory block.
* lenrwLS — the number of realtype values in the CVDIAG workspace.

* leniwLS — the number of integer values in the CVDIAG workspace.

Return value:

* CVDIAG_SUCCESS — The optional output valus have been successfully set.
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e CVDIAG_MEM_NULL — The cvode_mem pointer is NULL.
e CVDIAG_LMEM_NULL — The CVDIAG linear solver has not been initialized.

Notes:
In terms of the problem size [V, the actual size of the real workspace is roughly 3N realtype words.

int CVDiagGetNumRhsEvals (void *cvode_mem, long int *nfevalsLS)

The function CVDiagGetNumRhsEvals returns the number of calls made to the user-supplied right-hand side
function due to the finite difference Jacobian approximation.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nfevalsLS — the number of calls made to the user-supplied right-hand side function.
Return value:

* CVDIAG_SUCCESS - The optional output value has been successfully set.

e CVDIAG_MEM_NULL — The cvode_mem pointer is NULL.

* CVDIAG_LMEM_NULL — The CVDIAG linear solver has not been initialized.

Notes:
The number of diagonal approximate Jacobians formed is equal to the number of calls made to the linear
solver setup function (see CVodeGetNumLinSolvSetups()).

int CVDiagGetLastFlag(void *cvode_mem, long int *Isflag)
The function CVDiagGetLastFlag returns the last return value from a CVDIAG routine.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* 1sflag — the value of the last return flag from a CVDIAG function.
Return value:

* CVDIAG_SUCCESS — The optional output value has been successfully set.

e CVDIAG_MEM_NULL - The cvode_mem pointer is NULL.

e CVDIAG_LMEM_NULL — The CVDIAG linear solver has not been initialized.

Notes:
If the CVDIAG setup function failed (CVode () returned CV_LSETUP_FAIL), the value of 1sflag is equal
to CVDIAG_INV_FAIL, indicating that a diagonal element with value zero was encountered. The same value
is also returned if the CVDIAG solve function failed (CVode () returned CV_LSOLVE_FATIL).

char *CVDiagGetReturnFlagName (long int Isflag)
The function CVDiagGetReturnFlagName returns the name of the CVDIAG constant corresponding to 1sflag.

Arguments:
* 1sflag — areturn flag from a CVDIAG function.
Return value:

* A string containing the name of the corresponding constant.
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5.1.5.13 CVODES reinitialization function

The function CVodeReInit () reinitializes the main CVODES solver for the solution of a new problem, where a prior
call to CVodeInit () has been made. The new problem must have the same size as the previous one. CVodeReInit ()
performs the same input checking and initializations that does, but does no memory allocation, as it assumes that the
existing internal memory is sufficient for the new problem. A call to CVodeReInit () deletes the solution history that
was stored internally during the previous integration. Following a successful call to CVodeReInit (), call CVode ()
again for the solution of the new problem.

The use of CVodeReInit () requires that the maximum method order, denoted by maxord, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the multistep method parameter 1mm
is unchanged (or changed from CV_ADAMS to CV_BDF) and the default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate calls to either the linear solver objects
themselves, or to the CVLS interface routines, as described in §5.1.5.5. Otherwise, all solver inputs set previously
remain in effect.

One important use of the CVodeReInit () function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to CVodeReInit (). To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int CVodeReInit (void *cvode_mem, realtype t0, N_Vector y0)
The function CVodeReInit provides required problem specifications and reinitializes CVODES.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* t0 —is the initial value of ¢.
* yO0 — is the initial value of y.
Return value:
* CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_MALLOC — Memory space for the CVODES memory block was not allocated through a previous
call to CVodeInit ().

e CV_ILL_INPUT - An input argument was an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, CVodeReInit also sends an error message to the error handler function.
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5.1.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that handles error and
warning messages, (optionally) a function that provides the error weight vector, (optionally) one or two functions
that provide Jacobian-related information for the linear solver, and (optionally) one or two functions that define the
preconditioner for use in any of the Krylov iterative algorithms.

5.1.6.1 ODE right-hand side

The user must provide a function of type defined as follows:

typedef int (*CVRhsFn)(realtype t, N_Vector y, N_Vector ydot, void *user_data);

This function computes the ODE right-hand side for a given value of the independent variable ¢ and state vector

Y.

Arguments:

* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* ydot — is the output vector f(¢,y).

* user_data —is the user_data pointer passed to CVodeSetUserData().

Return value:

A CVRhsFn should return O if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CV_RHSFUNC_FAIL is returned).

Notes:

Allocation of memory for ydot is handled within CVODES.

A recoverable failure error return from the CVRhsFn is typically used to flag a value of the dependent
variable y that is “illegal” in some way (e.g., negative where only a non-negative value is physically mean-
ingful). If such a return is made, CVODES will attempt to recover (possibly repeating the nonlinear solve,
or reducing the step size) in order to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged solution of the nonlin-
ear solver. Therefore, in general, a recoverable error in that converged value cannot be corrected. (It may
be detected when the right-hand side function is called the first time during the following integration step,
but a successful step cannot be undone.) However, if the user program also includes quadrature integration,
the state variables can be checked for legality in the call to CVQuadRhsFn, which is called at the converged
solution of the nonlinear system, and therefore CVODES can be flagged to attempt to recover from such a
situation. Also, if sensitivity analysis is performed with one of the staggered methods, the ODE right-hand
side function is called at the converged solution of the nonlinear system, and a recoverable error at that
point can be flagged, and CVODES will then try to correct it.

There are two other situations in which recovery is not possible even if the right-hand side function returns a
recoverable error flag. One is when this occurs at the very first call to the CVRhsFn (in which case CVODES
returns CV_FIRST_RHSFUNC_ERR). The other is when a recoverable error is reported by CVRhsFn after an
error test failure, while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_RHSFUNC_ERR).
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5.1.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
CVodeSetErrFile()), the user may provide a function of type CVErrHandlerFn to process any such messages. The
function type CVErrHandlerFn is defined as follows:

typedef void (*CVErrHandlerFn)(int error_code, const char *module, const char *function, char *msg, void
*eh_data);

This function processes error and warning message from CVODES and it sub-modules.
Arguments:

* error_code is the error code.

e module is the name of the CVODES module reporting the error.

» function is the name of the function in which the error occurred.

* msg is the error message.

* eh_data is a pointer to user data, the same as the eh_data parameter passed to CVodeSetErrHan-
dlerFn().

Return value:
¢ void

Notes:
error_code is negative for errors and positive (CV_WARNING) for warnings. If a function that returns a
pointer to memory encounters an error, it sets error_code to 0.

5.1.6.3 Monitor function

A user may provide a function of type CVMonitorFn to monitor the integrator progress throughout a simulation. For
example, a user may want to check integrator statistics as a simulation progresses.

typedef void (*CVMonitorFn)(void *cvode_mem, void *user_data);

This function is used to monitor the CVODES integrator throughout a simulation.
Arguments:
* cvode_mem — the CVODES memory pointer.

* user_data —a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
Should return 0O if successful, or a negative value if unsuccessful.

Warning: This function should only be utilized for monitoring the integrator progress (i.e., for debugging).
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5.1.6.4 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type CVEwtFn to
compute a vector containing the weights in the WRMS norm

| vilwrms =

These weights will be used in place of those defined by Eq. (2.7). The function type is defined as follows:

typedef int (*CVEwtFn)(N_Vector y, N_Vector ewt, void *user_data);
This function computes the WRMS error weights for the vector y.

Arguments:
 y — the value of the dependent variable vector at which the weight vector is to be computed.
* ewt — the output vector containing the error weights.

* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
Should return O if successful, or -1 if unsuccessful.

Notes:
Allocation of memory for ewt is handled within CVODES.

Warning: The error weight vector must have all components positive. It is the user’s responsiblity to
perform this test and return -1 if it is not satisfied.

5.1.6.5 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a C function of
type CVRootFn, defined as follows:

typedef int (*CVRootFn)(realtype t, N_Vectory, realtype *gout, void *user_data);

This function implements a vector-valued function g(¢, y) such that the roots of the nrtfn components g; (¢, y)
are sought.

Arguments:
e t — the current value of the independent variable.
* y — the current value of the dependent variable vector, y(t).
* gout — the output array of length nrtfn with components g; (¢, y).

* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
A CVRootFn should return O if successful or a non-zero value if an error occured (in which case the inte-
gration is haled and CVode returns CV_RTFUNC_FAIL.

Notes:
Allocation of memory for gout is automatically handled within CVODES.

5.1. Using CVODES for IVP Solution 133



User Documentation for CVODES, v6.6.0

5.1.6.6 Projection function
When solving an IVP with a constraint equation and providing a user-defined projection operation the projection func-
tion must have type CVProjFn, defined as follows:
typedef int (*CVProjFn)(realtype t, N_Vector ycur, N_Vector corr, realtype epsProj, N_Vector err, void *user_data);
This function computes the projection of the solution and, if enabled, the error on to the constraint manifold.
Arguments:
e t —the current value of the independent variable.
* ycur - the current value of the dependent variable vector y(t).

* corr - the correction, ¢, to the dependent variable vector so that y(t) + c satisfies the constraint
equation.

* epsProj — the tolerance to use in the nonlinear solver stopping test when solving the nonlinear con-
strainted least squares problem.

e err —is on input the current error estimate, if error projection is enabled (the default) then this should
be overwritten with the projected error on output. If error projection is disabled then err is NULL.

* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
Should return 0 if successful, a negative value if an unrecoverable error occurred (the integration is halted),
or a positive value if a recoverable error occurred (the integrator will, in most cases, try to correct and
reattempt the step).

Notes:
The tolerance passed to the projection function (epsProj) is the tolerance on the iteration update in the
WRMS norm, i.e., the solve should stop when the WRMS norm of the current iterate update is less than
epsProj.

If needed by the user’s projection routine, the error weight vector can be accessed by calling CVodeGetEr-
rifeights (), and the unit roundoff is available as UNIT_ROUNDOFF defined in sundials_types.h.

New in version 6.2.0.

5.1.6.7 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to CVodeSetLinear-
Solver()), the user may optionally provide a function of type CVLsJacFn for evaluating the Jacobian of the ODE
right-hand side function (or an approximation of it). CVLsJacFn is defined as follows:

typedef int (*CVLsJacFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void *user_data, N_Vector tmpl,
N_Vector tmp2, N_Vector tmp3);

0
This function computes the Jacobian matrix J = 8—f (or an approximation to it).
Y

Arguments:
* t — the current value of the independent variable.
¢ y — the current value of the dependent variable vector, namely the predicted value of y(t).
 fy — the current value of the vector f(¢,y).

* Jac - the output Jacobian matrix.
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* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

e tmpl, tmp2, tmp3 - are pointers to memory allocated for variables of type N_Vector which can be
used by a CVLsJacFn function as temporary storage or work space.

Return value:
Should return 0 if successful, a positive value if a recoverable error occurred (in which case CVODES will
attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a negative value if it failed
unrecoverably (in which case the integration is halted, CVode () returns CV_LSETUP_FAIL and CVLS sets
last_flag to CVLS_JACFUNC_UNRECVR).

Notes:
Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see §7 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(t,y) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need to
be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the user’s CVLs-
JacFn function is preceded by a call to the CVRhsFn user function with the same (t,y) arguments. Thus,
the Jacobian function can use any auxiliary data that is computed and saved during the evaluation of the
ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this is also true if the
nonlinear system function is evaluated prior to calling the linear solver setup function.

If the user’s CVLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to cv_mem in user_data and then use the CVodeGet* functions described
in §5.1.5.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

Dense: A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an ap-
proximation to the Jacobian matrix J(¢,y) at the point (¢,y). The accessor macros SM_ELEMENT_D and
SM_COLUMN_D allow the user to read and write dense matrix elements without making explicit references
to the underlying representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) refer-
ences the (4, j-th) element of the dense matrix Jac (with 4,5 = 0... N — 1). This macro is meant for
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to [V, the Jacobian element .J,,, ,, can be set using the statement SM_ELEMENT_D(J,
m-1, n-1) =J,,,. Alternatively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th
column of Jac (with j = 0... N — 1), and the elements of the j-th column can then be accessed using
ordinary array indexing. Consequently, J(m,n) can be loaded using the statements col_n = SM_COL-
UMN_D(J, n-1); col_n[m-1] = J(m,n). For large problems, it is more efficient to use SM_COLUMN_D
than to use SM_ELEMENT_D. Note that both of these macros number rows and columns starting from 0. The
SUNMATRIX_DENSE type and accessor macros are documented in §7.3.

Banded: A user-supplied banded Jacobian function must load the N by N banded matrix Jac with the
elements of the Jacobian J (¢, y) at the point (¢,y). The accessor macros SM_ELEMENT_B, SM_COLUMN_B,
and SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j)
references the (4, j), element of the band matrix Jac, counting from 0. This macro is meant for use in
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and
n ranging from 1 to N with (m, n) within the band defined by mupper and mlower, the Jacobian element
J(m,n) can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = J(m,n). The elements
within the band are those with -mupper < m —n <mlower. Alternatively, SM_COLUMN_B(J, j) returns
a pointer to the diagonal element of the j-th column of Jac, and if we assign this address to realtype
*col_j, then the ¢-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j),
counting from 0. Thus, for (m,n) within the band, J(m,n) can be loaded by setting col_n = SM_-
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COLUMN_B(J, n-1); SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = J(m,n). The elements of the
j-th column can also be accessed via ordinary array indexing, but this approach requires knowledge of
the underlying storage for a band matrix of type SUNMATRIX_BAND. The array col_n can be indexed
from -mupper to mlower. For large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_-
ELEMENT_B than to use the SM_ELEMENT_B macro. As in the dense case, these macros all number rows and
columns starting from 0. The SUNMATRIX_BAND type and accessor macros are documented in §7.6.

Sparse: A user-supplied sparse Jacobian function must load the N by N compressed-sparse-column or
compressed-sparse-row matrix Jac with an approximation to the Jacobian matrix J (¢, y) at the point (¢, y).
Storage for Jac already exists on entry to this function, although the user should ensure that sufficient
space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient the user
may reallocate the data and index arrays as needed. The amount of allocated space in a SUNMATRIX_-
SPARSE object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ. The
SUNMATRIX_SPARSE type and accessor macros are documented in §7.8.

The previous function type CVD1sJacFn is identical to CVLsJacFn, and may still be used for backward-
compatibility. However, this will be deprecated in future releases, so we recommend that users transition
to the new function type name soon.

5.1.6.8 Linear system construction (matrix-based linear solvers)

With matrix-based linear solver modules, as an alternative to optionally supplying a function for evaluating the Jacobian
of the ODE right-hand side function, the user may optionally supply a function of type CVLsLinSysFn for evaluating
the linear system, M = I — ~J (or an approximation of it). CVLsLinSysFn is defined as follows:

typedef int (*CVLsLinSysFn)(realtype t, N_Vector 'y, N_Vector fy, SUNMatrix M, booleantype jok, booleantype
*jeur, realtype gamma, void *user_data, N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

This function computes the linear system matrix M = I — ~J (or an approximation to it).
Arguments:
* t — the current value of the independent variable.
* y — the current value of the dependent variable vector, namely the predicted value of y(t).
 fy — the current value of the vector f(¢,y).
* M — the output linear system matrix.

¢ jok — an input flag indicating whether the Jacobian-related data needs to be updated. The jok flag
enables reusing of Jacobian data across linear solves however, the user is responsible for storing Jaco-
bian data for reuse. jok = SUNFALSE means that the Jacobian-related data must be recomputed from
scratch. jok = SUNTRUE means that the Jacobian data, if saved from the previous call to this function,
can be reused (with the current value of ). A call with jok = SUNTRUE can only occur after a call
with jok = SUNFALSE.

* jcur — a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

* gamma — the scalar y appearing in the matrix M = I — ~J.

e user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

e tmpl, tmp2, tmp3 - are pointers to memory allocated for variables of type N_Vector which can be
used by a CVLsLinSysFn function as temporary storage or work space.

Return value:
Should return O if successful, a positive value if a recoverable error occurred (in which case CVODES will
attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a negative value if it failed
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unrecoverably (in which case the integration is halted, CVode () returns CV_LSETUP_FAIL and CVLS sets
last_flag to CVLS_JACFUNC_UNRECVR).

5.1.6.9 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMATRIX was supplied to CVodeSetLinear-
Solver(), the user may provide a function of type CVLsJacTimesVecFn in the following form, to compute matrix-
vector products Jv. If such a function is not supplied, the default is a difference quotient approximation to these
products.

typedef int (*CVLsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t, N_Vector y, N_Vector fy, void *user_data,

N_Vector tmp);

of(t,y)
dy

This function computes the product Jv = v (or an approximation to it).

Arguments:
* v —the vector by which the Jacobian must be multiplied.
* Jv — the output vector computed.
* t — the current value of the independent variable.
* y — the current value of the dependent variable vector.
* fy — the current value of the vector f(¢,y).

* user_data —a pointer to user data, the same as the user_data parameter passed to CVode-
SetUserData().

* tmp — a pointer to memory allocated for a variable of type N_Vector which can be used for
work space.

Return value:
The value returned by the Jacobian-vector product function should be 0O if successful. Any other
return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

Notes:
This function must return a value of Jv that uses the current value of J, i.e. as evaluated at the
current (¢,y).

If the user’s CVLsJacTimesVecFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights,
etc. To obtain these, the user will need to add a pointer to cvode_mem to user_data and then use
the CVodeGet* functions described in §5.1.5.12. The unit roundoff can be accessed as UNIT_-
ROUNDOFF defined in sundials_types.h.

The previous function type CVSpilsJacTimesVecFn is identical to CVLsJacTimesVecFn(),
and may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

5.1. Using CVODES for IVP Solution 137



User Documentation for CVODES, v6.6.0

5.1.6.10 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVLsJacTimesSetupFn, defined as follows:

typedef int (*CVLsJacTimesSetupFn)(realtype t, N_Vector y, N_Vector fy, void *user_data);

This function preprocesses and/or evaluates Jacobian-related data needed by the Jacobian-times-vector routine.
Arguments:

e t —the current value of the independent variable.

* y — the current value of the dependent variable vector.

 fy — the current value of the vector f(¢,y).

* user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
The value returned by the Jacobian-vector setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
Each call to the Jacobian-vector setup function is preceded by a call to the CVRhsFn user function with
the same (¢, y) arguments. Thus, the setup function can use any auxiliary data that is computed and saved
during the evaluation of the ODE right-hand side.

If the user’s CVLsJacTimesSetupFn function uses difference quotient approximations, it may need to ac-
cess quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to cvode_mem to user_data and then use the CVodeGet*
functions described in §5.1.5.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sun-
dials_types.h.

The previous function type CVSpilsJacTimesSetupFn is identical to CVLsJacTimesSetupFn, and may
still be used for backward-compatibility. However, this will be deprecated in future releases, so we recom-
mend that users transition to the new function type name soon.

5.1.6.11 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver module, then the user must provide a function
to solve the linear system Pz = r, where P may be either a left or right preconditioner matrix. Here P should

0
approximate (at least crudely) the matrix M = I — ~J, where J = a—f If preconditioning is done on both sides, the
Y

product of the two preconditioner matrices should approximate M. This function must be of type CVLsPrecSolveFn,
defined as follows:

typedef int (*CVLsPrecSolveFn)(realtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, realtype gamma,
realtype delta, int Ir, void *user_data);

This function solves the preconditioned system Pz = 7.
Arguments:
e t — the current value of the independent variable.
* y — the current value of the dependent variable vector.
 fy — the current value of the vector f(¢,y).

* r — the right-hand side vector of the linear system.

138 Chapter 5. Using CVODES



User Documentation for CVODES, v6.6.0

 z — the computed output vector.
e gamma — the scalar gamma in the matrix givenby M =1 — ~J.

* delta-aninputtolerance to be used if an iterative method is employed in the solution. In that case, the
residual vector Res = r — Pz of the system should be made less than delta in the weighted /2 norm,
ie., \/Zi(Resi - ewt;)? < delta. To obtain the N_Vector ewt, call CVodeGetErriieights().

* 1r —an input flag indicating whether the preconditioner solve function is to use the left preconditioner
(1r = 1) or the right preconditioner (1r = 2).

* user_data —a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
The value returned by the preconditioner solve function is a flag indicating whether it was successful. This
value should be 0 if successful, positive for a recoverable error (in which case the step will be retried), or
negative for an unrecoverable error (in which case the integration is halted).

Notes:
The previous function type CVSpilsPrecSolveFn is identical to CVLsPrecSolveFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new function type name soon.

5.1.6.12 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then this needs to be
done in a user-supplied function of type , defined as follows:

typedef int (*CVLsPrecSetupFn)(realtype t, N_Vector y, N_Vector fy, booleantype jok, booleantype *jcurPtr,
realtype gamma, void *user_data);

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.
Arguments:
* t — the current value of the independent variable.
* y —the current value of the dependent variable vector, namely the predicted value of y(¢).
 fy — the current value of the vector f(¢,y).

¢ jok—aninput flag indicating whether the Jacobian-related data needs to be updated. The jok argument
provides for the reuse of Jacobian data in the preconditioner solve function. jok = SUNFALSE means
that the Jacobian-related data must be recomputed from scratch. jok = SUNTRUE means that the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
7). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

e jcur — a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

* gamma — the scalar y appearing in the matrix M = I — ~J.

* user_data —a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
The value returned by the preconditioner setup function is a flag indicating whether it was successful. This
value should be 0 if successful, positive for a recoverable error (in which case the step will be retried), or
negative for an unrecoverable error (in which case the integration is halted).
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Notes:

The operations performed by this function might include forming a crude approximate Jacobian and per-
forming an LU factorization of the resulting approximation to M =1 — ~J.

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the CVRhsFn user function with the same (¢, y) arguments. Thus, the
preconditioner setup function can use any auxiliary data that is computed and saved during the evaluation
of the ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this is also true if
the nonlinear system function is evaluated prior to calling the linear solver setup function (see §9.1.4 for
more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the nonlinear solver.

If the user’s CVLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these,
the user will need to add a pointer to cvode_mem to user_data and then use the CVodeGet* functions
described in §5.1.5.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_-
types.h.

The previous function type CVSpilsPrecSetupFn is identical to CVLsPrecSetupFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new function type name soon.

5.2 Integration of pure quadrature equations

CVODES allows the ODE system to include pure quadratures. In this case, it is more efficient to treat the quadratures
separately by excluding them from the nonlinear solution stage. To do this, begin by excluding the quadrature variables
from the vector y and excluding the quadrature equations from within res. Thus a separate vector yQ of quadrature
variables is to satisfy (d/dt)yQ = fo(t,y).

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton presented in §5.1.4 are grayed out and new or modified steps are in bold.

1.

o ® Nk w N

—_— = = e
A b = o
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15.

16.

17.

18.
19.
20.

21.
22.

23.
24.

Set vector yQO of initial values for quadrature variables
Typically, the quadrature variables should be initialized to 0.
Initialize quadrature integration

Call CVodeQuadInit() to specify the quadrature equation right-hand side function and to allocate internal
memory related to quadrature integration. See §5.2.1 for details.

Set optional inputs for quadrature integration

Call CVodeSetQuadErrCon() to indicate whether or not quadrature variables shoule be used in the step size
control mechanism, and to specify the integration tolerances for quadrature variables. See §5.2.4 for details.

Extract quadrature variables

Call CVodeGetQuad () to obtain the values of the quadrature variables at the current time.

Get quadrature optional outputs

Call CVodeGetQuad** functions to obtain optional output related to the integration of quadratures. See §5.2.5
for details.

CVodeQuadInit () can be called and quadrature-related optional inputs can be set anywhere between the steps creating
the CVODES object and advancing the solution in time.

5.2.1 Quadrature initialization and deallocation functions

The function CVodeQuadInit () activates integration of quadrature equations and allocates internal memory related
to these calculations. The form of the call to this function is as follows:

int CVodeQuadInit (void *cvode_mem, CVQuadRhsFn £Q, N_Vector yQO0)

The function CVodeQuadInit provides required problem specifications, allocates internal memory, and initial-
izes quadrature integration.

Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
» fQ—is the C function which computes fq , the right-hand side of the quadrature equations.
* yQO — is the initial value of yQ typically yQO has all zero components.
Return value:
e CV_SUCCESS — The call to CVodeQuadInit was successful.
e CV_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate().
e CV_MEM_FAIL — A memory allocation request failed.

Notes:
If an error occurred, CVodeQuadInit also sends an error message to the error handler function.

In terms of the number of quadrature variables N, and maximum method order maxord, the size of the real workspace
is increased as follows:
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* Base value: lenrw = lenrw + (maxord + 5)N,

* If using CVodeSVtolerances() (see CVodeSetQuadErrCon()): lenrw = lenrw + N,
the size of the integer workspace is increased as follows:

* Base value: leniw = leniw + (maxord + 5)N,

* If using CVodeSVtolerances(): leniw = leniw + NN,

The function CVodeQuadReInit (), useful during the solution of a sequence of problems of same size, reinitializes
the quadrature-related internal memory and must follow a call to CVodeQuadInit () (and maybe a call to CVodeRe-
Init()). The number Nq of quadratures is assumed to be unchanged from the prior call to CVodeQuadInit (). The
call to the CVodeQuadReInit () function has the following form:

int CVodeQuadReInit (void *cvode_mem, N_Vector yQO)

The function CVodeQuadReInit provides required problem specifications and reinitializes the quadrature inte-
gration.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ yQO — is the initial value of yQ.
Return value:
* CV_SUCCESS — The call to CVodeReInit was successful.
e CV_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate.

e CV_NO_QUAD — Memory space for the quadrature integration was not allocated by a prior call to CVod-
eQuadInit.

Notes:
If an error occurred, CVodeQuadReInit also sends an error message to the error handler function.

void CVodeQuadFree (void *cvode_mem)

The function CVodeQuadFree frees the memory allocated for quadrature integration.
Arguments:

* cvode_mem — pointer to the CVODES memory block

Return value:
¢ The function has no return value.

Notes:
In general, CVodeQuadFree need not be called by the user as it is invoked automatically by CVodeFree ().

5.2.2 CVODES solver function
Even if quadrature integration was enabled, the call to the main solver function CVode () is exactly the same as in §5.1.
However, in this case the return value flag can also be one of the following:

* The quadrature right-hand side function failed in an unrecoverable manner.

¢ The quadrature right-hand side function failed at the first call.
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» Convergence test failures occurred too many times due to repeated recoverable errors in the quadrature right-hand
side function. This value will also be returned if the quadrature right-hand side function had repeated recoverable
errors during the estimation of an initial step size (assuming the quadrature variables are included in the error
tests).

* The quadrature right-hand function had a recoverable error, but no recovery was possible. This failure mode
is rare, as it can occur only if the quadrature right-hand side function fails recoverably after an error test failed
while at order one.

5.2.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadInit (), or reinitialized by a call to CVode-
QuadReInit(), then CVODES computes both a solution and quadratures at time t. However, CVode () will still
return only the solution y in yout. Solution quadratures can be obtained using the following function:

int CVodeGetQuad (void *cvode_mem, realtype *tret, N_Vector yQ)
The function CVodeGetQuad returns the quadrature solution vector after a successful return from CVode.

Arguments:

* cvode_mem — pointer to the memory previously allocated by CVodeInit.

e tret — the time reached by the solver output.

* yQ — the computed quadrature vector. This vector must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetQuad was successful.

e CV_MEM_NULL — cvode_mem was NULL.

e CV_NO_QUAD — Quadrature integration was not initialized.

e CV_BAD_DKY - yQ is NULL.

Notes:
In case of an error return, an error message is also sent to the error handler function.

The function CVodeGetQuadDky () computes the k-th derivatives of the interpolating polynomials for the quadrature
variables at time t. This function is called by CVodeGetQuad() with k = ® and with the current time at which
CVode () has returned, but may also be called directly by the user.

int CVodeGetQuadDky (void *cvode_mem, realtype t, int k, N_Vector dkyQ)

The function CVodeGetQuadDky returns derivatives of the quadrature solution vector after a successful return
from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

¢ t — the time at which quadrature information is requested. The time t must fall within the interval
defined by the last successful step taken by CVODES.

* k — order of the requested derivative. This must be < glast.

» dkyQ - the vector containing the derivative. This vector must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetQuadDky succeeded.

e CV_MEM_NULL — The pointer to cvode_mem was NULL.
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CV_NO_QUAD - Quadrature integration was not initialized.

CV_BAD_DKY — The vector dkyQ is NULL.
* CV_BAD_K - kisnotintherange 0,1, ..., qlast.
e CV_BAD_T — The time t is not in the allowed range.

Notes:
In case of an error return, an error message is also sent to the error handler function.

5.2.4 Optional inputs for quadrature integration

CVODES provides the following optional input functions to control the integration of quadrature equations.

int CVodeSetQuadErrCon(void *cvode_mem, booleantype errconQ)

The function CVodeSetQuadErrCon specifies whether or not the quadrature variables are to be used in the
step size control mechanism within CVODES. If they are, the user must call CVodeQuadSStolerances() or
CVodeQuadSVtolerances () to specify the integration tolerances for the quadrature variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* errconQ — specifies whether quadrature variables are included SUNTRUE or not SUNFALSE in the error
control mechanism.

Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_QUAD - Quadrature integration has not been initialized.

Notes:
By default, errconQ is set to SUNFALSE.

Warning: It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadInit.

If the quadrature variables are part of the step size control mechanism, one of the following functions must be called
to specify the integration tolerances for quadrature variables.

int CVodeQuadSVtolerances (void *cvode_mem, realtype reltolQ, N_Vector abstolQ)
The function CVodeQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ reltolQ — tolerances is the scalar relative error tolerance.
¢ abstolQ — is the scalar absolute error tolerance.
Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_NO_QUAD — Quadrature integration was not initialized.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT - One of the input tolerances was negative.

144 Chapter 5. Using CVODES



User Documentation for CVODES, v6.6.0

5.2.5 Optional outputs for quadrature integration
CVODES provides the following functions that can be used to obtain solver performance information related to quadra-
ture integration.

int CVodeGetQuadNumRhsEvals (void *cvode_mem, long int nfQevals)

The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s quadrature right-hand
side function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ nfQevals — number of calls made to the user’s £Q function.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
¢ CV_NO_QUAD — Quadrature integration has not been initialized.
int CVodeGetQuadNumErrTestFails (void *cvode_mem, long int nQetfails)

The function CVodeGetQuadNumErrTestFails returns the number of local error test failures due to quadrature
variables.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nQetfails — number of error test failures due to quadrature variables.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_NO_QUAD — Quadrature integration has not been initialized.

int CVodeGetQuadErriWeights (void *cvode_mem, N_Vector eQweight)

The function CVodeGetQuadErrieights returns the quadrature error weights at the current time.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* eQweight — quadrature error weights at the current time.
Return value:

* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_NO_QUAD — Quadrature integration has not been initialized.

Notes:
The user must allocate memory for eQweight. If quadratures were not included in the error control mecha-
nism (through a call to CVodeSetQuadErrCon with errconQ = SUNTRUE), CVodeGetQuadErrWeights
does not set the eQweight vector.
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int CVodeGetQuadStats (void *cvode_mem, long int nfQevals, long int nQetfails)
The function CVodeGetQuadStats returns the CVODES integrator statistics as a group.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nfQevals — number of calls to the user’s £Q function.

e nQetfails — number of error test failures due to quadrature variables.
Return value:

* CV_SUCCESS - the optional output values have been successfully set.

e CV_MEM_NULL - the cvode_mem pointer is NULL.

e CV_NO_QUAD — Quadrature integration has not been initialized.

5.2.6 User supplied functions for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand side of the quadra-
ture equations (in other words, the integrand function of the integral that must be evaluated). This function must be of
type CVQuadRhsFn defined as follows:

typedef int (*CVQuadRhsFn)(realtype t, N_Vector y, N_Vector yQdot, void *user_data)
This function computes the quadrature equation right-hand side for a given value of the independent variable ¢
and state vector y.

Arguments:
* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* yQdot — is the output vector fq(t,y).
* user_data — is the user_data pointer passed to CVodeSetUserData().

Return value:
A CVQuadRhsFn should return O if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CV_QRHSFUNC_FATIL is returned).

Notes:
Allocation of memory for yQdot is automatically handled within CVODES.

Both y and yQdot are of type N_Vector, but they typically have different internal representations. It is the
user’s responsibility to access the vector data consistently (including the use of the correct accessor macros
from each N_Vector implementation). For the sake of computational efficiency, the vector functions in
the two N_Vector implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments.

There are two situations in which recovery is not possible even if CVQuadRhsFn function returns a recover-
able error flag. One is when this occurs at the very first call to the CVQuadRhsFn (in which case CVODES
returns CV_FIRST_QRHSFUNC_ERR). The other is when a recoverable error is reported by CVQuadRhsFn
after an error test failure, while the linear multistep method order is equal to 1 (in which case CVODES
returns CV_UNREC_QRHSFUNC_ERR).
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5.2.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, CVODES
provides a banded preconditioner in the module CVBANDPRE and a band-block-diagonal preconditioner module
CVBBDPRE.

5.2.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLinearSolver modules through
the CVLS linear solver interface, in a serial setting. It uses difference quotients of the ODE right-hand side function f to
generate a band matrix of bandwidth m;+m,, +1, where the number of super-diagonals (m,,, the upper half-bandwidth)
and sub-diagonals (m;, the lower half-bandwidth) are specified by the user, and uses this to form a preconditioner for

0
use with the Krylov linear solver. Although this matrix is intended to approximate the Jacobian éTf’ it may be a very

crude approximation. The true Jacobian need not be banded, or its true bandwidth may be larger than m; + m,, + 1,
as long as the banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.

In order to use the CVBANDPRE module, the user need not define any additional functions. Aside from the header
files required for the integration of the ODE problem (see §5.1.3), to use the CVBANDPRE module, the main program
must include the header file cvode_bandpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module. Steps that are unchanged from the skeleton presented in §5.1.4
are grayed out and new steps are in bold.

1.

A T o

Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

10. Initialize the CVBANDPRE preconditioner module

Specify the upper and lower half-bandwidths (mu and m1, respectively) and call

flag = CVBandPrecInit(cvode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

11.

Warning: The user should not overwrite the preconditioner setup function or solve function through calls
to the CVodeSetPreconditioner () optional input function.

12.
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13.
14.
15.
16.
17. Get optional outputs

Additional optional outputs associated with CVBANDPRE are available by way of two routines described below,
CVBandPrecGetWorkSpace () and CVBandPrecGetNumRhsEvals().

18.
The CVBANDPRE preconditioner module is initialized and attached by calling the following function:

int CVBandPrecInit (void *cvode_mem, sunindextype N, sunindextype mu, sunindextype ml)

The function CVBandPrecInit initializes the CVBANDPRE preconditioner and allocates required (internal)
memory for it.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* N — problem dimension.
* mu — upper half-bandwidth of the Jacobian approximation.
e ml — lower half-bandwidth of the Jacobian approximation.
Return value:

e CVLS_SUCCESS — The call to CVBandPrecInit was successful.

CVLS_MEM_NULL — The cvode_mem pointer is NULL.

CVLS_MEM_FAIL — A memory allocation request has failed.

CVLS_LMEM_NULL — A CVLS linear solver memory was not attached.

CVLS_ILL_INPUT — The supplied vector implementation was not compatible with block band precon-
ditioner.

Notes:
The banded approximate Jacobian will have nonzero elements only in locations (¢, ) withml < j—i < mu.

The following two optional output functions are available for use with the CVBANDPRE module:

int CVBandPrecGetWorkSpace (void *cvode_mem, long int *lenrwBP, long int *leniwBP)
The function CVBandPrecGetWorkSpace returns the sizes of the CVBANDPRE real and integer workspaces.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e lenrwBP — the number of realtype values in the CVBANDPRE workspace.

* leniwBP — the number of integer values in the CVBANDPRE workspace.
Return value:

e CVLS_SUCCESS — The optional output values have been successfully set.

* CVLS_PMEM_NULL — The CVBANDPRE preconditioner has not been initialized.
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Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
CVBANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and tem-
porary vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
CVodeGetLinliorkSpace().

int CVBandPrecGetNumRhsEvals (void *cvode_mem, long int *nfevalsBP)

The function CVBandPrecGetNumRhsEvals returns the number of calls made to the user-supplied right-hand
side function for the finite difference banded Jacobian approximation used within the preconditioner setup func-
tion.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nfevalsBP — the number of calls to the user right-hand side function.
Return value:
e CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_PMEM_NULL — The CVBANDPRE preconditioner has not been initialized.

Notes:
The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
CVodeGetNumLinRhsEvals () and nfevals returned by CVodeGetNumRhsEvals ().The total number of
right-hand side function evaluations is the sum of all three of these counters.

5.2.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as CVODES lies in the solution of partial differential equations
(PDEs). Moreover, the use of a Krylov iterative method for the solution of many such problems is motivated by the
nature of the underlying linear system of equations (2.8) that must be solved at each time step. The linear algebraic
system is large, sparse, and structured. However, if a Krylov iterative method is to be effective in this setting, then a
nontrivial preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative method is usually
unacceptably slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It
has been successfully used for several realistic, large-scale problems [40] and is included in a software module within
the CVODES package. This module works with the parallel vector module NVECTOR_PARALLEL and is usable
with any of the Krylov iterative linear solvers through the CVLS interface. It generates a preconditioner that is a
block-diagonal matrix with each block being a band matrix. The blocks need not have the same number of super- and
sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is
called CVBBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE problem as being
subdivided into M non-overlapping subdomains. Each of these subdomains is then assigned to one of the M processes
to be used to solve the ODE system. The basic idea is to isolate the preconditioning so that it is local to each process,
and also to use a (possibly cheaper) approximate right-hand side function. This requires the definition of a new function
g(t,y) which approximates the function f(¢,y) in the definition of the ODE system (2.1). However, the user may set
g = f. Corresponding to the domain decomposition, there is a decomposition of the solution vector y into M disjoint
blocks ¥, and a decomposition of g into blocks g.,,. The block g,,, depends both on y,,, and on components of blocks
Ym associated with neighboring subdomains (so-called ghost-cell data). Let ¥,,, denote y,,, augmented with those other
components on which g,,, depends. Then we have

gt,y) = [0t 51) 9ot 52) - gt gan)]”
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and each of the blocks g, (t, I, ) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P
Py

Py
where
Po~I—~Jn,

and J,, is a difference quotient approximation to 9g,, /0Y.,. This matrix is taken to be banded, with upper and lower
half-bandwidths mudq and mldq defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldq + 2 evaluations of g,,,, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px=1»
reduces to solving each of the equations
P,z =b,

and this is done by banded LU factorization of P,, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks P,,. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

The CVBBDPRE module calls two user-provided functions to construct P: a required function gloc (of type CVLo-
calFn) which approximates the right-hand side function g(¢,y) = f(¢,y) and which is computed locally, and an
optional function cfn (of type CVCommFn) which performs all interprocess communication necessary to evaluate the
approximate right-hand side g. These are in addition to the user-supplied right-hand side function f. Both functions
take as input the same pointer user_data that is passed by the user to CVodeSetUserData () and that was passed
to the user’s function f. The user is responsible for providing space (presumably within user_data) for components
of y that are communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

typedef int (*CVLocalFn)(sunindextype Nlocal, realtype t, N_Vector 'y, N_Vector glocal, void *user_data);
This gloc function computes g(¢,y). It loads the vector glocal as a function of t and y.

Arguments:
* Nlocal — the local vector length.
* t — the value of the independent variable.
 y — the dependent variable.
* glocal — the output vector.

* user_data —a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
A CVLocalFn should return O if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVode () returns CV_LSETUP_FAIL).
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Notes:
This function must assume that all interprocess communication of data needed to calculate glocal has
already been done, and that this data is accessible within user_data.

The case where g is mathematically identical to f is allowed.

typedef int (*CVCommFn)(sunindextype Nlocal, realtype t, N_Vector y, void *user_data);

This cfn function performs all interprocess communication necessary for the execution of the gloc function
above, using the input vector y.

Arguments:
* Nlocal — the local vector length.
¢ t — the value of the independent variable.
 y — the dependent variable.

* user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
A CVCommFn should return O if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVode () returns CV_LSETUP_FAIL).

Notes:
The cfn function is expected to save communicated data in space defined within the data structure user_-
data.

Each call to the cfn function is preceded by a call to the right-hand side function f with the same (¢, y)
arguments. Thus, cfn can omit any communication done by f if relevant to the evaluation of glocal. If all
necessary communication was done in f, then cfn = NULL can be passed in the call to CVBBDPrecInit ()
(see below).

Besides the header files required for the integration of the ODE problem (see §5.1.3), to use the CVBBDPRE module,
the main program must include the header file cvode_bbdpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module. Steps that are unchanged from the skeleton presented in §5.1.4
are grayed out and new or modified steps are in bold.

1.
2
3
4.
5
6
7. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

8.
9.
10. Initialize the CVBBDPRE preconditioner module
Specify the upper and lower half-bandwidths mudq and m1dg, and mukeep and mlkeep, and call
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flag = CVBBDPrecInit(&cvode_mem, local N, mudq, mldg,
&mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of CVBBDPrecInit ()
are the two user-supplied functions described above.

11.

Warning: The user should not overwrite the preconditioner setup function or solve function through calls
to the CVodeSetPreconditioner () optional input function.

12.
13.
14.
15.
16.
17. Get optional outputs

Additional optional outputs associated with CVBBDPRE are available by way of two routines described below,
CVBBDPrecGetWorkSpace () and CVBBDPrecGetNumGfnEvals().

18.
19.
The user-callable functions that initialize or re-initialize the CVBBDPRE preconditioner module are described next.

int CVBBDPrecInit (void *cvode_mem, sunindextype local_N, sunindextype mudq, sunindextype mldq, sunindextype
mukeep, sunindextype mlkeep, realtype dqrely, CVLocalFn gloc, CVCommFn cfn)

The function CVBBDPrecInit initializes and allocates (internal) memory for the CVBBDPRE preconditioner.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* local_N - local vector length.

e mudq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.

* mldq — lower half-bandwidth to be used in the difference quotient Jacobian approximation.

» mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.

* mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

¢ dgrely - the relative increment in components of y used in the difference quotient approximations.
The default is dgrely = v/unit roundoff, which can be specified by passing dqrely = 0.0.

* gloc —the CVLocalFn function which computes the approximation g(¢,y) ~ f(t,y).

e cfn - the CVCommFn which performs all interprocess communication required for the computation of
9(t,y).

Return value:
e CVLS_SUCCESS — The function was successful
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
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e CVLS_MEM_FAIL — A memory allocation request has failed.
e CVLS_LMEM_NULL — A CVLS linear solver memory was not attached.

e CVLS_ILL_INPUT - The supplied vector implementation was not compatible with block band precon-
ditioner.

Notes:
If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the ap-
proximate Jacobian is negative or exceeds the value local_N - 1, it is replaced by ® or local_N - 1
accordingly.

The half-bandwidths mudg and m1dq need not be the true half-bandwidths of the Jacobian of the local block
of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The CVBBDPRE module also provides a reinitialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in local_N, mukeep, or mlkeep. After
solving one problem, and after calling CVodeReInit () to re-initialize CVODES for a subsequent problem, a call to
CVBBDPrecReInit () can be made to change any of the following: the half-bandwidths mudq and mldq used in the
difference-quotient Jacobian approximations, the relative increment dqrely, or one of the user-supplied functions gloc
and cfn. If there is a change in any of the linear solver inputs, an additional call to the “set” routines provided by the
SUNLinearSolver module, and/or one or more of the corresponding CVLS “set” functions, must also be made (in the
proper order).

int CVBBDPrecReInit (void *cvode_mem, sunindextype mudq, sunindextype mldq, realtype dqrely)
The function CVBBDPrecReInit re-initializes the CVBBDPRE preconditioner.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* mudg — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldq — lower half-bandwidth to be used in the difference quotient Jacobian approximation.
¢ dgrely — the relative increment in components of
Return value:
* CVLS_SUCCESS — The function was successful
e CVLS_MEM_NULL — The cvode_mem pointer is NULL. cvode_mem pointer was NULL.
e CVLS_LMEM_NULL — A CVLS linear solver memory was not attached.
e CVLS_PMEM_NULL — The function CVBBDPrecInit () was not previously called

Notes:
If one of the half-bandwidths mudq or m1dq is negative or exceeds the value local_N-1, it is replaced by
® or local_N-1 accordingly.

The following two optional output functions are available for use with the CVBBDPRE module:

int CVBBDPrecGetWorkSpace (void *cvode_mem, long int *lenrwBBDP, long int *leniwBBDP)
The function CVBBDPrecGetWorkSpace returns the local CVBBDPRE real and integer workspace sizes.

Arguments:

* cvode_mem — pointer to the CVODES memory block.
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* 1enrwBBDP — local number of realtype values in the CVBBDPRE workspace.

* 1eniwBBDP — local number of integer values in the CVBBDPRE workspace.
Return value:

e CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer was NULL.

* CVLS_PMEM_NULL — The CVBBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
CVBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process. The workspaces referred to here exist in addition to those
given by the corresponding function CVodeGetLinWorkSpace.

int CVBBDPrecGetNumGfnEvals (void *cvode_mem, long int *ngevalsBBDP)

The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-supplied gloc function
due to the finite difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* ngevalsBBDP —the number of calls made to the user-supplied gloc function due to the finite difference
approximation of the Jacobian blocks used within the preconditioner setup function.

Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer was NULL.
e CVLS_PMEM_NULL — The CVBBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with CVBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side func-
tion evaluations, where nlinsetups is an optional CVODES output and npsolves and nfevalsLS are linear solver
optional outputs (see §5.1.5.12).

5.3 Using CVODES for Forward Sensitivity Analysis

This chapter describes the use of CVODES to compute solution sensitivities using forward sensitivity analysis. One of
our main guiding principles was to design the CVODES user interface for forward sensitivity analysis as an extension
of that for IVP integration. Assuming a user main program and user-defined support routines for IVP integration have
already been defined, in order to perform forward sensitivity analysis the user only has to insert a few more calls into
the main program and (optionally) define an additional routine which computes the right-hand side of the sensitivity
systems (2.14). The only departure from this philosophy is due to the CVRhsFn type definition. Without changing the
definition of this type, the only way to pass values of the problem parameters to the ODE right-hand side function is to
require the user data structure £_data to contain a pointer to the array of real parameters p.

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of the
interface to the various user-callable routines and of the user-supplied routines that were not already described in §5.1
or §5.2.
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5.3.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of CVODES. The user
program is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of
the details to the later sections. As in §5.1.4, most steps are independent of the N_Vector, SUNMatrix, SUNLinear-
Solver, and SUNNonlinearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, §9
for the specific name of the function to be called or macro to be referenced.

Differences between the user main program in §5.1.4 and the one below start only at step 16. Steps that are unchanged
from the skeleton presented in §5.1.4 are grayed out and new or modified steps are in bold.

First, note that no additional header files need be included for forward sensitivity analysis beyond those for IVP solution
§5.1.4.

1.

© ® N A » N

— e e e e e
o B » B = O

16.

. Initialize the quadrature problem (optional)

If the quadrature is not sensitivity-dependent, initialize the quadrature integration as described in §5.2. For
integrating a problem where the quadrature depends on the forward sensitivities see §5.3.4.

Define the sensitivity problem
¢ Number of sensitivities (required)
Set Ns = N, the number of parameters with respect to which sensitivities are to be computed.
¢ Problem parameters (optional)

If CVODES is to evaluate the right-hand sides of the sensitivity systems, set p, an array of Np real parameters
upon which the IVP depends. Only parameters with respect to which sensitivities are (potentially) desired
need to be included. Attach p to the user data structure user_data. For example, user_data->p = p;

If the user provides a function to evaluate the sensitivity right-hand side, p need not be specified.
e Parameter list (optional)

If CVODES is to evaluate the right-hand sides of the sensitivity systems, set plist, an array of Ns integers
to specify the parameters p with respect to which solution sensitivities are to be computed. If sensitivities
with respect to the j-th parameter p[j] are desired (0 < j < Np), setplist, = j, forsomei =0,..., Ns—1.
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If plist is not specified, CVODES will compute sensitivities with respect to the first Ns parameters; i.e.,
plist; =i (i=0,...,Ns —1).

If the user provides a function to evaluate the sensitivity right-hand side, plist need not be specified.
¢ Parameter scaling factors (optional)

If CVODES is to estimate tolerances for the sensitivity solution vectors (based on tolerances for the state
solution vector) or if CVODES is to evaluate the right-hand sides of the sensitivity systems using the internal
difference-quotient function, the results will be more accurate if order of magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if p; # 0, the value p; = |ppiis, | can be used.
If pbar is not specified, CVODES will use p; = 1.0.

If the user provides a function to evaluate the sensitivity right-hand side and specifies tolerances for the
sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user_data are arbitrary, but they must
agree with the arguments passed to CVodeSetSensParams () below.

17. Set sensitivity initial conditions
Set the Ns vectors ySO [1] of initial values for sensitivities (forz = 0, . .., Ns —1), using the appropriate functions
defined by the particular N_Vector implementation chosen.
First, create an array of Ns vectors by calling yS® = N_VCloneVectorArray(Ns, y0);
Here the argument y0 serves only to provide the N_Vector type for cloning.
Then, for each ¢ = 0, ... Ns —1, load initial values for the i-th sensitivity vector yS®[i].

18. Activate sensitivity calculations
Call CVodeSensInit () or CVodeSensInitl() to activate forward sensitivity computations and allocate inter-
nal memory for CVODES related to sensitivity calculations.

19. Set sensitivity tolerances
Call CVodeSensSStolerances(), CVodeSensSVtolerances() or CVodeEEtolerances().

20. Set sensitivity analysis optional inputs
Call CVodeSetSens* routines to change from their default values any optional inputs that control the behavior
of CVODES in computing forward sensitivities. See §5.3.2.6 for details.

21. Create sensitivity nonlinear solver object
If using a non-default nonlinear solver (see §5.3.2.3), then create the desired nonlinear solver object by calling
the appropriate constructor function defined by the particular SUNNonlinearSolver implementation e.g.,
NLSSens = SUNNonlinSol_***Sens(...);
for the CV_SIMULTANEOUS or CV_STAGGERED options or
NLSSens = SUNNonlinSol_***(...);
for the CV_STAGGERED1 option where *** is the name of the nonlinear solver and . . . are constructor specific
arguments (see §9 for details).

22. Attach the sensitivity nonlinear solver module
If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the nonlin-
ear solver object by calling CVodeSetNonlinearSolverSensSim() when using the CV_SIMULTANEOUS cor-
rector method, CVodeSetNonlinearSolverSensStg() when using the CV_STAGGERED corrector method, or
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23.

24.
25.
26.

27.
28.

29.

CVodeSetNonlinearSolverSensStgl () when using the CV_STAGGERED1 corrector method (see §5.3.2.3 for
details).

Set sensitivity nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after CVodeSensInit () if using the default nonlinear solver or
after attaching a new nonlinear solver to CVODES, otherwise the optional inputs will be overridden by CVODE
defaults. See §9 for more information on optional inputs.

Extract sensitivity solution

After each successful return from CVode (), the solution of the original IVP is available in the y argument of
CVode (), while the sensitivity solution can be extracted into yS (which can be the same as yS@) by calling one
of the routines CVodeGetSens (), CVodeGetSens1(), CVodeGetSensDky (), or CVodeGetSensDky1().

Destroy objects

Upon completion of the integration, deallocate memory for the vectors yS® using N_-
VDestroyVectorArray(yS®, Ns);

If yS was created from realtype arrays yS_i, it is the user’s responsibility to also free the space for the arrays
ySO_i.

5.3.2 User-callable routines for forward sensitivity analysis

This section describes the CVODES functions, in addition to those presented in §5.1.5, that are called by the user to
setup and solve a forward sensitivity problem.

5.3.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensInit () or CVodeSensInit1(), depend-
ing on whether the sensitivity right-hand side function returns all sensitivities at once or one by one, respectively. The
form of the call to each of these routines is as follows:

int CVodeSensInit (void *cvode_mem, int Ns, int ism, CVSensRhsFn fS, N_Vector *yS0)

The routine CVodeSensInit () activates forward sensitivity computations and allocates internal memory related
to sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
* Ns — the number of sensitivities to be computed.

» ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be CV_SIMULTANEOUS or CV_STAGGERED :

— In the CV_SIMULTANEOUS approach, the state and sensitivity variables are corrected at the same
time. If the default Newton nonlinear solver is used, this amounts to performing a modified Newton
iteration on the combined nonlinear system;
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— In the CV_STAGGERED approach, the correction step for the sensitivity variables takes place at
the same time for all sensitivity equations, but only after the correction of the state variables has
converged and the state variables have passed the local error test;

e S —is the C function which computes all sensitivity ODE right-hand sides at the same time. For full
details see CVSensRhsFn.

* ySO — a pointer to an array of Ns vectors containing the initial values of the sensitivities.
Return value:
e CV_SUCCESS — The call to CVodeSensInit () was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeSensInit () has an illegal value.

Notes:
Passing fs == NULL indicates using the default internal difference quotient sensitivity right-hand side
routine. If an error occurred, CVodeSensInit () also sends an error message to the error handler function.

Warning: It is illegal here to use ism = CV_STAGGERED1. This option requires a different type for
£S and can therefore only be used with CVodeSensInit1() (see below).

int CVodeSensInitl (void *cvode_mem, int Ns, int ism, CVSensRhsFn fS1, N_Vector *yS0)

The routine CVodeSensInitl() activates forward sensitivity computations and allocates internal memory re-
lated to sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
* Ns — the number of sensitivities to be computed.

» ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be CV_SIMULTANEOUS , CV_STAGGERED , or CV_STAGGERED1 :

— In the CV_SIMULTANEOUS approach, the state and sensitivity variables are corrected at the same
time. If the default Newton nonlinear solver is used, this amounts to performing a modified Newton
iteration on the combined nonlinear system;

— In the CV_STAGGERED approach, the correction step for the sensitivity variables takes place at
the same time for all sensitivity equations, but only after the correction of the state variables has
converged and the state variables have passed the local error test;

— In the CV_STAGGERED1 approach, all corrections are done sequentially, first for the state variables
and then for the sensitivity variables, one parameter at a time. If the sensitivity variables are not
included in the error control, this approach is equivalent to CV_STAGGERED. Note that the CV_-
STAGGERED1 approach can be used only if the user-provided sensitivity right-hand side function
is of type CVSensRhs1Fn.

e £S1 —is the C function which computes the right-hand sides of the sensitivity ODE, one at a time. For
full details see CVSensRhsIFn.

* ySO — a pointer to an array of Ns vectors containing the initial values of the sensitivities.
Return value:

e CV_SUCCESS — The call to CVodeSensInit1() was successful.
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e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeSensInit1() has an illegal value.

Notes:
Passing £S1 = NULL indicates using the default internal difference quotient sensitivity right-hand side
routine. If an error occurred, CVodeSensInit1 () also sends an error message to the error handler funciton.

In terms of the problem size N, number of sensitivity vectors [V, and maximum method order maxord, the size of the
real workspace is increased as follows:

* Base value: lenrw = lenrw + (maxord + 5)N;N

e With CVodeSensSVtolerances(): lenrw = lenrw + NyN
the size of the integer workspace is increased as follows:

* Base value: leniw = leniw + (maxord + 5)N,N;

e With CVodeSensSVtolerances(): leniw = leniw + N NV;
where [V; is the number of integers in one N_Vector.

The routine CVodeSensReInit (), useful during the solution of a sequence of problems of same size, reinitializes the
sensitivity-related internal memory. The call to it must follow a call to CVodeSensInit() or CVodeSensInit1()
(and maybe a call to CVodeReInit()). The number Ns of sensitivities is assumed to be unchanged since the call to
the initialization function. The call to the CVodeSensReInit () function has the form:

int CVodeSensReInit (void *cvode_mem, int ism, N_Vector *yS0)
The routine CVodeSensReInit () reinitializes forward sensitivity computations.

Arguments:
¢ cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

» ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be CV_SIMULTANEOUS , CV_STAGGERED , or CV_STAGGERED1.

¢ ySO® — a pointer to an array of Ns variables of type N_Vector containing the initial values of the
sensitivities.

Return value:
e CV_SUCCESS — The call to CVodeSensReInit () was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_NO_SENS — Memory space for sensitivity integration was not allocated through a previous call to
CVodeSensInit().

e CV_ILL_INPUT — An input argument to CVodeSensReInit () has an illegal value.
e CV_MEM_FAIL — A memory allocation request has failed.

Notes:
All arguments of CVodeSensReInit() are the same as those of the functions CVodeSensInit() and
CVodeSensInitl(). If an error occurred, CVodeSensReInit () also sends a message to the error han-
dler function. CVodeSensReInit () potentially does some minimal memory allocation (for the sensitivity
absolute tolerance) and for arrays of counters used by the CV_STAGGERED1 method.
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Warning: The value of the input argument ism must be compatible with the type of the sensitivity
ODE right-hand side function. Thus if the sensitivity module was initialized using CVodeSensInit (),
then it is illegal to pass ism = CV_STAGGERED1 to CVodeSensReInit().

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensInit() or CVode-
SensInit1()), the user must call

void CVodeSensFree (void *cvode_mem)

The function CVodeSensFree () frees the memory allocated for forward sensitivity computations by a previous
call to CVodeSensInit() or CVodeSensInitl().

Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
Return value:

* The function has no return value.

Notes:
In general, CVodeSensFree () need not be called by the user, as it is invoked automatically by CVode-
Free().

After a call to CVodeSensFree(), forward sensitivity computations can be reactivated only by calling
CVodeSensInit() or CVodeSensInitl() again.

To activate and deactivate forward sensitivity calculations for successive CVODES runs, without having to allocate and
deallocate memory, the following function is provided:

int CVodeSensToggleOff (void *cvode_mem)

The function CVodeSensToggleOff() deactivates forward sensitivity calculations. It does not deallocate
sensitivity-related memory.

Arguments:

* cvode_mem — pointer to the memory previously returned by CVodeCreate().
Return value:

e CV_SUCCESS — CVodeSensToggleOff () was successful.

e CV_MEM_NULL — cvode_mem was NULL.

Notes:
Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at a later time (using
CVodeSensReInit()).

5.3.2.2 Forward sensitivity tolerance specification functions
One of the following three functions must be called to specify the integration tolerances for sensitivities. Note that this
call must be made after the call to CVodeSensInit () or CVodeSensInitl().

int CVodeSensSStolerances (void *cvode_mem, realtype reltolS, realtype *abstolS)

The function CVodeSensSStolerances () specifies scalar relative and absolute tolerances.
Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

e reltolS —is the scalar relative error tolerance.
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* abstolS —is a pointer to an array of length Ns containing the scalar absolute error tolerances, one for
each parameter.

Return value:
e CV_SUCCESS — The call to CVodeSStolerances was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_NO_SENS - The sensitivity allocation function CVodeSensInit () or CVodeSensInit1() hasnot
been called.

e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSensSVtolerances (void *cvode_mem, realtype reltolS, N_Vector *abstolS)

The function CVodeSensSVtolerances () specifies scalar relative tolerance and vector absolute tolerances.
Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

e reltolS - is the scalar relative error tolerance.

* abstolS —isan array of Ns variables of type N_Vector. The N_Vector from abstolS[is] specifies
the vector tolerances for is -th sensitivity.

Return value:
e CV_SUCCESS — The call to CVodeSVtolerances was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_SENS - The allocation function for sensitivities has not been called.

e CV_ILL_INPUT - The relative error tolerance was negative or an absolute tolerance vector had a neg-
ative component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of any vector yS[i].

int CVodeSensEEtolerances (void *cvode_mem)

When CVodeSensEEtolerances () is called, CVODES will estimate tolerances for sensitivity variables based
on the tolerances supplied for states variables and the scaling factors p.

Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
Return value:

e CV_SUCCESS — The call to CVodeSensEEtolerances () was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_SENS — The sensitivity allocation function has not been called.
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5.3.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure ODE case, when computing solution sensitivities using forward sensitivitiy analysis CVODES uses
the SUNNonlinearSolver implementation of Newton’s method defined by the SUNNONLINSOL_NEWTON module (see
§9.3) by default. To specify a different nonlinear solver in CVODES, the user’s program must create a SUNNonlinear-
Solver object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver
object to CVODES by calling CVodeSetNonlinearSolverSensSim() when using the CV_SIMULTANEOQUS corrector
option, or CVodeSetNonlinearSolver () and CVodeSetNonlinearSolverSensStg() or CVodeSetNonlinear-
SolverSensStgl() when using the CV_STAGGERED or CV_STAGGERED1 corrector option respectively, as documented
below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver () must be called after CVodeInit ();
similarly CVodeSetNonlinearSolverSensSim(), CVodeSetNonlinearSolverStg(), and CVodeSetNonlin-
earSolverStgl() must be called after CVodeSensInit (). If any calls to CVode () have been made, then CVODES
will need to be reinitialized by calling CVodeReInit () to ensure that the nonlinear solver is initialized correctly before
any subsequent calls to CVode ().

The first argument passed to the routines CVodeSetNonlinearSolverSensSim(), CVodeSetNonlinearSol-
verSensStg (), and CVodeSetNonlinearSolverSensStgl() is the CVODES memory pointer returned by CVode-
Create() and the second argument is the SUNNonlinearSolver object to use for solving the nonlinear systems (2.5)
or (2.6) A call to this function attaches the nonlinear solver to the main CVODES integrator.

int CVodeSetNonlinearSolverSensSim(void *cvode_mem, SUNNonlinearSolver NLS)

The function CVodeSetNonLinearSolverSensSim() attaches a SUNNonlinearSolver object (NLS) to
CVODES when using the CV_SIMULTANEOUS approach to correct the state and sensitivity variables at the same
time.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e NLS — SUNNonlinearSolver object to use for solving nonlinear systems (2.5) or (2.6).
Return value:

* CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT — The SUNNONLINSOL object is NULL, does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

int CVodeSetNonlinearSolverSensStg(void *cvode_mem, SUNNonlinearSolver NLS)

The function CVodeSetNonLinearSolverSensStg() attaches a SUNNonlinearSolver object (NLS) to
CVODES when using the CV_STAGGERED approach to correct all the sensitivity variables after the correction of
the state variables.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* NLS — SUNNONLINSOL object to use for solving nonlinear systems.
Return value:

e CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.
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e CV_ILL_INPUT — The SUNNONLINSOL object is NULL, does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

Notes:
This function only attaches the SUNNonlinearSolver object for correcting the sensitivity variables. To at-
tach a SUNNonlinearSolver object for the state variable correction use CVodeSetNonlinearSolver().

int CVodeSetNonlinearSolverSensStgl (void *cvode_mem, SUNNonlinearSolver NLS)

The function CVodeSetNonLinearSolverSensStgl() attaches a SUNNonlinearSolver object (NLS) to
CVODES when using the CV_STAGGERED1 approach to correct the sensitivity variables one at a time after the
correction of the state variables.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e NLS — SUNNONLINSOL object to use for solving nonlinear systems.
Return value:

e CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT — The SUNNONLINSOL object is NULL, does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

Notes:
This function only attaches the SUNNonlinearSolver object for correcting the sensitivity variables. To at-
tach a SUNNonlinearSolver object for the state variable correction use CVodeSetNonlinearSolver().

5.3.2.4 CVODES solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode () is exactly the same as in
§5.1. However, in this case the return value flag can also be one of the following:

* CV_SRHSFUNC_FAIL — The sensitivity right-hand side function failed in an unrecoverable manner.
e CV_FIRST_SRHSFUNC_ERR — The sensitivity right-hand side function failed at the first call.

e CV_REPTD_SRHSFUNC_ERR — Convergence tests occurred too many times due to repeated recoverable errors in
the sensitivity right-hand side function. This flag will also be returned if the sensitivity right-hand side function
had repeated recoverable errors during the estimation of an initial step size.

e CV_UNREC_SRHSFUNC_ERR — The sensitivity right-hand function had a recoverable error, but no recovery was
possible. This failure mode is rare, as it can occur only if the sensitivity right-hand side function fails recoverably
after an error test failed while at order one.
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5.3.2.5 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensInit () or CVodeSensInitl(), or
reinitialized by a call to CVSensReInit (), then CVODES computes both a solution and sensitivities at time t. How-
ever, CVode () will still return only the solution y in yout. Solution sensitivities can be obtained through one of the
following functions:

int CVodeGetSens (void *cvode_mem, realtype *tret, N_Vector *yS)

The function CVodeGetSens () returns the sensitivity solution vectors after a successful return from CVode ().
Arguments:

* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* tret — the time reached by the solver output.

e yS — array of computed forward sensitivity vectors. This vector array must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetSens () was successful.

e CV_MEM_NULL — cvode_mem was NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_BAD_DKY - yS is NULL.

Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last CVode () call.

The function CVodeGetSensDky () computes the k-th derivatives of the interpolating polynomials for the sensitivity
variables at time t. This function is called by CVodeGetSens () with k = 0, but may also be called directly by the

user.

int CVodeGetSensDky (void *cvode_mem, realtype t, int k, N_Vector *dkyS)

The function CVodeGetSensDky () returns derivatives of the sensitivity solution vectors after a successful return
from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by CVODES.

e k — order of derivatives.

¢ dkyS — array of Ns vectors containing the derivatives on output. The space for dkyS must be allocated
by the user.

Return value:
» CV_SUCCESS — CVodeGetSensDky () succeeded.
e CV_MEM_NULL — cvode_mem was NULL.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.
e CV_BAD_DKY - One of the vectors dkyS is NULL.
e CV_BAD_K - kis not in the range 0, 1, ..., qlast.

e CV_BAD_T — The time t is not in the allowed range.
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Forward sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
CVodeGetSens1() and CVodeGetSensDky1 (), defined as follows:

int CVodeGetSens1(void *cvode_mem, realtype *tret, int is, N_Vector yS)

The function CVodeGetSensI() returns the is-th sensitivity solution vector after a successful return from
CVode ().

Arguments:

* cvode_mem — pointer to the memory previously allocated by CVodeInit().

* tret — the time reached by the solver output.

* is — specifies which sensitivity vector is to be returned 0 < is < Ng.

* yS — the computed forward sensitivity vector. This vector array must be allocated by the user.
Return value:

* CV_SUCCESS — CVodeGetSens1() was successful.

e CV_MEM_NULL - cvode_mem was NULL.

e CV_NO_SENS — Forward sensitivity analysis was not initialized.

CV_BAD_IS — The index is is not in the allowed range.

CV_BAD_DKY — yS is NULL.
e CV_BAD_T — The time t is not in the allowed range.

Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last CVode () call.

int CVodeGetSensDky1 (void *cvode_mem, realtype t, int k, int is, N_Vector dkyS)

The function CVodeGetSensDky1() returns the k-th derivative of the is-th sensitivity solution vector after a
successful return from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by CVODES.

* k — order of derivative.

* is —specifies the sensitivity derivative vector to be returned 0 < is < Nj.

» dkyS - the vector containing the derivative. The space for dkyS must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetQuadDky1 () succeeded.

e CV_MEM_NULL - The pointer to cvode_mem was NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_BAD_DKY — dkyS or one of the vectors dkyS[i] is NULL.

e CV_BAD_IS — The index is is not in the allowed range.

e CV_BAD_K - kis not in the range 0, 1, ..., qlast.

e CV_BAD_T — The time t is not in the allowed range.
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5.3.2.6 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default values through
calls to CVodeSetSens* functions. Table 5.8 lists all forward sensitivity optional input functions in CVODES which
are described in detail in the remainder of this section.

‘We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a CVodeSetSens***
function can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Table 5.8: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors CVodeSetSensParams () NULL

DQ approximation method CVodeSetSensDQMethod () centered/0.0
Error control strategy CVodeSetSensErrCon() SUNFALSE

Maximum no. of nonlinear iterations CVodeSetSensMaxNonlinIters() 3

int CVodeSetSensParams (void *cvode_mem, realtype *p, realtype *pbar, int *plist)

The function CVodeSetSensParams () specifies problem parameter information for sensitivity calculations.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

 p —a pointer to the array of real problem parameters used to evaluate f(¢,y,p). If non-NULL, p must
point to a field in the user’s data structure user_data passed to the right-hand side function.

* pbar —an array of Ns positive scaling factors. If non-NULL, pbar must have all its components > 0.0.

e plist — an array of Ns non-negative indices to specify which components p[i] to use in estimating
the sensitivity equations. If non-NULL, plist must have all components > 0.

Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.
e CV_ILL_INPUT — An argument has an illegal value.
Notes:

Warning: This function must be preceded by a call to CVodeSensInit () or CVodeSensInit1().

int CVodeSetSensDQMethod (void *cvode_mem, int DQtype, realtype DQrhomax)

The function CVodeSetSensDQMethod() specifies the difference quotient strategy in the case in which the
right-hand side of the sensitivity equations are to be computed by CVODES.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* DQtype — specifies the difference quotient type. Its value can be CV_CENTERED or CV_FORWARD.

* DQrhomax — positive value of the selection parameter used in deciding switching between a simulta-
neous or separate approximation of the two terms in the sensitivity right-hand side.
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Return value:
* CV_SUCCESS — The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_ILL_INPUT — An argument has an illegal value.

Notes:
If DQrhomax = 0.0, then no switching is performed. The approximation is done simultaneously using
either centered or forward finite differences, depending on the value of DQtype. For values of DQrhomax
> 1.0, the simultaneous approximation is used whenever the estimated finite difference perturbations for
states and parameters are within a factor of DQrhomax, and the separate approximation is used otherwise.
Note that a value DQrhomax < 1.0 will effectively disable switching. See §2.7 for more details. The default
value are DQtype == CV_CENTERED and DQrhomax=0.0.

int CVodeSetSensErrCon(void *cvode_mem, booleantype errconS)

The function CVodeSetSensErrCon() specifies the error control strategy for sensitivity variables.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* errconS - specifies whether sensitivity variables are to be included SUNTRUE or not SUNFALSE in the
error control mechanism.

Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

Notes:
By default, errconsS is set to SUNFALSE. If errconS = SUNTRUE then both state variables and sensitiv-
ity variables are included in the error tests. If errconS = SUNFALSE then the sensitivity variables are
excluded from the error tests. Note that, in any event, all variables are considered in the convergence tests.

int CVodeSetSensMaxNonlinIters (void *cvode_mem, int maxcorS)

The function CVodeSetSensMaxNonlinIters () specifies the maximum number of nonlinear solver iterations
for sensitivity variables per step.

Arguments:

e cvode_mem — pointer to the CVODES memory block.

* maxcorS — maximum number of nonlinear solver iterations allowed per step > 0.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

Notes:
The default value is 3.
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5.3.2.7 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward sensitivity com-
putations are listed in Table 5.9 and described in detail in the remainder of this section.

Table 5.9: Forward sensitivity optional outputs

Optional output Routine name

No. of calls to sensitivity r.h.s. function CVodeGetSensNumRhsEvals ()

No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens ()

No. of sensitivity local error test failures CVodeGetSensNumErrTestFails ()

No. of failed steps due to sensitivity nonlinear solver failures CVodeGetNumStepSensSolveFails()

No. of failed steps due to staggered sensitivity nonlinear solver CVodeGetNumStepStgrSensSolveFails()
failures

No. of calls to lin. solv. setup routine for sens. CVodeGetSensNumLinSolvSetups()

Error weight vector for sensitivity variables CVodeGetSensErriWeights ()

No. of sens. nonlinear solver iterations CVodeGetSensNumNonlinSolvIters()

No. of sens. convergence failures CVodeGetSensNumNonlinSolvConvFails()
No. of staggered nonlinear solver iterations CVodeGetStgrSensNumNonlinSolvIters()
No. of staggered convergence failures CVodeGetStgrSensNumNonlinSolvCon-

vFails()

int CVodeGetSensNumRhsEvals (void *cvode_mem, long int nfSevals)

The function CVodeGetSensNumRhsEvals () returns the number of calls to the sensitivity right-hand side func-
tion.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nfSevals — number of calls to the sensitivity right-hand side function.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
In order to accommodate any of the three possible sensitivity solution methods, the default internal finite
difference quotient functions evaluate the sensitivity right-hand sides one at a time. Therefore, nfSevals
will always be a multiple of the number of sensitivity parameters (the same as the case in which the user
supplies a routine of type CVSensRhs1Fn).

int CVodeGetNumRhsEvalsSens (void *cvode_mem, long int nfevalsS)

The function CVodeGetNumRhsEvalsSEns () returns the number of calls to the user’s right-hand side function
due to the internal finite difference approximation of the sensitivity right-hand sides.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nfevalsS —number of calls to the user’s ODE right-hand side function for the evaluation of sensitivity
right-hand sides.

Return value:
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* CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the internal finite difference approximation routines are used for the
evaluation of the sensitivity right-hand sides.

int CVodeGetSensNumErrTestFails (void *cvode_mem, long int nSetfails)

The function CVodeGetSensNumErrTestFails () returns the number of local error test failures for the sensi-
tivity variables that have occurred.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nSetfails — number of error test failures.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the sensitivity variables have been included in the error test (see CVode-
SetSensErrCon()). Even in that case, this counter is not incremented if the ism = CV_SIMULTANEOUS
sensitivity solution method has been used.

int CVodeGetNumStepSensSolveFails(void *cvode_mem, long int *nSncfails)

Returns the number of failed steps due to a sensitivity nonlinear solver failure.
Arguments:
* cvode_mem — pointer to the CVODE memory block.
e nSncfails — number of step failures.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.

e CV_MEM_NULL — The CVODE memory block was not initialized through a previous call to CVodeCre-
ate().

int CVodeGetNumStepStgrSensSolveFails (void *cvode_mem, long int *nSTGR Infails)

Returns the number of failed steps due to staggered sensitivity nonlinear solver failures for each sensitivity equa-
tion separately, in the CV_STAGGERED1 case.

Arguments:
* cvode_mem — pointer to the CVODE memory block.
e nSTGR1Infails — number of step failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_NO_SENS - Forward sensitivity analysis was not initialized.
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e CV_MEM_NULL — The CVODE memory block was not initialized through a previous call to CVodeCre-
ate().

int CVodeGetSensNumLinSolvSetups (void *cvode_mem, long int nlinsetupsS)

The function CVodeGetSensNumLinSolvSetups () returns the number of calls to the linear solver setup func-
tion due to forward sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nlinsetupsS — number of calls to the linear solver setup function.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if a nonlinear solver requiring a linear solve has been used and if either
the ism = CV_STAGGERED or the ism = CV_STAGGERED1 sensitivity solution method has been specified
(see §5.3.2.1).

int CVodeGetSensStats (void *cvode_mem, long int *nfSevals, long int *nfevalsS, long int *nSetfails, long int
*nlinsetupsS)

The function CVodeGetSensStats () returns all of the above sensitivity-related solver statistics as a group.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nfSevals — number of calls to the sensitivity right-hand side function.
* nfevalsS — number of calls to the ODE right-hand side function for sensitivity evaluations.
e nSetfails — number of error test failures.
e nlinsetupsS — number of calls to the linear solver setup function.
Return value:
* CV_SUCCESS - The optional output values have been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.

int CVodeGetSensErriWeights (void *cvode_mem, N_Vector *eSweight)

The function CVodeGetSensErrifeights() returns the sensitivity error weight vectors at the current time.
These are the reciprocals of the W; of (2.7) for the sensitivity variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* eSweight — pointer to the array of error weight vectors.
Return value:
e CV_SUCCESS - The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.
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Notes:
The user must allocate memory for eweightsS.

int CVodeGetSensNumNonlinSolvIters (void *cvode_mem, long int nSniters)

The function CVodeGetSensNumNonlinSolvIters () returns the number of nonlinear iterations performed for
sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e nSniters — number of nonlinear iterations performed.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.
e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

Notes:
This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1 (see §5.3.2.1). In the
CV_STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear iterations performed
for each sensitivity equation. These individual counters can be obtained through a call to CVodeGetSt-
grSensNumNonlinSolvIters() (see below).

int CVodeGetSensNumNonlinSolvConvFails(void *cvode_mem, long int nSncfails)

The function CVodeGetSensNumNonlinSolvConvFails () returns the number of nonlinear convergence fail-
ures that have occurred for sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nSncfails — number of nonlinear convergence failures.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1. In the CV_STAGGERED1
case, the value of nSncfails is the sum of the number of nonlinear convergence failures that occurred for
each sensitivity equation. These individual counters can be obtained through a call to CVodeGetStgrSen-
sNumNonlinConvFails() (see below).

int CVodeGetSensNonlinSolvStats (void *cvode_mem, long int nSniters, long int nSncfails)

The function CVodeGetSensNonlinSolvStats () returns the sensitivity-related nonlinear solver statistics as a
group.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nSniters — number of nonlinear iterations performed.

e nSncfails — number of nonlinear convergence failures.

Return value:
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* CV_SUCCESS - The optional output values have been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.
e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.
int CVodeGetStgrSensNumNonlinSolvIters (void *cvode_mem, long int *nSTGR Initers)

The function CVodeGetStgrSensNumNonlinSolvIters() returns the number of nonlinear iterations per-
formed for each sensitivity equation separately, in the CV_STAGGERED1 case.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nSTGR1niters — an array of dimension Ns which will be set with the number of nonlinear iterations
performed for each sensitivity system individually.

Return value:
* CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:

Warning: The user must allocate space for nSTGR1niters.

int CVodeGetStgrSensNumNonlinSolvConvFails (void *cvode_mem, long int *nSTGR Incfails)

The function CVodeGetStgrSensNumNonlinSolvConvFails () returns the number of nonlinear convergence
failures that have occurred for each sensitivity equation separately, in the CV_STAGGERED1 case.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nSTGR1Incfails — an array of dimension Ns which will be set with the number of nonlinear conver-
gence failures for each sensitivity system individually.

Return value:
* CV_SUCCESS - The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:

Warning: The user must allocate space for nSTGRIncfails.

int CVodeGetStgrSensNonlinSolvStats (void *cvode_mem, long int *nSTRG 1niterslong, int *nSTGR Incfails)

The function CVodeGetStgrSensNonlinSolvStats () returns the number of nonlinear iterations and conver-
gence failures that have occurred for each sensitivity equation separately, in the CV_STAGGERED1 case.

Arguments:

* cvode_mem — pointer to the CVODES memory block.
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* nSTGRIniters — an array of dimension Ns which will be set with the number of nonlinear iterations
performed for each sensitivity system individually.

* nSTGRIncfails — an array of dimension Ns which will be set with the number of nonlinear conver-
gence failures for each sensitivity system individually.

Return value:
* CV_SUCCESS - The optional output values have been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

5.3.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §5.1.6, when using CVODES for forward
sensitivity analysis, the user has the option of providing a routine that calculates the right-hand side of the sensitivity
equations (2.14).

By default, CVODES uses difference quotient approximation routines for the right-hand sides of the sensitivity equa-
tions. However, CVODES allows the option for user-defined sensitivity right-hand side routines (which also provides
a mechanism for interfacing CVODES to routines generated by automatic differentiation).

5.3.3.1 Sensitivity equations right-hand side (all at once)

If the CV_SIMULTANEOUS or CV_STAGGERED approach was selected in the call to CVodeSensInit() or CVode-
SensInitl(), the user may provide the right-hand sides of the sensitivity equations (2.14), for all sensitivity pa-
rameters at once, through a function of type CVSensRhsFn defined by:

typedef int (*CVSensRhsFn)(int Ns, realtype t, N_Vector y, N_Vector ydot, N_Vector *yS, N_Vector *ySdot, void
*user_data, N_Vector tmpl, N_Vector tmp2)

This function computes the sensitivity right-hand side for all sensitivity equations at once. It must compute the
of
Ipi

0
vectors —fsi(t) + and store them in ySdot [i].

dy
Arguments:

* Ns —is the number of sensitivities.

* t —is the current value of the independent variable.

* y —is the current value of the state vector, y(t) .

» ydot — is the current value of the right-hand side of the state equations.

* yS — contains the current values of the sensitivity vectors.

¢ ySdot —is the output of CVSensRhsFn . On exit it must contain the sensitivity right-hand side vectors.

e user_data — is a pointer to user data, the same as the user_data parameter passed to CVodeSe-
tUserData() .

e tmpl, tmp2 — are N_Vectors of length NV which can be used as temporary storage.

Return value:
A CVSensRhsFn should return O if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CV_SRHSFUNC_FAIL is returned).
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Notes:
Allocation of memory for ySdot is handled within CVODES. There are two situations in which recovery
is not possible even if CVSensRhsFn function returns a recoverable error flag. One is when this occurs at
the very first call to the CVSensRhsFn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR). The
other is when a recoverable error is reported by CVSensRhsFn after an error test failure, while the linear
multistep method order is equal to 1 (in which case CVODES returns CV_UNREC_SRHSFUNC_ERR).

Warning: A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the
CV_STAGGERED1 approach.

5.3.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a time, through a
function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of type CVSensRhs1Fn is compatible
with any valid value of the argument ism to CVodeSensInit () and CVodeSensInitl(), and is required if ism =
CV_STAGGERED1 in the call to CVodeSensInitl (). The type CVSensRhs1Fn is defined by

typedef int (*CVSensRhs1Fn)(int Ns, realtype t, N_Vector y, N_Vector ydot, int iS, N_Vector yS, N_Vector ySdot,
void *user_data, N_Vector tmpl, N_Vector tmp2)

This function computes the sensitivity right-hand side for one sensitivity equation at a time. It must compute the
vector (g—fyc)si (t) + (3—;) for ¢ = iS and store it in ySdot.

Arguments:
* Ns —is the number of sensitivities.
* t —is the current value of the independent variable.
* y —is the current value of the state vector, y(t) .
* ydot — is the current value of the right-hand side of the state equations.

 iS—is the index of the parameter for which the sensitivity right-hand side must be computed (0 < iS
< Ns).

* yS — contains the current value of the iS -th sensitivity vector.

* ySdot —is the output of CVSensRhs1Fn . On exit it must contain the iS -th sensitivity right-hand side
vector.

* user_data — is a pointer to user data, the same as the user_data parameter passed to CVodeSe-
tUserData() .

e tmpl, tmp2 — are N_Vectors of length N which can be used as temporary storage.

Return value:
A CVSensRhs1Fn should return O if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CV_SRHSFUNC_FAIL is returned).

Notes:
Allocation of memory for ySdot is handled within CVODES. There are two situations in which recovery
is not possible even if CVSensRhs1Fn function returns a recoverable error flag. One is when this occurs
at the very first call to the CVSensRhs1Fn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR).
The other is when a recoverable error is reported by CVSensRhs1Fn after an error test failure, while the
linear multistep method order equal to 1 (in which case CVODES returns CV_UNREC_SRHSFUNC_ERR).
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5.3.4 Integration of quadrature equations depending on forward sensitivities

CVODES provides support for integration of quadrature equations that depends not only on the state variables but also
on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton program presented in §5.3.1 are grayed out and new or modified steps are in bold.

1.
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25.

26.

Set vector of initial values for quadrature variables
Typically, the quadrature variables should be initialized to 0.
Initialize sensitivity-dependent quadrature integration

Call CVodeQuadSensInit () to specify the quadrature equation right-hand side function and to allocate internal
memory related to quadrature integration.

Set optional inputs for sensitivity-dependent quadrature integration

Call CVodeSetQuadSensErrCon() to indicate whether or not quadrature variables should be used in the step
size control mechanism. If so, one of the CVodeQuadSens*tolerances functions must be called to specify the
integration tolerances for quadrature variables.
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27.
28.

29.
30.
31.

32.

33.

Extract sensitivity-dependent quadrature variables

Call CVodeGetQuadSens (), CVodeGetQuadSens1(), CVodeGetQuadSensDky () or CVodeGetQuadSens-
Dky1() to obtain the values of the quadrature variables or their derivatives at the current time.

Get sensitivity-dependent quadrature optional outputs

Call CVodeGetQuadSens* functions to obtain desired optional output related to the integration of sensitivity-
dependent quadratures.

Destroy objects

Destroy memory for sensitivity-dependent quadrature variables

5.3.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function CVodeQuadSensInit() activates integration of quadrature equations depending on sensitivities and
allocates internal memory related to these calculations. If rhsQS is input as NULL, then CVODES uses an internal
function that computes difference quotient approximations to the functions ¢; = gys; + ¢y, , in the notation of (2.13).
The form of the call to this function is as follows:

int CVodeQuadSensInit (void *cvode_mem, CVQuadSensRhsFn thsQS, N_Vector *yQS0)

The function CVodeQuadSensInit () provides required problem specifications, allocates internal memory, and
initializes quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

* rhsQS —is the function which computes fqg , the right-hand side of the sensitivity-dependent quadra-
ture..

* yQSO — contains the initial values of sensitivity-dependent quadratures.
Return value:

e CV_SUCCESS — The call to CVodeQuadSensInit () was successful.

CVODE_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate ().

CVODE_MEM_FAIL — A memory allocation request failed.

CV_NO_SENS — The sensitivities were not initialized by a prior call to CVodeSensInit() or CVode-
SensInitl().

CV_ILL_INPUT — The parameter yQS® is NULL.
Notes:

Warning: Before calling CVodeQuadSensInit (), the user must enable the sensitivites by calling
CVodeSensInit () or CVodeSensInit1(). If an error occurred, CVodeQuadSensInit () also sends
an error message to the error handler function.
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int CVodeQuadSensReInit (void *cvode_mem, N_Vector *yQS0)

The function CVodeQuadSensReInit() provides required problem specifications and reinitializes the
sensitivity-dependent quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* yQSO - contains the initial values of sensitivity-dependent quadratures.
Return value:
» CV_SUCCESS — The call to CVodeQuadSensReInit () was successful.
* CVODE_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate().

e CV_NO_SENS —Memory space for the sensitivity calculation was not allocated by a prior call to CVode-
SensInit() or CVodeSensInitl().

* CV_NO_QUADSENS — Memory space for the sensitivity quadratures integration was not allocated by a
prior call to CVodeQuadSensInit().

e CV_ILL_INPUT — The parameter yQS® is NULL.

Notes:
If an error occurred, CVodeQuadSensReInit () also sends an error message to the error handler function.

void CVodeQuadSensFree (void *cvode_mem)
The function CVodeQuadSensFree () frees the memory allocated for sensitivity quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODE memory block.

Return value:
There is no return value.

Notes:
In general, CVodeQuadSensFree () need not be called by the user as it is called automatically by CVode-
Free().

5.3.4.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode () is exactly the same as in §5.1.
However, in this case the return value flag can also be one of the following:

* CV_QSRHSFUNC_ERR - The sensitivity quadrature right-hand side
function failed in an unrecoverable manner.

¢ CV_FIRST_QSRHSFUNC_ERR — The sensitivity quadrature right-hand side
function failed at the first call.

e CV_REPTD_QSRHSFUNC_ERR — Convergence test failures occurred too many times due to repeated recoverable
errors in the quadrature right-hand side function. This flag will also be returned if the quadrature right-hand side
function had repeated recoverable errors during the estimation of an initial step size (assuming the sensitivity
quadrature variables are included in the error tests).
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5.3.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to CVodeQuadSensInit (), or reinitialized by a call
to CVodeQuadSensReInit (), then CVODES computes a solution, sensitivity vectors, and quadratures depending on
sensitivities at time t. However, CVode () will still return only the solution y. Sensitivity-dependent quadratures can
be obtained using one of the following functions:

int CVodeGetQuadSens (void *cvode_mem, realtype tret, N_Vector *yQS)

The function CVodeGetQuadSens () returns the quadrature sensitivities solution vectors after a successful return
from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit().
* tret — the time reached by the solver output.

* yQS — array of Ns computed sensitivity-dependent quadrature vectors. This vector array must be allo-
cated by the user.

Return value:
e CV_SUCCESS — CVodeGetQuadSens () was successful.
e CVODE_MEM_NULL — cvode_mem was NULL.
* CV_NO_SENS — Sensitivities were not activated.

e CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

CV_BAD_DKY — yQS or one of the yQS[i] is NULL.

The function CVodeGetQuadSensDky() computes the k-th derivatives of the interpolating polynomials for the
sensitivity-dependent quadrature variables at time t. This function is called by CVodeGetQuadSens() with k = 0,
but may also be called directly by the user.

int CVodeGetQuadSensDky (void *cvode_mem, realtype t, int k, N_Vector *dkyQS)

The function CVodeGetQuadSensDky () returns derivatives of the quadrature sensitivities solution vectors after
a successful return from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t —the time at which information is requested. The time t must fall within the interval defined by the
last successful step taken by CVODES.

* k — order of the requested derivative.

¢ dkyQS - array of Ns the vector containing the derivatives on output. This vector array must be allocated
by the user.

Return value:
» CV_SUCCESS — CVodeGetQuadSensDky () succeeded.
e CVODE_MEM_NULL — The pointer to cvode_mem was NULL.
* CV_NO_SENS — Sensitivities were not activated.

e CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

CV_BAD_DKY — dkyQS or one of the vectors dkyQS[i] is NULL.
e CV_BAD_K -k is not in the range 0, 1, ..., qlast.
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e CV_BAD_T — The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
CVodeGetQuadSens1() and CVodeGetQuadSensDky1 (), defined as follows:

int CVodeGetQuadSens1 (void *cvode_mem, realtype tret, int is, N_Vector yQS)

The function CVodeGetQuadSens1 () returns the is-th sensitivity of quadratures after a successful return from
CVode ().

Arguments:
e cvode_mem — pointer to the memory previously allocated by CVodeInit ().
* tret — the time reached by the solver output.
* is — specifies which sensitivity vector is to be returned 0 < is < Nj.

* yQS — the computed sensitivity-dependent quadrature vector. This vector array must be allocated by
the user.

Return value:

e CV_SUCCESS — CVodeGetQuadSens1 () was successful.

CVODE_MEM_NULL — cvode_mem was NULL.

CV_NO_SENS — Forward sensitivity analysis was not initialized.

* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e CV_BAD_IS — The index is is not in the allowed range.

¢ CV_BAD_DKY - yQS is NULL.

int CVodeGetQuadSensDky1 (void *cvode_mem, realtype t, int k, int is, N_Vector dkyQS)

The function CVodeGetQuadSensDky1 () returns the k-th derivative of the is-th sensitivity solution vector after
a successful return from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by CVODES.

¢ k — order of derivative.
* is — specifies the sensitivity derivative vector to be returned 0 < is < Nj.

» dkyQS — the vector containing the derivative on output. The space for dkyQS must be allocated by the
user.

Return value:
e CV_SUCCESS — CVodeGetQuadDky1 () succeeded.
* CVODE_MEM_NULL — cvode_mem was NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.
e CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e CV_BAD_DKY - dkyQS is NULL.
e CV_BAD_IS - The index is is not in the allowed range.
e CV_BAD_K - k is not in the range 0, 1, ..., qlast.
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e CV_BAD_T — The time t is not in the allowed range.

5.3.5 Optional inputs for sensitivity-dependent quadrature integration

CVODES provides the following optional input functions to control the integration of sensitivity-dependent quadrature

equations.

int CVodeSetQuadSensErrCon(void *cvode_mem, booleantype errconQS)

The function CVodeSetQuadSensErrCon() specifies whether or not the quadrature variables are to be used in
the step size control mechanism. If they are, the user must call one of the functions CVodeQuadSensSStoler-
ances (), CVodeQuadSensSVtolerances (), or CVodeQuadSensEEtolerances () to specify the integration

tolerances for the quadrature variables.
Arguments:

e cvode_mem — pointer to the CVODES memory block.

* errconQS — specifies whether sensitivity quadrature variables are to be included SUNTRUE or not

SUNFALSE in the error control mechanism.
Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CVODE_MEM_NULL — cvode_mem is NULL.
* CV_NO_SENS — Sensitivities were not activated.
* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

Notes:
By default, errconQs is set to SUNFALSE.

Warning: Itis illegal to call CVodeSetQuadSensErrCon () before a call to CVodeQuadSensInit().

int CVodeQuadSensSStolerances (void *cvode_mem, realtype reltolQS, realtype *abstolQS)

The function CVodeQuadSensSStolerances () specifies scalar relative and absolute tolerances.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ reltolQS — tolerances is the scalar relative error tolerance.

* abstolQS - is a pointer to an array containing the Ns scalar absolute error tolerances.
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CVODE_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS - Sensitivities were not activated.

¢ CV_NO_QUADSENS - Quadratures depending on the sensitivities were not activated.

e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeQuadSensSVtolerances (void *cvode_mem, realtype reltolQS, N_Vector *abstolQS)

The function CVodeQuadSensSVtolerances () specifies scalar relative and vector absolute tolerances.

Arguments:
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* cvode_mem — pointer to the CVODES memory block.
¢ reltolQS — tolerances is the scalar relative error tolerance.

* abstolQS —is an array of Ns variables of type N_Vector. The N_Vector abstolS[is] specifies
the vector tolerances for is -th quadrature sensitivity.

Return value:
* CV_SUCCESS — The optional value has been successfully set.
e CV_NO_QUAD — Quadrature integration was not initialized.
e CVODE_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS — Sensitivities were not activated.
* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeQuadSensEEtolerances (void *cvode_mem)

A call to the function CVodeQuadSensEEtolerances() specifies that the tolerances for the sensitivity-
dependent quadratures should be estimated from those provided for the pure quadrature variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CV_SUCCESS — The optional value has been successfully set.
* CVODE_MEM_NULL — The cvode_mem pointer is NULL.
» CV_NO_SENS — Sensitivities were not activated.
e CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

Notes:
When CVodeQuadSensEEtolerances () is used, before calling CVode (), integration of pure quadratures
must be initialize and tolerances for pure quadratures must be also specified (see §5.2).

5.3.6 Optional outputs for sensitivity-dependent quadrature integration
CVODES provides the following functions that can be used to obtain solver performance information related to quadra-
ture integration.

int CVodeGetQuadSensNumRhsEvals (void *cvode_mem, long int nrhsQSevals)

The function CVodeGetQuadSensNumRhsEvals () returns the number of calls made to the user’s quadrature
right-hand side function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ nrhsQSevals — number of calls made to the user’s rhsQS function.
Return value:
e CV_SUCCESS - The optional output value has been successfully set.
e CVODE_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.
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int CVodeGetQuadSensNumErrTestFails (void *cvode_mem, long int nQSetfails)

The function CVodeGetQuadSensNumErrTestFails () returns the number of local error test failures due to
quadrature variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nQSetfails — number of error test failures due to quadrature variables.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.
* CVODE_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.

int CVodeGetQuadSensErrWeights (void *cvode_mem, N_Vector *eQSweight)
The function CVodeGetQuadSensErrileights () returns the quadrature error weights at the current time.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* eQSweight — array of quadrature error weight vectors at the current time.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CVODE_MEM_NULL — The cvode_mem pointer is NULL.

e CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.
Notes:

Warning: The user must allocate memory for eQSweight. If quadratures were not included in the error
control mechanism (through a call to CVodeSetQuadSensErrCon() with errconQS = SUNTRUE),
then this function does not set the eQSweight array.

int CVodeGetQuadSensStats (void *cvode_mem, long int nrhsQSevals, long int nQSetfails)
The function CVodeGetQuadSensStats () returns the CVODES integrator statistics as a group.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nrhsQSevals — number of calls to the user’s rhsQS function.

* nQSetfails — number of error test failures due to quadrature variables.
Return value:

* CV_SUCCESS - the optional output values have been successfully set.

e CVODE_MEM_NULL — the cvode_mem pointer is NULL.

e CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.
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5.3.6.1 User-supplied function for sensitivity-dependent quadrature integration

For the integration of sensitivity-dependent quadrature equations, the user must provide a function that defines the right-
hand side of those quadrature equations. For the sensitivities of quadratures (2.13) with integrand ¢, the appropriate
right-hand side functions are given by: ¢; = gy ; + gp,. This user function must be of type CVQuadSensRhsFn defined
as follows:

typedef int (*CVQuadSensRhsFn)(int Ns, realtype t, N_Vector 'y, N_Vector *yS, N_Vector yQdot, N_Vector *yQSdot,
void *user_data, N_Vector tmp, N_Vector tmpQ)

This function computes the sensitivity quadrature equation right-hand side for a given value of the independent
variable ¢ and state vector y.

Arguments:
* Ns —is the number of sensitivity vectors.
e t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
e ys —is an array of Ns variables of type N_Vector containing the dependent sensitivity vectors s;.
* yQdot —is the current value of the quadrature right-hand side, q.
* yQSdot- array of Ns vectors to contain the right-hand sides.
* user_data — is the user_data pointer passed to CVodeSetUserData().
e tmpl, tmp2 — are N_Vector objects which can be used as temporary storage.

Return value:
A CVQuadSensRhsFn should return O if successful, a positive value if a recoverable error occurred (in
which case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and CV_QRHS_FAIL is returned).

Notes:
Allocation of memory for rhsvalQs is automatically handled within CVODES.

Here y is of type N_Vector and yS is a pointer to an array containing Ns vectors of type N_Vector. Itis the
user’s responsibility to access the vector data consistently (including the use of the correct accessor macros
from each N_Vector implementation). For the sake of computational efficiency, the vector functions in
the two N_Vector implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments.

There are two situations in which recovery is not possible even if CVQuadSensRhsFn function returns a
recoverable error flag. One is when this occurs at the very first call to the CVQuadSensRhsFn (in which
case CVODES returns CV_FIRST_QSRHSFUNC_ERR). The other is when a recoverable error is reported by
CVQuadSensRhsFn after an error test failure, while the linear multistep method order is equal to 1 (in which
case CVODES returns CV_UNREC_QSRHSFUNC_ERR).
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5.3.7 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of CVODES may appear
at first glance to be erroneous. One would expect that, in such cases, the sensitivity variables would not influence in
any way the step size selection. A comparison of the solver diagnostics reported for cvsdenx and the second run of
the cvsfwddenx example in [56] indicates that this may not always be the case.

The short explanation of this behavior is that the step size selection implemented by the error control mechanism in
CVODES is based on the magnitude of the correction calculated by the nonlinear solver. As mentioned in §5.3.2.1,
even with partial error control selected (in the call to CVodeSetSensErrCon()), the sensitivity variables are included
in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method §2.7 the nonlinear system that is solved at each step involves both
the state and sensitivity equations. In this case, it is easy to see how the sensitivity variables may affect the conver-
gence rate of the nonlinear solver and therefore the step size selection. The case of the staggered corrector approach
is more subtle. After all, in this case (ism = CV_STAGGERED or CV_STAGGERED1 in the call to CVodeSensInit ()
CVodeSensInit1()), the sensitivity variables at a given step are computed only once the solver for the nonlinear state
equations has converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence
problems, CVODES will attempt to improve the initial guess by reducing the step size in order to provide a better
prediction of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of the sensi-
tivity system, CVODES may trigger a call to the linear solver’s setup routine which typically involves reevaluation of
Jacobian information (Jacobian approximation in the case of CVDENSE and CVBAND, or preconditioner data in the
case of the Krylov solvers). The new Jacobian information will be used by subsequent calls to the nonlinear solver for
the state equations and, in this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver convergence failures
or calls to the linear solver setup routine have been triggered by convergence problems due to the state or the sensitivity
equations. When using one of the staggered corrector methods however, these situations can be identified by carefully
monitoring the diagnostic information provided through optional outputs. If there are no convergence failures in the
sensitivity nonlinear solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system of ODEs on the
step size selection (through the mechanisms described above) is problem-dependent and can therefore lead to either an
increase or decrease of the total number of steps that CVODES takes to complete the simulation. At first glance, one
would expect that the impact of the sensitivity variables, if any, would be in the direction of increasing the step size and
therefore reducing the total number of steps. The argument for this is that the presence of the sensitivity variables in
the convergence test of the nonlinear solver can only lead to additional iterations (and therefore a smaller final iteration
error), or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian information),
both of which will lead to larger steps being taken by CVODES. However, this is true only locally. Overall, a larger
integration step taken at a given time may lead to step size reductions at later times, due to either nonlinear solver
convergence failures or error test failures.

5.4 Using CVODES for Adjoint Sensitivity Analysis

This chapter describes the use of CVODES to compute sensitivities of derived functions using adjoint sensitivity anal-
ysis. As mentioned before, the adjoint sensitivity module of CVODES provides the infrastructure for integrating back-
ward in time any system of ODEs that depends on the solution of the original IVP, by providing various interfaces to
the main CVODES integrator, as well as several supporting user-callable functions. For this reason, in the following
sections we refer to the backward problem and not to the adjoint problem when discussing details relevant to the ODEs
that are integrated backward in time. The backward problem can be the adjoint problem (2.20) or (2.20), and can be
augmented with some quadrature differential equations.

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.
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We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of
the interface to the various user-callable functions and of the user-supplied functions that were not already described
in §5.1.

5.4.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of CVODES. The user program is to have
these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of the details to
the later sections. As in §5.1.4, most steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the
specific name of the function to be called or macro to be referenced.

Steps that are unchanged from the skeleton programs presented in §5.1.4, §5.3.1, and §5.2 are grayed out and new or
modified steps are in bold.

1.
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19.

20.

. Allocate space for the adjoint computation

Call CVodeAdjInit() to allocate memory for the combined forward-backward problem. This call requires
Nd, the number of steps between two consecutive checkpoints. CVodeAdjInit() also specifies the type of
interpolation used (see §2.9).

Integrate forward problem

Call CVodeF (), a wrapper for the CVODES main integration function CVode (), either in CV_NORMAL mode
to the time tout or in CV_ONE_STEP mode inside a loop (if intermediate solutions of the forward problem are
desired). The final value of tret is then the maximum allowable value for the endpoint 1" of the backward
problem.

Set problem dimensions etc. for the backward problem

This generally includes the backward problem vector length NB, and possibly the local vector length NBlocal.
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21.

22.

23.

24.

25.

26.

27.

28.

Set initial values for the backward problem
Set the endpoint time tB® = T, and set the corresponding vector yB® at which the backward problem starts.
Create the backward problem

Call CVodeCreateB(), a wrapper for CVodeCreate(), to create the CVODES memory block for the new
backward problem. Unlike CVodeCreate (), the function CVodeCreateB() does not return a pointer to the
newly created memory block. Instead, this pointer is attached to the internal adjoint memory block (created by
CVodeAdjInit()) and returns an identifier called which that the user must later specify in any actions on the
newly created backward problem.

Allocate memory for the backward problem

Call CVodeInitB() (or CVodeInitBS(), when the backward problem depends on the forward sensitivities).
The two functions are actually wrappers for CVodeInit () and allocate internal memory, specify problem data,
and initialize CVODES at tB0 for the backward problem.

Specify integration tolerances for backward problem

Call CVodeSStolerancesB() or CVodeSVtolerancesB() to specify a scalar relative tolerance and scalar
absolute tolerance or scalar relative tolerance and a vector of absolute tolerances, respectively. The functions are
wrappers for CVodeSStolerances () and CVodeSVtolerances (), but they require an extra argument which,
the identifier of the backward problem returned by CVodeCreateB().

Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and the linear
solver will be a direct linear solver, then a template Jacobian matrix must be created by calling the appropriate
constructor function defined by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where **¥* is the name of the matrix (see §7 for details).

Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the desired linear
solver object for the backward problem must be created by calling the appropriate constructor function defined
by the particular SUNLinearSolver implementation.

For any of the SUNDIALS-supplied SUNLinearSolver implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);
where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §5.1.5.5 and Chapter §8.

Note that it is not required to use the same linear solver module for both the forward and the backward prob-
lems; for example, the forward problem could be solved with the SUNLINSOL_BAND linear solver module and the
backward problem with SUNLINSOL_SPGMR linear solver module.

Set linear solver interface optional inputs for the backward problem

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLinearSolver module in Chapter §8.

Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default Newton
iteration), then initialize the CVLS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the call to CVodeSetLinearSolverB()

Alternately, if the CVODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the linear
solver module and attach it to CVODES with a call to CVDiagB().
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29.

30.

31.

32.

33.

34.

35.

36.

Set optional inputs for the backward problem

Call CVodeSet*B functions to change from their default values any optional inputs that control the behavior of
CVODES. Unlike their counterparts for the forward problem, these functions take an extra argument which, the
identifier of the backward problem returned by CVodeCreateB().

Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNonlinearSolver implementation
(e.g.,NLSB = SUNNonlinSol_***(...); where *** is the name of the nonlinear solver.

Attach nonlinear solver module for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear solver interface by
attaching the nonlinear solver object by calling CVodeSetNonlinearSolverB().

Initialize quadrature calculation

If additional quadrature equations must be evaluated, call CVodeQuadInitB() or CVodeQuadInitBS() (if
quadrature depends also on the forward sensitivities). These functions are wrappers around CVodeQuadInit ()
and can be used to initialize and allocate memory for quadrature integration. Optionally, call CVodeSetQuad*B
functions to change from their default values optional inputs that control the integration of quadratures during
the backward phase.

Integrate backward problem

Call CVodeB(), a second wrapper around the CVODES main integration function CVode (), to integrate the
backward problem from tBO. This function can be called either in CV_NORMAL or CV_ONE_STEP mode. Typically,
CVodeB () will be called in CV_NORMAL mode with an end time equal to the initial time ¢, of the forward problem.

Extract quadrature variables

If applicable, call CVodeGetQuadB (), a wrapper around CVodeGetQuad (), to extract the values of the quadra-
ture variables at the time returned by the last call to CVodeB().

Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These include appro-
priate destructors for the vectors y and yB, a call to CVodeFree() to free the CVODES memory block for the
forward problem. If one or more additional Adjoint Sensitivity Analyses are to be done for this problem, a call to
CVodeAdjFree () may be made to free and deallocate memory allocated for the backward problems, followed
by a call to CVodeAdjInit().

Free the nonlinear solver memory for the forward and backward problems

Free linear solver and matrix memory for the forward and backward problems

The above user interface to the adjoint sensitivity module in CVODES was motivated by the desire to keep it as close
as possible in look and feel to the one for ODE IVP integration. Note that if steps back_start-back_end are not present,
a program with the above structure will have the same functionality as one described in §5.1.4 for integration of ODEs,
albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps back_start-back_end
above for each successive backward problem. In the process, each call to CVodeCreateB() creates a new value of the
identifier which.
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5.4.2 User-callable functions for adjoint sensitivity analysis

5.4.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to CVodeF (), memory for the combined forward-
backward problem must be allocated by a call to the function CVodeAdjInit (). The form of the call to this function
is

int CVodeAdjInit (void *cvode_mem, long int Nd, int interpType)

The function CVodeAdjInit() updates CVODES memory block by allocating the internal memory needed
for backward integration. Space is allocated for the Nd = N_d interpolation data points, and a linked list of
checkpoints is initialized.

Arguments:

* cvode_mem — is the pointer to the CVODES memory block returned by a previous call to CVodeCre-
ate().

* Nd - is the number of integration steps between two consecutive checkpoints.

* interpType — specifies the type of interpolation used and can be CV_POLYNOMIAL or CV_HERMITE ,
indicating variable-degree polynomial and cubic Hermite interpolation, respectively see §2.9.

Return value:
e CV_SUCCESS — CVodeAdjInit () was successful.
e CV_MEM_FAIL — A memory allocation request has failed.
e CV_MEM_NULL — cvode_mem was NULL.

e CV_ILL_INPUT - One of the parameters was invalid: Nd was not positive or interpType is not one
of the CV_POLYNOMIAL or CV_HERMITE.

Notes:
The user must set Nd so that all data needed for interpolation of the forward problem solution between
two checkpoints fits in memory. CVodeAdjInit () attempts to allocate space for 2*Nd+3 variables of type
N_Vector. If an error occurred, CVodeAdjInit () also sends a message to the error handler function.

int CVodeAdjReInit (void *cvode_mem)

The function CVodeAdjReInit () reinitializes the CVODES memory block for ASA, assuming that the number

of steps between check points and the type of interpolation remain unchanged.

Arguments:

* cvode_mem — is the pointer to the CVODES memory block returned by a previous call to CVodeCre-
ate().

Return value:
e CV_SUCCESS — CVodeAdjReInit () was successful.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () was not previously called.

Notes:
The list of check points (and associated memory) is deleted. The list of backward problems is kept. How-
ever, new backward problems can be added to this list by calling CVodeCreateB(). If a new list of back-
ward problems is also needed, then free the adjoint memory (by calling CVodeAdjFree()) and reinitialize
ASA with CVodeAdjInit (). The CVODES memory for the forward and backward problems can be reini-
tialized separately by calling CVodeReInit () and CVodeReInitB(), respectively.
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void CVodeAdjFree (void *cvode_mem)

The function CVodeAdjFree () frees the memory related to backward integration allocated by a previous call to
CVodeAdjInit().

Argument:

* cvode_mem — is the pointer to the CVODES memory block returned by a previous call to CVodeCre-
ate().

Return value:
The function has no return value.

Notes:
This function frees all memory allocated by CVodeAdjInit (). This includes workspace memory, the
linked list of checkpoints, memory for the interpolation data, as well as the CVODES memory for the back-
ward integration phase. Unless one or more further calls to CVodeAdjInit () are to be made, CVodeAd-
jFree () should not be called by the user, as it is invoked automatically by CVodeFree ().

5.4.2.2 Forward integration function

The function CVodeF () is very similar to the CVODES function CVode () in that it integrates the solution of the
forward problem and returns the solution in y. At the same time, however, CVodeF () stores checkpoint data every Nd
integration steps. CVodeF () can be called repeatedly by the user. Note that CVodeF () is used only for the forward
integration pass within an Adjoint Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for that, see
§5.3. The call to this function has the form

int CVodeF (void *cvode_mem, realtype tout, N_Vector yret, realtype *tret, int itask, int ncheck)

The function CVodeF () integrates the forward problem over an interval in ¢ and saves checkpointing data.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* tout — the next time at which a computed solution is desired.

e yret — the computed solution vector y.

* tret — the time reached by the solver output.

* itask —output mode a flag indicating the job of the solver for the next step. The CV_NORMAL task is to
have the solver take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to just take one internal step and return the solution at the point reached by that
step.

* ncheck — the number of internal checkpoints stored so far.
Return value:
e CV_SUCCESS — CVodeF () succeeded.
e CV_TSTOP_RETURN — CVodeF () succeeded by reaching the optional stopping point.

e CV_ROOT_RETURN — CVodeF () succeeded and found one or more roots. In this case, tret is the
location of the root. If nrtfn > 1, call CVodeGetRootInfo() to see which g; were found to have a
root.

e CV_NO_MALLOC — The function CVodeInit () has not been previously called.
e CV_ILL_INPUT - One of the inputs to CVodeF () is illegal.

* CV_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tout.
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Notes:

CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

CV_ERR_FAILURE — Error test failures occurred too many times during one internal time step or oc-
curred with |h| = Appip-

CV_CONV_FAILURE — Convergence test failures occurred too many times during one internal time step
or occurred with |h| = hpin.

CV_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.
CV_LSOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.
CV_NO_AD] — The function CVodeAdjInit () has not been previously called.

CV_MEM_FAIL — A memory allocation request has failed in an attempt to allocate space for a new
checkpoint.

All failure return values are negative and therefore a test flag< 0 will trap all CVodeF () failures. At this
time, CVodeF () stores checkpoint information in memory only. Future versions will provide for a safeguard
option of dumping checkpoint data into a temporary file as needed. The data stored at each checkpoint is
basically a snapshot of the CVODES internal memory block and contains enough information to restart the
integration from that time and to proceed with the same step size and method order sequence as during the
forward integration. In addition, CVodeF () also stores interpolation data between consecutive checkpoints
so that, at the end of this first forward integration phase, interpolation information is already available from
the last checkpoint forward. In particular, if no checkpoints were necessary, there is no need for the second
forward integration phase.

Warning: It is illegal to change the integration tolerances between consecutive calls to CVodeF (), as this
information is not captured in the checkpoint data.

5.4.2.3 Backward problem initialization functions

The functions CVodeCreateB() and CVodeInitB() (or CVodeInitBS()) must be called in the order listed. They
instantiate a CVODES solver object, provide problem and solution specifications, and allocate internal memory for the
backward problem.

int CVodeCreateB (void *cvode_mem, int ImmB, int which)

The function CVodeCreateB() instantiates a CVODES solver object and specifies the solution method for the
backward problem.

Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

e 1mmB — specifies the linear multistep method and may be one of two possible values: CV_ADAMS or

CV_BDF.

* which — contains the identifier assigned by CVODES for the newly created backward problem. Any

call to CVode*B functions requires such an identifier.

Return value:

e CV_SUCCESS — The call to CVodeCreateB() was successful.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
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CV_MEM_FAIL — A memory allocation request has failed.

There are two initialization functions for the backward problem — one for the case when the backward problem does
not depend on the forward sensitivities, and one for the case when it does. These two functions are described next.

int CVodeInitB(void *cvode_mem, int which, CVRAsFnB rhsB, realtype tBO, N_Vector yB0)

The function CVodeInitB() provides problem specification, allocates internal memory, and initializes the back-
ward problem.

Arguments:

cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
which — represents the identifier of the backward problem.

rhsB - is the CVRhsFnB function which computes fp , the right-hand side of the backward ODE
problem.

tBO — specifies the endpoint T" where final conditions are provided for the backward problem, normally
equal to the endpoint of the forward integration.

yBO — is the initial value at ¢ = tBO of the backward solution.

Return value:

Notes:

CV_SUCCESS — The call to CVodeInitB() was successful.

CV_NO_MALLOC — The function CVodeInit () has not been previously called.

CV_MEM_NULL — cvode_mem was NULL.

CV_NO_ADJ] — The function CVodeAdjInit () has not been previously called.

CV_BAD_TBO — The final time tB® was outside the interval over which the forward problem was solved.

CV_ILL_INPUT - The parameter which represented an invalid identifier, or either yB® or rhsB was
NULL.

The memory allocated by CVodeInitB() is deallocated by the function CVodeAdjFree ().

The function CVodeInitB() initializes the backward problem when it does not depend on the forward sensitivities. It
is essentially a wrapper for CVodeInit () with some particularization for backward integration, as described below.

For the case when backward problem also depends on the forward sensitivities, user must call CVodeInitBS () instead
of CVodeInitB(). Only the third argument of each function differs between these two functions.

int CVodeInitBS (void *cvode_mem, int which, CVRAhsFnBS rhsBS, realtype tBO, N_Vector yB0)

The function CVodeInitBS() provides problem specification, allocates internal memory, and initializes the
backward problem.

Arguments:

cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
which — represents the identifier of the backward problem.

rhsBS — is the CVRhsFnBS function which computes fp , the right-hand side of the backward ODE
problem.

tBO — specifies the endpoint 7" where final conditions are provided for the backward problem.

yBO — is the initial value at ¢ = tBO of the backward solution.

Return value:

CV_SUCCESS — The call to CVodeInitB() was successful.
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e CV_NO_MALLOC — The function CVodeInit () has not been previously called.

e CV_MEM_NULL - cvode_mem was NULL.

e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_BAD_TBO — The final time tB® was outside the interval over which the forward problem was solved.

e CV_ILL_INPUT — The parameter which represented an invalid identifier, either yB® or rhsBS was
NULL , or sensitivities were not active during the forward integration.

Notes:
The memory allocated by CVodeInitBS() is deallocated by the function CVodeAdjFree().

The function CVodeReInitB() reinitializes CVODES for the solution of a series of backward problems, each iden-
tified by a value of the parameter which. CVodeReInitB() is essentially a wrapper for CVodeReInit (), and so
all details given for CVodeReInit () apply here. Also note that CVodeReInitB() can be called to reinitialize the
backward problem even it has been initialized with the sensitivity-dependent version CVodeInitBS (). Before calling
CVodeReInitB() for a new backward problem, call any desired solution extraction functions CVodeGet** associated
with the previous backward problem. The call to the CVodeReInitB() function has the form

int CVodeReInitB(void *cvode_mem, int which, realtype tBO, N_Vector yB0)
The function CVodeReInitB() reinitializes a CVODES backward problem.

Arguments:
* cvode_mem — pointer to CVODES memory block returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* tBO — specifies the endpoint T' where final conditions are provided for the backward problem.
¢ yBO — is the initial value at ¢ = tBO of the backward solution.
Return value:

e CV_SUCCESS — The call to CVodeReInitB() was successful.

CV_NO_MALLOC — The function CVodeInit () has not been previously called.

CV_MEM_NULL — The cvode_mem memory block pointer was NULL.

CV_NO_AD] — The function CVodeAdjInit () has not been previously called.

CV_BAD_TBO — The final time tB® is outside the interval over which the forward problem was solved.

CV_ILL_INPUT - The parameter which represented an invalid identifier, or yBO was NULL.

5.4.2.4 Tolerance specification functions for backward problem
One of the following two functions must be called to specify the integration tolerances for the backward problem. Note
that this call must be made after the call to CVodeInitB() or CVodeInitBS().

int CVodeSStolerancesB(void *cvode_mem, int which, realtype reltolB, realtype abstolB)

The function CVodeSStolerancesB() specifies scalar relative and absolute tolerances.
Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
* which — represents the identifier of the backward problem.
* reltolB —is the scalar relative error tolerance.

¢ abstolB —is the scalar absolute error tolerance.
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Return value:
e CV_SUCCESS — The call to CVodeSStolerancesB() was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_MALLOC — The allocation function CVodeInit () has not been called.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSVtolerancesB (void *cvode_mem, int which, reltolBabstolB)

The function CVodeSVtolerancesB() specifies scalar relative tolerance and vector absolute tolerances.
Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

* which — represents the identifier of the backward problem.

* reltol —is the scalar relative error tolerance.

* abstol —is the vector of absolute error tolerances.
Return value:

e CV_SUCCESS — The call to CVodeSVtolerancesB() was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_MALLOC — The allocation function CVodeInit () has not been called.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_ILL_INPUT - The relative error tolerance was negative or the absolute tolerance had a negative
component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

5.4.2.5 Linear solver initialization functions for backward problem

All CVODES linear solver modules available for forward problems are available for the backward problem. They
should be created as for the forward problem and then attached to the memory structure for the backward problem
using the following functions.

int CVodeSetLinearSolverB (void *cvode_mem, int which, SUNLinearSolver LS, SUNMatrix A)

The function CVodeSetLinearSolverB() attaches a generic SUNLinearSolver object LS and corresponding
template Jacobian SUNMatrix object A to CVODES, initializing the CVLS linear solver interface for solution of
the backward problem.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which — represents the identifier of the backward problem returned by CVodeCreateB().
e LS — SUNLINSOL object to use for solving linear systems for the backward problem.

* A— SUNMATRIX object for used as a template for the Jacobian for the backward problem or NULL if
not applicable.
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Return value:
e CVLS_SUCCESS — The CVLS initialization was successful.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

CVLS_MEM_FAIL — A memory allocation request failed.

CVLS_NO_ADJ] — The function CVAdjInit has not been previously called.
Notes:

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g., for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size (see the documentation of the particular SUN-
Matrix type in §7). The previous routines CVD1sSetLinearSolverB and CVSpilsSetLinearSolverB
are now wrappers for this routine, and may still be used for backward-compatibility. However, these will
be deprecated in future releases, so we recommend that users transition to the new routine name soon.
int CVDiagB (void *cvode_mem, int which)
The function CVDiagB selects the CVDIAG linear solver for the solution of the backward problem. The user’s
main program must include the cvodes_diag.h header file.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which — represents the identifier of the backward problem returned by CVodeCreateB().
Return value:
* CVDIAG_SUCCESS — The CVDIAG initialization was successful.
e CVDIAG_MEM_NULL - The cvode_mem pointer is NULL.
e CVDIAG_ILL_INPUT — The CVDIAG solver is not compatible with the current NVECTOR module.
e CVDIAG_MEM_FAIL — A memory allocation request failed.

Notes:
The CVDIAG solver is the simplest of all of the available CVODES linear solver interfaces. The CVDIAG
solver uses an approximate diagonal Jacobian formed by way of a difference quotient. The user does not
have the option of supplying a function to compute an approximate diagonal Jacobian.

5.4.2.6 Nonlinear solver initialization function for backward problem

All CVODES nonlinear solver modules available for forward problems are available for the backward problem. As
with the forward problem CVODES uses the SUNNonlinearSolver implementation of Newton’s method defined by
the SUNNONLINSOL_NEWTON module by default.

To specify a different nonlinear solver for the backward problem, the user’s program must create a SUNNonlinear-
Solver object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver
object by calling CVodeSetNonlinearSolverB(), as documented below.

When changing the nonlinear solver in CVODES, (VodeSetNonlinearSolverB() must be called after
CVodeInitB(). If any calls to CVodeB() have been made, then CVODES will need to be reinitialized by calling
CVodeReInitB() to ensure that the nonlinear solver is initialized correctly before any subsequent calls to CVodeB().
int CVodeSetNonlinearSolverB (void *cvode _mem, int which, SUNNonlinearSolver NLS)

The function CVodeSetNonLinearSolverB() attaches a SUNNONLINEARSOLVER object (NLS) to CVODES for
the solution of the backward problem.
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Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which —represents the identifier of the backward problem returned by CVodeCreateB().

e NLS — SUNNONLINSOL object to use for solving nonlinear systems for the backward problem.
Return value:

* CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_NO_ADJ — The function CVAdjInit has not been previously called.

e CV_ILL_INPUT — The parameter which represented an invalid identifier or the SUNNONLINSOL
object is NULL , does not implement the required nonlinear solver operations, is not of the correct type,
or the residual function, convergence test function, or maximum number of nonlinear iterations could
not be set.

5.4.2.7 Backward integration function

The function CVodeB () performs the integration of the backward problem. It is essentially a wrapper for the CVODES
main integration function CVode () and, in the case in which checkpoints were needed, it evolves the solution of the
backward problem through a sequence of forward-backward integration pairs between consecutive checkpoints. The
first run of each pair integrates the original IVP forward in time and stores interpolation data; the second run integrates
the backward problem backward in time and performs the required interpolation to provide the solution of the IVP to
the backward problem.

The function CVodeB () does not return the solution yB itself. To obtain that, call the function CVodeGetB (), which
is also described below.

The CVodeB () function does not support rootfinding, unlike CVodeF (), which supports the finding of roots of functions
of (¢,y). If rootfinding was performed by CVodeF (), then for the sake of efficiency, it should be disabled for CVodeB ()
by first calling CVodeRootInit () with nrtfn =0.

The call to CVodeB () has the form

int CVodeB (void *cvode_mem, realtype tBout, int itaskB)
The function CVodeB () integrates the backward ODE problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* tBout - the next time at which a computed solution is desired.

* itaskB - output mode a flag indicating the job of the solver for the next step. The CV_NORMAL task is
to have the solver take internal steps until it has reached or just passed the user-specified value tBout.
The solver then interpolates in order to return an approximate value of y B(tBout). The CV_ONE_STEP
option tells the solver to take just one internal step in the direction of tBout and return.

Return value:
* CV_SUCCESS — CVodeB() succeeded.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_NO_BCK — No backward problem has been added to the list of backward problems by a call to
CVodeCreateB().
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e CV_NO_FWD — The function CVodeF () has not been previously called.

e CV_ILL_INPUT - One of the inputs to CVodeB() is illegal.

e CV_BAD_ITASK — The itaskB argument has an illegal value.

e CV_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tBout.

e CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

* CV_ERR_FAILURE — Error test failures occurred too many times during one internal time step.

e CV_CONV_FAILURE - Convergence test failures occurred too many times during one internal time step.
e CV_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.

* CV_SOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.

¢ CV_BCKMEM_NULL — The solver memory for the backward problem was not created with a call to
CVodeCreateB().

* CV_BAD_TBOUT —The desired output time tBout is outside the interval over which the forward problem
was solved.

e CV_REIFWD_FAIL — Reinitialization of the forward problem failed at the first checkpoint corresponding
to the initial time of the forward problem.

e CV_FWD_FAIL — An error occurred during the integration of the forward problem.

Notes:
All failure return values are negative and therefore a test flag < O will trap all CVodeB() failures. In the
case of multiple checkpoints and multiple backward problems, a given call to CVodeB() in CV_ONE_STEP
mode may not advance every problem one step, depending on the relative locations of the current times
reached. But repeated calls will eventually advance all problems to tBout.

In the case of multiple checkpoints and multiple backward problems, a given call to CVodeB() in CV_ONE_STEP mode
may not advance every problem one step, depending on the relative locations of the current times reached. But repeated
calls will eventually advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function CVodeGetB() as follows:

int CVodeGetB (void *cvode_mem, int which, realtype tret, N_Vector yB)
The function CVodeGetB () provides the solution yB of the backward ODE problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — the identifier of the backward problem.
e tret — the time reached by the solver output.
¢ yB — the backward solution at time tret.
Return value:
e CV_SUCCESS - CVodeGetB() was successful.
e CV_MEM_NULL — cvode_mem is NULL.
* CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CV_ILL_INPUT — The parameter which is an invalid identifier.

196 Chapter 5. Using CVODES



User Documentation for CVODES, v6.6.0

Warning: The user must allocate space for yB. To obtain the solution associated with a given backward
problem at some other time within the last integration step, first obtain a pointer to the proper CVODES
memory structure by calling CVodeGetAdjCVodeBmem() and then use it to call CVodeGetDky ().

5.4.2.8 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of the forward
sensitivities by calling the following function:

int CVodeAdjSetNoSensi (void *cvode_mem)
The function CVodeAdjSetNoSensi () instructs CVodeF () not to save checkpointing data for forward sensitiv-
ities anymore.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CV_SUCCESS — The call to CVodeCreateB() was successful.
e CV_MEM_NULL - cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

5.4.2.9 Optional input functions for the backward problem

As for the forward problem there are numerous optional input parameters that control the behavior of the CVODES
solver for the backward problem. CVODES provides functions that can be used to change these optional input param-
eters from their default values which are then described in detail in the remainder of this section, beginning with those
for the main CVODES solver and continuing with those for the linear solver interfaces. Note that the diagonal linear
solver module has no optional inputs. For the most casual use of CVODES, the reader can skip to §5.4.3.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a CVodeSet***B
function can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Main solver optional input functions

The adjoint module in CVODES provides wrappers for most of the optional input functions defined in §5.1.5.10. The
only difference is that the user must specify the identifier which of the backward problem within the list managed by
CVODES.

The optional input functions defined for the backward problem are:

flag = CVodeSetUserDataB(cvode_mem, which, user_dataB);

flag = CVodeSetMaxOrdB(cvode_mem, which, maxordB);

flag = CVodeSetMaxNumStepsB(cvode_mem, which, mxstepsB);
flag = CVodeSetInitStepB(cvode_mem, which, hinB)

flag = CVodeSetMinStepB(cvode_mem, which, hminB);

flag = CVodeSetMaxStepB(cvode_mem, which, hmaxB);

flag = CVodeSetStabLimDetB(cvode_mem, which, stldetB);

flag = CVodeSetConstraintsB(cvode_mem, which, constraintsB);
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Their return value flag (of type int) can have any of the return values of their counterparts, but it can also be CV_-
NO_AD] if CVodeAdjInit () has not been called, or CV_ILL_INPUT if which was an invalid identifier.

Linear solver interface optional input functions

When using matrix-based linear solver modules, the CVLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix or the linear system for the backward problem. The function to evaluate the Jacobian
can be attached through a call to either CVodeSetJacFnB() or CVodeSetJacFnBS (), with the second used when the
backward problem depends on the forward sensitivities.

int CVodeSetJacFnB(void *cvode_mem, int which, CVLsJacFnB jacB)

The function CVodeSetJacFnB() specifies the Jacobian approximation function to be used for the backward
problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* jacB - user-defined Jacobian approximation function.
Return value:
e CVLS_SUCCESS — CVodeSetJacFnB() succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The previous routine CVD1sSetJacFnB is now deprecated.

int CVodeSetJacFnBS (void *cvode_mem, int which, CVLsJacFnBS jacBS)

The function CVodeSetJacFnBS () specifies the Jacobian approximation function to be used for the backward
problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
» which —represents the identifier of the backward problem.
* jacBS — user-defined Jacobian approximation function.

Return value:

e CVLS_SUCCESS — CVodeSetJacFnBS () succeeded.

CVLS_MEM_NULL — cvode_mem was NULL.

CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

198 Chapter 5. Using CVODES



User Documentation for CVODES, v6.6.0

Notes:
The previous routine CVD1sSetJacFnBS is now deprecated.

int CVodeSetLinSysFnB (void *cvode_mem, int which, CVLsLinSysFnB linsysB)

The function CVodeSetLinSysFnB() specifies the linear system approximation function to be used for the back-
ward problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* linsysB — user-defined linear system approximation function.
Return value:
e CVLS_SUCCESS — CVodeSetLinSysFnB() succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
¢ CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

int CVodeSetLinSysFnBS (void *cvode_mem, int which, CVLsLinSysFnBS linsysBS)

The function CVodeSetLinSysFnBS() specifies the linear system approximation function to be used for the
backward problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:
e cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
» which — represents the identifier of the backward problem.
¢ linsysBS — user-defined linear system approximation function.
Return value:
e CVLS_SUCCESS — CVodeSetLinSysFnBS () succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

The function CVodeSetLinearSolutionScalingB () can be used to enable or disable solution scaling when using a
matrix-based linear solver.

int CVodeSetLinearSolutionScalingB(void *cvode_mem, int which, booleantype onoffB)

The function CVodeSetLinearSolutionScalingB() enables or disables scaling the linear system solution to
account for a change in v in the linear system in the backward problem. For more details see §8.2.1.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which — represents the identifier of the backward problem.

* onoffB — flag to enable SUNTRUE or disable SUNFALSE scaling
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Return value:
e CVLS_SUCCESS — The flag value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

e CVLS_ILL_INPUT - The attached linear solver is not matrix-based or the linear multistep method type
is not BDF.

Notes:
By default scaling is enabled with matrix-based linear solvers when using BDF methods.

int CVodeSetJacTimesB(void *cvode_mem, int which, CVLsJacTimesSetupFnB jsetupB, CVLsJacTimesVecFnB
jtvB)

The function CVodeSetJacTimesB() specifies the Jacobian-vector setup and product functions to be used.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ which - the identifier of the backward problem.

* jtsetupB — user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

* jtvB — user-defined Jacobian-vector product function.
Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The previous routine CVSpilsSetJacTimesB is now deprecated.

int CVodeSetJacTimesBS (void *cvode_mem, int which, CVLsJacTimesVecFnBS jtvBS)

The function CVodeSetJacTimesBS () specifies the Jacobian-vector setup and product functions to be used, in
the case where the backward problem depends on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.

* jtsetupBS — user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

* jtvBS — user-defined Jacobian-vector product function.
Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.
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e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The previous routine CVSpilsSetJacTimesBS is now deprecated.

When using the internal difference quotient the user may optionally supply an alternative right-hand side function for
use in the Jacobian-vector product approximation for the backward problem by calling CVodeSetJacTimesRhsFnB().
The alternative right-hand side function should compute a suitable (and differentiable) approximation to the right-hand
side function provided to CVodeInitB() or CVodeInitBS(). For example, as done in [27] for a forward integration
without sensitivity analysis, the alternative function may use lagged values when evaluating a nonlinearity in the right-
hand side to avoid differencing a potentially non-differentiable factor.

int CVodeSetJacTimesRhsFnB(void *cvode_mem, int which, CVRAsFn jtimesRhsFn)

The function CVodeSetJacTimesRhsFn () specifies an alternative ODE right-hand side function for use in the
internal Jacobian-vector product difference quotient approximation.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e which - the identifier of the backward problem.

e jtimesRhsFn — is the CC function which computes the alternative ODE right-hand side function to
use in Jacobian-vector product difference quotient approximations.

Return value:

e CVLS_SUCCESS — The optional value has been successfully set.

CVLS_MEM_NULL — The cvode_mem pointer is NULL.

CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_ILL_INPUT — The parameter which represented an invalid identifier or the internal difference
quotient approximation is disabled.

Notes:
The default is to use the right-hand side function provided to CVodeInit () in the internal difference quo-
tient. If the input right-hand side function is NULL, the default is used. This function must be called after
the CVLS linear solver interface has been initialized through a call to CVodeSetLinearSolverB().

int CVodeSetPreconditionerB(void *cvode_mem, int which, CVLPrecSetupFnB psetupB, CVLsPrecSolveFnB

psolveB)
The function CVodeSetPrecSolveFnB() specifies the preconditioner setup and solve functions for the backward
integration.
Arguments:

e cvode_mem — pointer to the CVODES memory block.
* which — the identifier of the backward problem.
* psetupB — user-defined preconditioner setup function.
* psolveB — user-defined preconditioner solve function.
Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
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e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The psetupB argument may be NULL if no setup operation is involved in the preconditioner. The previous
routine CVSpilsSetPrecSolveFnB is now deprecated.

int CVodeSetPreconditionerBS (void *cvode_mem, int which, CVLsPrecSetupFnBS psetupBS,
CVLsPrecSolveFnBS psolveBS)

The function CVodeSetPrecSolveFnBS() specifies the preconditioner setup and solve functions for the back-
ward integration, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which — the identifier of the backward problem.
* psetupBS — user-defined preconditioner setup function.
* psolveBS — user-defined preconditioner solve function.
Return value:

e CVLS_SUCCESS — The optional value has been successfully set.

CVLS_MEM_NULL — cvode_mem was NULL.

CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The psetupBS argument may be NULL if no setup operation is involved in the preconditioner. The previous
routine CVSpilsSetPrecSolveFnBS is now deprecated.

int CVodeSetEpsLinB(void *cvode_mem, int which, realtype eplifacB)

The function CVodeSetEpsLinB() specifies the factor by which the Krylov linear solver’s convergence test
constant is reduced from the nonlinear iteration test constant. This routine can be used in both the cases where
the backward problem does and does not depend on the forward sensitvities.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which - the identifier of the backward problem.

* eplifacB - value of the convergence test constant reduction factor > 0.0.
Return value:

* CVLS_SUCCESS — The optional value has been successfully set.

CVLS_MEM_NULL — cvode_mem was NULL.

CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_ILL_INPUT - The parameter which represented an invalid identifier, or eplifacB was negative.

Notes:
The default value is 0.05. Passing a value eplifacB = 0.0 also indicates using the default value. The
previous routine CVSpilsSetEpsLinB is now deprecated.
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int CVodeSetLSNormFactorB (void *cvode_mem, int which, realtype nrmfac)

The function CVodeSetLSNormFactor () specifies the factor to use when converting from the integrator toler-
ance (WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 =
fac * tol_WRNMS. This routine can be used in both the cases wherethe backward problem does and does not
depend on the forward sensitvities.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.

* nrmfac — the norm conversion factor. If nrmfac is: > 0 then the provided value is used. = 0 then the
conversion factor is computed using the vector lengthi.e., ntmfac = N_VGetLength(y) default. < 0
then the conversion factor is computed using the vector dot product nrmfac = N_VDotProd(v,v)
where all the entries of v are one.

Return value:
* CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — cvode_mem was NULL.

CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

CVLS_NO_ADJ] — The function CVodeAdjInit () has not been previously called.

CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call
to CVodeSetLinearSolverB(). Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0
(CVODES v5.0.0) the value of nrmfac was computed using the vector dot product i.e., the nrmfac <
0 case.

5.4.2.10 Optional output functions for the backward problem

The user of the adjoint module in CVODES has access to any of the optional output functions described in §5.1.5.12,
both for the main solver and for the linear solver modules. The first argument of these CVodeGet* and CVode*Get*
functions is the pointer to the CVODES memory block for the backward problem. In order to call any of these functions,
the user must first call the following function to obtain this pointer.

void *CVodeGetAdjCVodeBmem (void *cvode_mem, int which)

The function CVodeGetAdjCVodeBmem() returns a pointer to the CVODES memory block for the backward
problem.

Arguments:
* cvode_mem — pointer to the CVODES memory block created by CVodeCreate ().
* which — the identifier of the backward problem.

Return value:

e void

Warning: The user should not modify cvode_memB in any way. Optional output calls should pass cvode_-
memB as the first argument; for example, to get the number of integration steps: flag = CVodeGetNum-
Steps(cvodes_memB, nsteps).
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To get values of the forward solution during a backward integration, use the following function. The input value of
t would typically be equal to that at which the backward solution has just been obtained with CVodeGetB(). In any
case, it must be within the last checkpoint interval used by CVodeB().

int CVodeGetAdjY (void *cvode_mem, realtype t, N_Vector y)

The function CVodeGetAdjY () returns the interpolated value of the forward solution y during a backward inte-
gration.

Arguments:
e cvode_mem — pointer to the CVODES memory block created by CVodeCreate().
* t — value of the independent variable at which y is desired input.
* y — forward solution y(t).
Return value:
e CV_SUCCESS — CVodeGetAdjY () was successful.
e CV_MEM_NULL — cvode_mem was NULL.

e CV_GETY_BADT — The value of t was outside the current checkpoint interval.

Warning: The user must allocate space for y.

int CVodeGetAdjCheckPointsInfo (void *cvode_mem, CVadjCheckPointRec *ckpnt)

The function CVodeGetAdjCheckPointsInfo() loads an array of ncheck+1 records of type CVadjCheck-
PointRec. The user must allocate space for the array ckpnt.

Arguments:
* cvode_mem — pointer to the CVODES memory block created by CVodeCreate ().
» ckpnt — array of ncheck+1 checkpoint records.

Return value:
* void

Notes:
The members of each record ckpnt[i] are:

e ckpnt[i].my_addr (void *) - address of current checkpoint in cvode_mem->cv_adj_mem
e ckpnt[i].next_addr (void *)- address of next checkpoint

e ckpnt[i].tO (realtype) — start of checkpoint interval

e ckpnt[i].t1l (realtype) — end of checkpoint interval

e ckpnt[i].nstep (long int) — step counter at ckeckpoint t®

e ckpnt[i].order (int) — method order at checkpoint t®

e ckpnt[i].step (realtype) — step size at checkpoint t0
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5.4.2.11 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on the forward
sensitivities. Accordingly, either CVodeQuadInitB() or CVodeQuadInitBS() should be used to allocate internal
memory and to initialize backward quadratures. For any other operation (extraction, optional input/output, reinitializa-
tion, deallocation), the same function is callable regardless of whether or not the quadratures are sensitivity-dependent.

Backward quadrature initialization functions

The function CVodeQuadInitB() initializes and allocates memory for the backward integration of quadrature equa-
tions that do not depend on forward sensitivities. It has the following form:

int CVodeQuadInitB(void *cvode_mem, int which, CVQuadRhsFnB rhsQB, N_Vector yQBO0)

The function CVodeQuadInitB() provides required problem specifications, allocates internal memory, and ini-
tializes backward quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.
¢ rhsQB - is the function which computes fQB.
* yQBO — is the value of the quadrature variables at tB@.
Return value:
* CV_SUCCESS — The call to CVodeQuadInitB() was successful.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CV_MEM_FAIL — A memory allocation request has failed.

CV_ILL_INPUT — The parameter which is an invalid identifier.

The function CVodeQuadInitBS() initializes and allocates memory for the backward integration of quadrature equa-
tions that depends on the forward sensitivities.

int CVodeQuadInitBS (void *cvode_mem, int which, CVQuadRhsFnBS rhsQBS, N_Vector yQBS0)

The function CVodeQuadInitBS() provides required problem specifications, allocates internal memory, and
initializes backward quadrature integration.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which — the identifier of the backward problem.

¢ rhsQBS - is the function which computes fQBS.

* yQBSO —is the value of the sensitivity-dependent quadrature variables at tBO.
Return value:

e CV_SUCCESS — The call to CVodeQuadInitBS () was successful.

e CV_MEM_NULL - cvode_mem was NULL.

¢ CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_MEM_FAIL — A memory allocation request has failed.
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CV_ILL_INPUT — The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling the following func-
tion. Before calling CVodeQuadReInitB() for a new backward problem, call any desired solution extraction functions
CVodeGet** associated with the previous backward problem.

int CVodeQuadReInitB(void *cvode_mem, int which, N_Vector yQBO)
The function CVodeQuadReInitB() re-initializes the backward quadrature integration.

Arguments:

cvode_mem — pointer to the CVODES memory block.
which — the identifier of the backward problem.

yQBO — is the value of the quadrature variables at tB@.

Return value:

Notes:

CV_SUCCESS - The call to CVodeQuadReInitB() was successful.
CV_MEM_NULL — cvode_mem was NULL.

CV_NO_AD] — The function CVodeAdjInit () has not been previously called.
CV_MEM_FAIL — A memory allocation request has failed.

CV_NO_QUAD — Quadrature integration was not activated through a previous call to CVodeQua-
dInitBQ).

CV_ILL_INPUT — The parameter which is an invalid identifier.

The function CVodeQuadReInitB() can be called after a call to either CVodeQuadInitB() or CVode-
QuadInitBS().

Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of CVodeB (), CVODES provides a wrapper for
the function CVodeGetQuad().

int CVodeGetQuadB (void *cvode_mem, int which, realtype *tret, N_Vector yQB)

The function CVodeGetQuadB () returns the quadrature solution vector after a successful return from CVodeB().

Arguments:

cvode_mem — pointer to the CVODES memory.
tret — the time reached by the solver output.

yQB — the computed quadrature vector.

Return value:

CV_SUCCESS — CVodeGetQuadB () was successful.

CV_MEM_NULL — cvode_mem is NULL.

CV_NO_AD] — The function CVodeAdjInit () has not been previously called.
CV_NO_QUAD — Quadrature integration was not initialized.

CV_BAD_DKY — yQB was NULL.

CV_ILL_INPUT — The parameter which is an invalid identifier.
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Warning: The user must allocate space for yQB. To obtain the quadratures associated with a given backward
problem at some other time within the last integration step, first obtain a pointer to the proper CVODES
memory structure by calling CVodeGetAdjCVodeBmem() and then use it to call CVodeGetQuadDky ().

Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from their default values
through calls to one of the following functions which are wrappers for the corresponding optional input functions
defined in §5.2.4. The user must specify the identifier which of the backward problem for which the optional values
are specified.

flag CVodeSetQuadErrConB(cvode_mem, which, errconQ);
flag = CVodeQuadSStolerancesB(cvode_mem, which, reltolQ, abstolQ);
flag = CVodeQuadSVtolerancesB(cvode_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it can also be CV_NO_-
AD] if the function CVodeAdjInit () has not been previously called or CV_ILL_INPUT if the parameter which was
an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by calling the corresponding
CVodeGetQuad* functions (see §5.2.5). A pointer cvode_memB to the CVODES memory block for the backward
problem, required as the first argument of these functions, can be obtained through a call to the functions CVodeGe-
tAdjCVodeBmem().

5.4.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required ODE right-hand side function and any optional functions for the forward problem, when using
the adjoint sensitivity module in CVODES, the user must supply one function defining the backward problem ODE
and, optionally, functions to supply Jacobian-related information and one or two functions that define the preconditioner
(if an iterative SUNLinearSolver module is selected) for the backward problem. Type definitions for all these user-
supplied functions are given below.

5.4.3.1 ODE right-hand side for the backward problem
If the backward problem does not depend on the forward sensitivities, the user must provide a rhsB function of type
CVRhsFnB defined as follows:

typedef int (*CVRhsSFnB)(realtype t, N_Vector y, N_Vector yB, N_Vector yBdot, void *user_dataB)

This function evaluates the right-hand side fg(¢,y,ys) of the backward problem ODE system. This could be
either (2.20) or (2.23).

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yB —is the current value of the backward dependent variable vector.
* yBdot - is the output vector containing the right-hand side fp of the backward ODE problem.

* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB().
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Return value:
A CVRhsFnB should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVodeB () returns CV_RHSFUNC_FAIL).

Notes:

Allocation of memory for yBdot is handled within CVODES. The y, yB, and yBdot arguments are all of
type N_Vector, but yB and yBdot typically have different internal representations from y. It is the user’s
responsibility to access the vector data consistently (including the use of the correct accessor macros from
each N_Vector implementation). For the sake of computational efficiency, the vector functions in the two
N_Vector implementations provided with CVODES do not perform any consistency checks with respect to
their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s rhsB function every
time it is called and can be the same as the user_data pointer used for the forward problem.

Warning: Before calling the user’s rhsB function, CVODES needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers
an unrecoverable failure in the right-hand side function which will halt the integration and CVodeB() will
return CV_RHSFUNC_FAIL.

5.4.3.2 ODE right-hand side for the backward problem depending on the forward sensitivities

If the backward problem does depend on the forward sensitivities, the user must provide a rhsBS function of type
CVRhsFnBS defined as follows:

typedef int (*CVRhsSFnBS)(realtype t, N_Vector y, N_Vector *yS, N_Vector yB, N_Vector yBdot, void *user_dataB)

This function evaluates the right-hand side f5(t, y, yp, s) of the backward problem ODE system. This could be
either (2.20) or (2.23).

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yS —a pointer to an array of Ns vectors containing the sensitvities of the forward solution.
* yB —is the current value of the backward dependent variable vector.
* yBdot — is the output vector containing the right-hand side.
* user_dataB — is a pointer to user data, same as passed to CVodeSetUserDataB().

Return value:
A CVRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVodeB () returns CV_RHSFUNC_FAIL).

Notes:

Allocation of memory for gBdot is handled within CVODES. The y, yB, and yBdot arguments are all of
type N_Vector, but yB and yBdot typically have different internal representations from y. Likewise for
each yS[i]. It is the user’s responsibility to access the vector data consistently (including the use of the
correct accessor macros from each N_Vector implementation). For the sake of computational efficiency,
the vector functions in the two N_Vector implementations provided with CVODES do not perform any
consistency checks with respect to their N_Vector arguments (see §6). The user_dataB pointer is passed
to the user’s rhsBS function every time it is called and can be the same as the user_data pointer used for
the forward problem.
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Warning: Before calling the user’s rhsBS function, CVODES needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers
an unrecoverable failure in the right-hand side function which will halt the integration and CVodeB() will
return CV_RHSFUNC_FATL.

5.4.3.3 Quadrature right-hand side for the backward problem

The user must provide an £QB function of type CVQuadRhsFnB defined by
typedef int (*CVQuadRhsFnB)(realtype t, N_Vector y, N_Vector yB, N_Vector qBdot, void *user_dataB)

This function computes the quadrature equation right-hand side for the backward problem.
Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yB —is the current value of the backward dependent variable vector.
* gBdot —is the output vector containing the right-hand side £QB of the backward quadrature equations.
* user_dataB — is a pointer to user data, same as passed to CVodeSetUserDataB().

Return value:
A CVQuadRhsFnB should return O if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CVodeB () returns CV_QRHSFUNC_FAIL).

Notes:

Allocation of memory for rhsvalBQ is handled within CVODES. The y, yB, and gBdot arguments are all
of type N_Vector, but they typically do not all have the same representation. It is the user’s responsibility
to access the vector data consistently (including the use of the correct accessor macros from each N_-
Vector implementation). For the sake of computational efficiency, the vector functions in the two N_-
Vector implementations provided with CVODES do not perform any consistency checks with repsect to
their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s £QB function every
time it is called and can be the same as the user_data pointer used for the forward problem.

Warning: Before calling the user’s £QB function, CVODES needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an
unrecoverable failure in the quadrature right-hand side function which will halt the integration and CVodeB ()
will return CV_QRHSFUNC_FAIL.

5.4.3.4 Sensitivity-dependent quadrature right-hand side for the backward problem

The user must provide an £QBS function of type CVQuadRhsFnBS defined by

typedef int (*CVQuadRhsFnBS)(realtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector qBdot, void
*user_dataB)

This function computes the quadrature equation right-hand side for the backward problem.
Arguments:
* t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.
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* yS —a pointer to an array of Ns vectors continaing the sensitvities of the forward solution.

* yB —is the current value of the backward dependent variable vector.

* gBdot —is the output vector containing the right-hand side £QBS of the backward quadrature equations.
* user_dataB - is a pointer to user data, same as passed to CVodeSetUserDataB().

Return value:
A CVQuadRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CVodeB () returns CV_QRHSFUNC_FAIL).

Notes:

Allocation of memory for gBdot is handled within CVODES. The y, yS, and qBdot arguments are all
of type N_Vector, but they typically do not all have the same internal representation. Likewise for each
yS[i]. Itis the user’s responsibility to access the vector data consistently (including the use of the correct
accessor macros from each N_Vector implementation). For the sake of computational efficiency, the vector
functions in the two N_Vector implementations provided with CVODES do not perform any consistency
checks with repsect to their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s
£QBS function every time it is called and can be the same as the user_data pointer used for the forward
problem.

Warning: Before calling the user’s £QBS function, CVODES needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an
unrecoverable failure in the quadrature right-hand side function which will halt the integration and CVodeB ()
will return CV_QRHSFUNC_FAIL.

5.4.3.5 Jacobian construction for the backward problem (matrix-based linear solvers)

If a matrix-based linear solver module is used for the backward problem (i.e., a non-NULL SUNMatrix object was
supplied to CVodeSetLinearSolverB()), the user may provide a function of type CVLsJacFnB or CVLsJacFnBS,
defined as follows:

typedef int (*CVLsJacFnB)(realtype t, N_Vector y, N_Vector yB, N_Vector fyB, SUNMatrix JacB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)

This function computes the Jacobian of the backward problem (or an approximation to it).
Arguments:

e t —is the current value of the independent variable.

e y —is the current value of the forward solution vector.

* yB —is the current value of the backward dependent variable vector.

» fyB —is the current value of the backward right-hand side function f5.

* JacB - is the output approximate Jacobian matrix.

* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB().

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsJacFnB function as temporary storage or work space.

Return value:
A CVLsJacFnB should return O if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a negative
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value if it failed unrecoverably (in which case the integration is halted, CVodeB () returns CV_LSETUP_FAIL
and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:

A user-supplied Jacobian function must load the matrix JacB with an approximation to the Jacobian matrix
at the point (t, y, yB), where y is the solution of the original IVP at time tt, and yB is the solution of
the backward problem at the same time. Information regarding the structure of the specific SUNMatrix
structure (e.g. number of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMatrix interface functions (see §7 for details). With direct linear solvers (i.e.,
linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix J(¢,y) is zeroed out prior to
calling the user-supplied Jacobian function so only nonzero elements need to be loaded into JacB.

Warning: Before calling the user’s CVLsJacFnB, CVODES needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers
an unrecoverable failure in the Jacobian function which will halt the integration (CVodeB() returns CV_-
LSETUP_FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR). The previous function type CVD1-
sJacFnB is identical to CVLsJacFnB, and may still be used for backward-compatibility. However, this will
be deprecated in future releases, so we recommend that users transition to the new function type name soon.

typedef int (*CVLsJacFnBS)(realtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector fyB, SUNMatrix JacB,
void *user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)

This function computes the Jacobian of the backward problem (or an approximation to it), in the case where the
backward problem depends on the forward sensitivities.

Arguments:
¢ t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
e yS —a pointer to an array of Ns vectors containing the sensitvities of the forward solution.
* yB —is the current value of the backward dependent variable vector.
» fyB —is the current value of the backward right-hand side function f5.
¢ JacB - is the output approximate Jacobian matrix.
* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB().

* tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsLinSysFnBS function as temporary storage or work space.

Return value:
A CVLsJacFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct, while CVLS sets 1ast_flag to CVLS_JACFUNC_RECVR), or a negative
value if it failed unrecoverably (in which case the integration is halted, CVodeB () returns CV_LSETUP_FAIL
and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:

A user-supplied Jacobian function must load the matrix JacB with an approximation to the Jacobian matrix
at the point (t, y, yS, yB), where y is the solution of the original IVP at time tt, yS is the vector of for-
ward sensitivities at time tt, and yB is the solution of the backward problem at the same time. Information
regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower bandwidth,
sparsity type) may be obtained through using the implementation-specific SUNMatrix interface functions
(see §7). With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT, the Jacobian
matrix J(t,y) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements
need to be loaded into JacB.

5.4. Using CVODES for Adjoint Sensitivity Analysis 211



User Documentation for CVODES, v6.6.0

Warning: Before calling the user’s CVLsJacFnBS, CVODES needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers
an unrecoverable failure in the Jacobian function which will halt the integration (CVodeB() returns CV_-
LSETUP_FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR). The previous function type CVD1-
sJacFnBS is identical to CVLsJacFnBS, and may still be used for backward-compatibility. However, this
will be deprecated in future releases, so we recommend that users transition to the new function type name
soon.

5.4.3.6 Linear system construction for the backward problem (matrix-based linear solvers)

With matrix-based linear solver modules, as an alternative to optionally supplying a function for evaluating the Ja-
cobian of the ODE right-hand side function, the user may optionally supply a function of type CVLsLinSysFnB or
CVLsLinSysFnBS for evaluating the linear system, Mp = I — ypJp (or an approximation of it) for the backward
problem.

typedef int (*CVLsLinSysFnB)(realtype t, N_Vector 'y, N_Vector yB, N_Vector tyB, SUNMatrix AB, booleantype
jokB, booleantype *jcurB, realtype gammaB, void *user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector
tmp3B);

This function computes the linear system of the backward problem (or an approximation to it).
Arguments:

* t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.

* yB —is the current value of the backward dependent variable vector.

» fyB —is the current value of the backward right-hand side function fg.

* AB - is the output approximate linear system matrix.

* jokB — is an input flag indicating whether Jacobian-related data needs to be recomputed (jokB =
SUNFALSE) or informtion saved from a previous information can be safely used (jokB = SUNTRUE).

¢ jcurB - is an output flag which must be set to SUNTRUE if Jacobian-related data was recomputed or
SUNFALSE otherwise.

* gammaB — is the scalar appearing in the matrix Mp = I — ygJp.
* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB().

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsLinSysFnB function as temporary storage or work space.

Return value:
A CVLsLinSysFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a nega-
tive value if it failed unrecoverably (in which case the integration is halted, CVodeB () returns CV_LSETUP_-
FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:
A user-supplied linear system function must load the matrix AB with an approximation to the linear system
matrix at the point (t, y, yB), where y is the solution of the original IVP at time tt, and yB is the
solution of the backward problem at the same time.
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Warning: Before calling the user’s CVLsLinSysFnB, CVODES needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers
an unrecoverable failure in the linear system function which will halt the integration (CVodeB () returns CV_-
LSETUP_FAIL and CVLS sets 1last_flag to CVLS_JACFUNC_UNRECVR).

typedef int (*CVLSLinSysFnBS)(realtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector tyB, SUNMatrix AB,
booleantype jokB, booleantype *jcurB, realtype gammaB, void *user_dataB, N_Vector tmp1B, N_Vector tmp2B,
N_Vector tmp3B);
This function computes the linear system of the backward problem (or an approximation to it), in the case where
the backward problem depends on the forward sensitivities.

Arguments:

t — is the current value of the independent variable.

y —is the current value of the forward solution vector.

yS — a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
yB — is the current value of the backward dependent variable vector.

fyB — is the current value of the backward right-hand side function fg.

AB — is the output approximate linear system matrix.

jokB — is an input flag indicating whether Jacobian-related data needs to be recomputed (jokB =
SUNFALSE) or informtion saved from a previous information can be safely used (jokB = SUNTRUE).

jcurB — is an output flag which must be set to SUNTRUE if Jacobian-related data was recomputed or
SUNFALSE otherwise.

gammaB — is the scalar appearing in the matrix
user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB().

tmp1B, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsLinSysFnBS function as temporary storage or work space.

Return value:
A CVLsLinSysFnBS should return 0 if successful, a positive value if a recoverable error occurred (in
which case CVODES will attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR),
or a negative value if it failed unrecoverably (in which case the integration is halted, CVodeB() returns
CV_LSETUP_FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:

A user-supplied linear system function must load the matrix AB with an approximation to the linear system
matrix at the point (t, y, yS, yB), where y is the solution of the original IVP at time tt, yS is the vector
of forward sensitivities at time t, and yB is the solution of the backward problem at the same time.

Warning: Before calling the user’s CVLsLinSysFnBS, CVODES needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers
an unrecoverable failure in the linear system function which will halt the integration (CVodeB () returns CV_-
LSETUP_FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).
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5.4.3.7 Jacobian-vector product for the backward problem (matrix-free linear solvers)

If a matrix-free linear solver is to be used for the backward problem (i.e., a NULL-valued SUNMatrix was supplied
to CVodeSetLinearSolverB() in the steps described in §5.4.1, the user may provide a function of type CVLsJac-
TimesVecFnB or CVLsJacTimesVecFnBS in the following form, to compute matrix-vector products Jv. If such a
function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*CVLsJacTimesVecFnB)(N_Vector vB, N_Vector JVB, realtype t, N_Vector 'y, N_Vector yB, N_Vector
fyB, void *jac_dataB, N_Vector tmpB);

This function computes the action of the Jacobian JB for the backward problem on a given vector vB.

Arguments:

vB — is the vector by which the Jacobian must be multiplied to the right.

JvB — is the computed output vector JB*vB.

t — is the current value of the independent variable.

y — is the current value of the forward solution vector.

yB — is the current value of the backward dependent variable vector.

fyB — is the current value of the backward right-hand side function f5.
user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB().

tmpB — is a pointer to memory allocated for a variable of type N_Vector which can be used by CVL-
sJacTimesVecFnB as temporary storage or work space.

Return value:
The return value of a function of type CVLsJacTimesVecFnB should be if successful or nonzero if an error
was encountered, in which case the integration is halted.

Notes:

A user-supplied Jacobian-vector product function must load the vector JvB with the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type CVLsJacTimesVecFn. If the backward problem is
the adjoint of § = f(¢,y), then this function is to compute —(09f/0y;)Tvp. The previous function type
CVSpilsJacTimesVecFnB is deprecated.

typedef int (*CVLsJacTimesVecFnBS)(N_Vector vB, N_Vector JVB, realtype t, N_Vector y, N_Vector *yS, N_Vector
yB, N_Vector fyB, void *user_dataB, N_Vector tmpB);

This function computes the action of the Jacobian JB for the backward problem on a given vector vB, in the case
where the backward problem depends on the forward sensitivities.

Arguments:

vB — is the vector by which the Jacobian must be multiplied to the right.
JvB — is the computed output vector JB*vB.

t — is the current value of the independent variable.

y — is the current value of the forward solution vector.

yS —is a pointer to an array containing the forward sensitivity vectors.
yB — is the current value of the backward dependent variable vector.
fyB — is the current value of the backward right-hand side function fg.

user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB().
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* tmpB — is a pointer to memory allocated for a variable of type N_Vector which can be used by CVL-
sJacTimesVecFnB as temporary storage or work space.

Return value:
The return value of a function of type CVLsJacTimesVecFnBS should be if successful or nonzero if an
error was encountered, in which case the integration is halted.

Notes:
A user-supplied Jacobian-vector product function must load the vector JvB with the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type CVLsJacTimesVecFn. The previous function type
CVSpilsJacTimesVecFnBS is deprecated.

5.4.3.8 Jacobian-vector product setup for the backward problem (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVLsJacTimesSetupFnB or CVLsJacTimesSetupFnBS,
defined as follows:

typedef int (*CVLsJacTimesSetupFnB)(realtype t, N_Vector'y, N_Vector yB, N_Vector fyB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem.

Arguments:
* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* yB —is the current value of the backward dependent variable vector.
e fyB — is the current value of the right-hand-side for the backward problem.
* user_dataB — is a pointer to user data CVodeSetUserDataB().

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:

Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual
user function with the same (t,y, yB) arguments. Thus, the setup function can use any auxiliary data
that is computed and saved during the evaluation of the right-hand-side function. If the user’s CVLsJac-
TimesVecFnB function uses difference quotient approximations, it may need to access quantities not in
the call list. These include the current stepsize, the error weights, etc. To obtain these, the user will need
to add a pointer to cvode_mem to user_dataB and then use the CVGet* functions described in §5.1.5.12.
The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h. The previous func-
tion type CVSpilsJacTimesSetupFnB is identical to CVLsJacTimesSetupFnB, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new function type name soon.

typedef int (*CVLsJacTimesSetupFnBS)(realtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector fyB, void
*user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem, in the case that the backward problem depends on the forward sensitivities.

Arguments:
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* t —is the current value of the independent variable.

* y —is the current value of the dependent variable vector, y(t).

* yS —a pointer to an array of Ns vectors containing the sensitvities of the forward solution.
* yB —is the current value of the backward dependent variable vector.

e fyB —is the current value of the right-hand-side function for the backward problem.

* user_dataB —is a pointer to the same user data provided to CVodeSetUserDataB().

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:

Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual user
function with the same (t,y, yS, yB) arguments. Thus, the setup function can use any auxiliary data
that is computed and saved during the evaluation of the right-hand-side function. If the user’s CVLsJac-
TimesVecFnBS function uses difference quotient approximations, it may need to access quantities not in
the call list. These include the current stepsize, the error weights, etc. To obtain these, the user will need to
add a pointer to cvode_mem to user_dataB and then use the CVGet* functions described in §5.1.5.12. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h. The previous function
type CVSpilsJacTimesSetupFnBS is identical to CVLsJacTimesSetupFnBS, and may still be used for
backward