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Chapter 1

Introduction

KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL gebraic equation
Solvers [31]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities.

KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov solver technology. A fixed point iter-
ation is also included with the release of KINSOL v.2.8.0 and higher.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In particular, the NKSOL
package, written at LLNL, was the first Newton-Krylov solver package written for solution of systems arising in the
solution of partial differential equations [16]. This Fortran code made use of Newton’s method to solve the discrete
nonlinear systems and applied a preconditioned Krylov linear solver for solution of the Jacobian system at each non-
linear iteration. The key to the Newton-Krylov method was that the matrix-vector multiplies required by the Krylov
method could effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required for the solver as
a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to distributed memory
parallel machines. Both Newton and Krylov methods are easily implemented in parallel, and this effort gave rise to the
KINSOL package. KINSOL is similar to NKSOL in functionality, except that it provides for more options in the choice
of linear system methods and tolerances, and has a more modular design to provide flexibility for future enhancements.

At present, KINSOL may utilize a variety of Krylov methods provided in SUNDIALS. These methods include the GM-
RES (Generalized Minimal RESidual) [41], FGMRES (Flexible Generalized Minimum RESidual) [40], Bi-CGStab
(Bi-Conjugate Gradient Stabilized) [45], TFQMR (Transpose-Free Quasi-Minimal Residual) [27], and PCG (Precon-
ditioned Conjugate Gradient) [30] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow for a user-supplied
preconditioner, and, for most problems, preconditioning is essential for an efficient solution. For very large nonlinear
algebraic systems, the Krylov methods are preferable over direct linear solver methods, and are often the only feasible
choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice. However, users
are encouraged to compare all options, especially if encountering convergence failures with GMRES. Bi-CGStab and
TFQMR have an advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in that it is designed
to support preconditioners that vary between iterations (e.g., iterative methods). PCG exhibits rapid convergence and
minimal workspace vectors, but only works for symmetric linear systems.
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For the sake of completeness in functionality, direct linear system solvers are included in KINSOL. These include
methods for both dense and banded linear systems, with Jacobians that are either user-supplied or generated internally
by difference quotients. KINSOL also includes interfaces to sparse direct solvers, including KLU [3, 19] and the
threaded sparse direct solver, SuperLU_MT [8, 21, 35], among others (see Chapter §8 for further details).

In the process of translating NKSOL into C, the overall KINSOL organization has been changed considerably. One key
feature of the KINSOL organization is that a separate module devoted to vector operations was created. This module
facilitated extension to multiprosessor environments with minimal impact on the rest of the solver. The vector module
design is shared across the SUNDIALS suite. This N_Vector module is written in terms of abstract vector operations
with the actual routines attached by a particular implementation (such as serial or parallel) of N_Vector. This abstrac-
tion allows writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which
can be user-supplied), as well as allowing more than one N_Vector module linked into an executable file. SUNDIALS
(and thus KINSOL) is supplied with serial, MPI-parallel, OpenMP and Pthreads thread-parallel N_Vector implemen-
tations, as well as multiple N_Vector implementations designed to leverage GPU architectures (see Chapter §6 for
further details).

There are several motivations for choosing the C language for KINSOL. First, a general movement away from Fortran
and toward C in scientific computing was apparent. Second, the pointer, structure, and dynamic memory allocation
features in C are extremely useful in software of this complexity, with the great variety of method options offered.
Finally, we prefer C over C++ for KINSOL because of the wider availability of C compilers, the potentially greater
efficiency of C, and the greater ease of interfacing the solver to applications written in Fortran.

1.2 Changes from previous versions

1.2.1 Changes in v6.6.0

Updated the F2003 utility routines SUNDITALSFileOpen() and SUNDIALSFileClose () to support user specification
of stdout and stderr strings for the output file names.

1.2.2 Changes in v6.5.1

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

1.2.3 Changes in v6.5.0

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats () function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added the functions KINGetJac () and KINGetJacNumIters () to assistin debugging simulations utilizing a matrix-
based linear solver.

Added support for the SYCL backend with RAJA 2022.x.y.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsyc1 flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.
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1.2.4 Changes in v6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.2.5 Changes in v6.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections SUNMatrix.Ginkgo and §8.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §6.14, §7.10, and §8.19 for more information.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

1.2.6 Changes in v6.3.0

Added the function KINGetUserData () to retrieve the user data pointer provided to KINSetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.2.7 Changes in v6.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated KINSetInfoFile(), KINSetDebugFile(), SUNNonlinSolSetPrintLevel_Newton(), SUN-
NonlinSolSetInfoFile_Newton(), SUNNonlinSolSetPrintLevel_FixedPoint(), SUNNonlinSolSet-
InfoFile_FixedPoint(), SUNLinSolSetInfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLin-
SolSetInfoFile_SPGMR(), SUNLinSolSetPrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(),
SUNLinSolSetPrintLevel SPFGMR(), SUNLinSolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_SPT-
FQMR(), SUNLinSolSetInfoFile_SPBCGS(), SUNLinSolSetPrintLevel_SPBCGS() it is recommended to use
the SUNLogger API instead. The SUNLinSolSetInfoFile_** and SUNNonlinSolSetInfoFile_%* family of
functions are now enabled by setting the CMake option SUNDIALS_LOGGING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.
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Added the function KINPrintAllStats () to output all of the nonlinear solver, linear solver, and other statistics in one
call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value output files.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the ManyVector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

1.2.8 Changes in v6.1.1

Fixed exported SUNDIALSConfig.cmake.

1.2.9 Changes in v6.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.2.10 Changes in v6.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

4 Chapter 1. Introduction
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> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl () has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials: :hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewl/ithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

1.2. Changes from previous versions 5
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KINSOL

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()

SUNKLU SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1 SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1 SUNLinSol_SPBCGSSetMaxl1 ()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()

SUNSPFGMRSetMaxRestarts
SUNSPGMR

SUNLinSol_SPFGMRSetMaxRestarts()
SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType ()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUNMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

New orthogonalization methods were added for use within the KINSOL Anderson acceleration routine. See §2.13 and
KINSetOrthAA() for more details.

The KINSOL Fortran 77 interface has been removed. See §4.5 and the F2003 example programs for more details using
the SUNDIALS Fortran 2003 module interfaces.

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

6 Chapter 1. Introduction
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Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS
CLASSICAL_GS
ATimesFn
PSetupFn
PSolveFn
DlsMat
DENSE_COL
DENSE_ELEM
BAND_COL
BAND_COL_ELEM
BAND_ELEM

SUN_MODIFIED_GS
SUN_CLASSICAL_GS
SUNATimesFn
SUNPSetupFn
SUNPSolveFn
SUND1sMat
SUNDLS_DENSE_COL
SUNDLS_DENSE_ELEM
SUNDLS_BAND_COL
SUNDLS_BAND_COL_ELEM
SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):

Deprecated Name New Name
KINDlsSetLinearSolver KINSetLinearSolver
KINDlsSetJacFn KINSetJacFn
KIND1sGetWorkSpace KINGetLinWorkSpace
KIND1sGetNumJacEvals KINGetNumJacEvals
KIND1sGetNumFuncEvals KINGetNumLinFuncEvals
KINDlsGetLastFlag KINGetLastLinFlag
KINDlsGetReturnFlagName KINGetLinReturnFlagName
KINSpilsSetLinearSolver KINSetLinearSolver
KINSpilsSetPreconditioner KINSetPreconditioner
KINSpilsSetJacTimesVecFn KINSetJacTimesVecFn
KINSpilsGetWorkSpace KINGetLinWorkSpace
KINSpilsGetNumPrecEvals KINGetNumPrecEvals
KINSpilsGetNumPrecSolves KINGetNumPrecSolves
KINSpilsGetNumLinIters KINGetNumLinIters
KINSpilsGetNumConvFails KINGetNumLinConvFails
KINSpilsGetNum]timesEvals KINGetNumJtimesEvals
KINSpilsGetNumFuncEvals KINGetNumLinFuncEvals
KINSpilsGetLastFlag KINGetLastLinFlag
KINSpilsGetReturnFlagName KINGetLinReturnFlagName
DenseGETRF SUND1sMat_DenseGETRF
DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name

New Name

DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1sMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUNDlsMat_denseScale
denseAddIdentity SUND1sMat_denseAddIdentity
DenseMatvec SUND1sMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF
BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS
BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1sMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS

QRfact SUNQRFact

QRsol SUNQRsol

DlsMat_NewDenseMat
DlsMat_NewBandMat

SUNDlsMat_NewDenseMat
SUND1lsMat_NewBandMat

DestroyMat SUNDlsMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1sMat_NewIndexArray
NewRealArray SUND1sMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1sMat_PrintMat
newDenselMat SUND1lsMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUND1sMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.
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1.2.11 Changes in v5.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel one API Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §8.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate that the next
call to SUN1inSolSolve will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

New KINSOL options have been added to apply a constant damping in the fixed point and Picard iterations (see KIN-
SetDamping), to delay the start of Anderson acceleration with the fixed point and Picard iterations (see KINSetDe-
layAA), and to return the newest solution with the fixed point iteration (see KINSetReturnNewest).

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the Picard iteration where the value of KINSetMaxSetupCalls would be ignored.

1.2.12 Changes in v5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel one API) compiler. See §6.12 for more details. This module is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §8.8 for more details.

1.2.13 Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.
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1.2.14 Changes in v5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA N_Vector implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer operation, and that the pointer returned by N_VGetDeviceArrayPointer is a valid CUDA device
pointer.

1.2.15 Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.2.16 Changes in v5.4.0

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs such
as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA modules that
accept a SUNMemoryHelper object. Refer to §4.6.1, §6.10, §6.13, and §9 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

1.2.17 Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.
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Added the optional function KINSetJacTimesVecSysFn to specify an alternative system function for computing
Jacobian-vector products with the internal difference quotient approximation.

1.2.18 Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse matrix implementation
from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR linear solver has been updated
to use this matrix, therefore, users of this module will need to update their code. These modules are still considered to
be experimental, thus they are subject to breaking changes even in minor releases.

1.2.19 Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file pointers that
are useful when using the Fortran 2003 interfaces.

Added support for constant damping when using Anderson acceleration. See §2 and the description of the KINSet-
DampingAA function for more details.

1.2.20 Changes in v5.0.0

1.2.20.1 Build system changes

¢ Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as
SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to
the BLAS library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_-
LIBRARIES when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.
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1.2.20.2 NVECTOR module changes

* Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to
be set. Additionally, the function N_VCopyOps(w, v) has been added to copy the operation function pointers
between vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.1 for more details.

* Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have been cre-
ated to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accom-
panied by additions to user documentation and SUNDIALS examples. See §6.17 and §6.18 for more details.

* One new required vector operation and ten new optional vector operations have been added to the N_Vector APL
The new required operation, N_VGetLength, returns the global length of an N_Vector. The optional operations
have been added to support the new NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCom-
municator must be implemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR,
but is not used outside of this context. The remaining nine operations are optional local reduction operations
intended to eliminate unnecessary latency when performing vector reduction operations (norms, etc.) on dis-
tributed memory systems. The optional local reduction vector operations are N_VDotProdLocal, N_VMaxNorm-
Local, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal, N_VWSqrSumMaskLocal, N_VInvTestLocal,
N_VConstrMaskLocal, and N_VMinQuotientLocal. If an N_Vector implementation defines any of the local
operations as NULL, then the NVECTOR_MPIMANYVECTOR will call standard N_Vector operations to complete the
computation. See §6.2.4 for more details.

* An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.19 for more details.

e The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_RAJA
implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundials_-
nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users should use
the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules
to replace the functionality. The necessary changes are minimal and should require few code modifications.
See the programs in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the
NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

* Fixed a memory leak in the NVECTOR_PETSC module clone function.

* Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

* Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10.1 for more details.

* Added new Fortran 2003 interfaces for most N_Vector modules. See Chapter §6 for more details on how to use
the interfaces.

¢ Added three new N_Vector utility functions, FN_VGetVecAtIndexVectorArray, FN_VSetVecAtIndexVec-
torArray, and FN_VNewVectorArray, for working with N_Vector arrays when using the Fortran 2003 inter-
faces. See §6.1.1 for more details.
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1.2.20.3 SUNMatrix module changes

* Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMatNewEmpty
allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the SUNMatrix API by ensuring only required operations need
to be set. Additionally, the function SUNMatCopyOps(A, B) has been added to copy the operation function
pointers between matrix objects. When used in clone routines for custom matrix objects these functions also
will ease the introduction of any new optional operations to the SUNMatrix API by ensuring all operations are
copied when cloning objects. See §7.1 for more details.

* A new operation, SUNMatMatvecSetup, was added to the SUNMatrix API to perform any setup necessary for
computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who
have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
ops structure member, matvecsetup, to NULL. See §7.2 for more details.

* The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indiciating success/failure may return different values than previously. See §7.2.1 for more
details.

* A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §7.9 for more details.

* Added new Fortran 2003 interfaces for most SUNMatrix modules. See Chapter §7 for more details on how to
use the interfaces.

1.2.20.4 SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-
NewEmpty allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNLinearSolver API by ensuring
only required operations need to be set. See §8.1.8 for more details.

e The return type of the SUNLinearSolver API function SUNLinSolLastFlag has changed from long int
to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

¢ Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID, that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

* The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

* A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.

* Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems
on NVIDIA GPUs. See §8.17 for more details.

¢ Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic, SUNLin-
Sol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the underlying KLU solver
structures. See §8.5.1 for more details.

* Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See Chapter §8 for more details on
how to use the interfaces.
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1.2.20.5 KINSOL changes

* Fixed a bug in the KINSOL linear solver interface where the auxiliary scalar sJpnorm was not computed when
necessary with the Picard iteration and the auxiliary scalar sFdotJp was unnecessarily computed in some cases.

» The KINLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

¢ Added a Fortran 2003 interface to KINSOL. See §4.5 for more details.

1.2.21 Changes in v4.1.0

An additional N_Vector implementation was added for the TPetra vector from the Trilinos library to facilitate interop-
erability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file kin_impl.h is no longer installed. This means users who are directly manipulating
the KINMem structure will need to update their code to use KINSOL’s public API.

Python is no longer required to run make test and make test_install.

1.2.22 Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the KINSOL library, 1ibsundials_kinsol.

1.2.23 Changes in v4.0.1

No changes were made in this release.

1.2.24 Changes in v4.0.0

KINSOL’s previous direct and iterative linear solver interfaces, KINDIs and KINSpils, have been merged into a single
unified linear solver interface, KINLs, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how KINLs utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in Chapter §8. All KINSOL example programs and the standalone linear solver examples
have been updated to use the unified linear solver interface.

The unified interface for the new KINLs module is very similar to the previous KINDIs and KINSpils interfaces. To
minimize challenges in user migration to the new names, the previous C and Fortran routine names may still be used;
these will be deprecated in future releases, so we recommend that users migrate to the new names soon. Additionally,
we note that Fortran users, however, may need to enlarge their iout array of optional integer outputs, and update the
indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names
are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense,
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SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUN-
LinSol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges in
user migration to the new names, the previous routine names may still be used; these will be deprecated in future re-
leases, so we recommend that users migrate to the new names soon. All KINSOL example programs and the standalone
linear solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an N_Vector
(see Chapter §6 for more details). The new operations are intended to increase data reuse in vector operations, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with ac-
celerators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_ViirmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an N_Vector implementation defines any of these operations as NULL, then
standard N_Vector operations will automatically be called as necessary to complete the computation. Multiple updates
to NVECTOR_CUDA were made:

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda to return the local vector length.

e Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

* Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
¢ Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPENNM-
PDEV. See §6.15 for more details.

1.2.25 Changes in v3.2.1

The changes in this minor release include the following:

* Fixed a bug in the CUDA N_Vector where the N_VInvTest operation could write beyond the allocated vector
data.

* Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib. CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can modified.
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1.2.26 Changes in v3.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__. Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI
rank when using a GPU system. The vectors assume one GPU device per MPI rank. Changed the name of the RAJA
N_Vector library to libsundials_nveccudaraja.lib from libsundials_nvecraja.lib to better reflect that
we only support CUDA as a backend for RAJA currently. Several changes were made to the build system:

CMake 3.1.3 is now the minimum required CMake version.

Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MP1 is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.2.27 Changes in v3.1.2

The changes in this minor release include the following:

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally
handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is
still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~.J manually (with zero
entries if needed).

Changed the LICENSE install path to instdir/include/sundials.
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1.2.28 Changes in v3.1.1

The changes in this minor release include the following:

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple
times then the solver memory was reallocated (without being freed).

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used
(to avoid compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.

Fixed a minor bug in KINPrintInfo where a case was missing for KIN_REPTD_SYSFUNC_ERR leading to an
undefined info message.

Added missing #include <stdio.h>in N_Vector and SUNMatrix header files.

Fixed an indexing bug in the CUDA N_Vector implementation of N_VWrmsNormMask and revised the RAJA
N_Vector implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinear-
Solver module (e.g., iterative linear solvers or fixed pointer solver).

In addition to the changes above, minor corrections were also made to the example programs, build system, and user
documentation.

1.2.29 Changes in v3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.2.30 Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in the interfacing of custom
linear solvers and interoperability with linear solver libraries. Specific changes include:

Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented API.

Added example problems demonstrating use of generic SUNMATRIX modules.

Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS native dense,
SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPT-
FQMR, SPFGMR, and PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented APL

Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.
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* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

» Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional N_Vector implementations were added — one for CUDA and one for RAJA vectors. These vectors are
supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to th web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing FOO_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

A bug fix was done to correct the fcmix name translation for FKIN_SPFGMR.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.
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1.2.31 Changes in v2.9.0

Two additional N_Vector implementations were added — one for Hypre (parallel) vectors, and one for PETSc vectors.
These additions are accompanied by additions to various interface functions and to user documentation.

Each N_Vector module now includes a function, N_VGetVectorID, that returns the N_Vector module name.

The Picard iteration return was chanegd to always return the newest iterate upon success. A minor bug in the line search
was fixed to prevent an infinite loop when the beta condition fails and lamba is below the minimum size.

For each linear solver, the various solver performance counters are now initialized to O in both the solver specifica-
tion function and in solver 1init function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done to return integers
from linear solver and preconditioner ’free’ functions.

Corrections were made to three Fortran interface functions. The Anderson acceleration scheme was enhanced by use
of QR updating.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and cor-
rections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR format
when using KLU.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into two pieces. FKIN-
MALLOC remains for backward compatibility, but documentation for it has been removed.

A new examples was added for use of the OpenMP vector.

Minor corrections and additions were made to the KINSOL solver, to the Fortran interfaces, to the examples, to
installation-related files, and to the user documentation.

1.2.32 Changes in v2.8.0

Two major additions were made to the globalization strategy options (KINSol argument strategy). One is fixed-point
iteration, and the other is Picard iteration. Both can be accelerated by use of the Anderson acceleration method. See
the relevant paragraphs in Chapter §2.

Three additions were made to the linear system solvers that are available for use with the KINSOL solver. First, in
the serial case, an interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the
multi-threaded version of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the
serial version of the N_Vector module. As part of these additions, a sparse matrix (CSC format) structure was added
to KINSOL. Finally, a variation of GMRES called Flexible GMRES was added.

Otherwise, only relatively minor modifications were made to KINSOL.:
In function KINStop, two return values were corrected to make the values of uu and fval consistent.

A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user calls to KINSol
with no intervening call to KINSetMaxNewtonStep.

A bug in the increments for difference quotient Jacobian approximations was fixed in function kinD1sBandDQJac.

In KINLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an illegal input
error for DGBTRF /DGBTRS.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and in various example programs.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.
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In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional fourth argument
key_length was removed, with hardcoded key string lengths passed to all strncmp tests.

In all FKINSOL examples, integer declarations were revised so that those which must match a C type long int are
declared INTEGER*8, and a comment was added about the type match. All other integer declarations are just INTEGER.
Corresponding minor corrections were made to the user guide.

Two new N_Vector modules have been added for thread-parallel computing environments — one for OpenMP, denoted
NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

1.2.33 Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output 1sflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int
and long int arrays, respectively.

A large number of errors have been fixed. Three major logic bugs were fixed — involving updating the solution vec-
tor, updating the linesearch parameter, and a missing error return. Three minor errors were fixed — involving setting
etachoice in the Matlab/KINSOL interface, a missing error case in KINPrintInfo, and avoiding an exponential
overflow in the evaluation of omega. In each linear solver interface function, the linear solver memory is freed on an
error return, and the **Free function now includes a line setting to NULL the main memory pointer to the linear solver
memory. In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_MATH, so
that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

1.2.34 Changes in v2.6.0

This release introduces a new linear solver module, based on BLAS and LAPACK for both dense and banded matrices.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization of all linear solver
modules into two families (besides the already present family of scaled preconditioned iterative linear solvers, the
direct solvers, including the new LAPACK-based ones, were also organized into a direct family); (b) maintaining a
single pointer to user data, optionally specified through a Set-type function; (c) a general streamlining of the band-
block-diagonal preconditioner module distributed with the solver.

1.2.35 Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3). At the user
interface level, the main impact is in the mechanism of including SUNDIALS header files which must now include the
relative path (e.g. #include <cvode/cvode.h>). Additional changes were made to the build system: all exported
header files are now installed in separate subdirectories of the installation include directory.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m x n matrices (m < n), while the factorization and solution functions were renamed to
DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization and solution functions in the
generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.
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1.2.36 Changes in v2.4.0

KINSPBCG, KINSPTFQMR, KINDENSE, and KINBAND modules have been added to interface with the Scaled
Preconditioned Bi-CGStab (SPBCG), Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR),
DENSE, and BAND linear solver modules, respectively. (For details see Chapter :numref:KINSOL.Usage.CC.) Cor-
responding additions were made to the Fortran interface module FKINSOL. At the same time, function type names for
Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector and precondi-
tioner setup and solve functions.

Regarding the Fortran interface module FKINSOL, optional inputs are now set using FKINSETIIN (integer inputs),
FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are still obtained from the IOUT and
ROUT arrays which are owned by the user and passed as arguments to FRINMALLOC.

The KINDENSE and KINBAND linear solver modules include support for nonlinear residual monitoring which can
be used to control Jacobian updating.

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes
(kinsol_ and sundials_). When using the default installation procedure, the header files are exported under various
subdirectories of the target include directory. For more details see Appendix §10.

1.2.37 Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user data right after
its use. The build system has been further improved to make it more robust.

1.2.38 Changes in v2.2.1

The changes in this minor SUNDIALS release affect only the build system.

1.2.39 Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, KINSOL now provides a set of routines (with prefix KINSet) to change
the default values for various quantities controlling the solver and a set of extraction routines (with prefix KINGet) to
extract statistics after return from the main solver routine. Similarly, each linear solver module provides its own set of
Set- and Get-type routines. For more details see Chapter :numref:KINSOL.Usage.CC.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobian-vector products and
preconditioner information) were simplified by reducing the number of arguments. The same information that was
previously accessible through such arguments can now be obtained through Get-type functions.

Installation of KINSOL (and all of SUNDIALS) has been completely redesigned and is now based on configure scripts.
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1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that some readers will
want to concentrate on the general instructions, while others will refer mostly to the examples, and the organization is
intended to accommodate both styles.

There are different possible levels of usage of KINSOL. The most casual user, with a small nonlinear system, can get by
with reading all of Chapter §2, then Chapter :numref:KINSOL.Usage.CC through §5 only, and looking at examples in
[18]. In a different direction, a more expert user with a nonlinear system may want to (a) use a package preconditioner
(§5.7), (b) supply his/her own Jacobian or preconditioner routines (§5.6), (c) supply a new N_Vector module (Chapter
§6), or even (d) supply a different linear solver module (§5.5.2 and Chapter §8).

The structure of this document is as follows:

* In Chapter §2, we provide short descriptions of the numerical methods implemented by KINSOL for the solution
of nonlinear systems.

* The following chapter describes the structure of the SUNDIALS suite of solvers (§3) and the software organiza-
tion of the KINSOL solver (§3.1).

 Chapter :numref:KINSOL.Usage.CC is the main usage document for KINSOL for C applications. It includes a
complete description of the user interface for the solution of nonlinear algebraic systems.

* Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the four N_Vector implementations provided with SUNDIALS.

» Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS.

» Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

* Finally, in the appendices, we provide detailed instructions for the installation of KINSOL, within the structure
of SUNDIALS (Appendix §10), as well as a list of all the constants used for input to and output from KINSOL
functions (Appendix §11).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as KINInit) within textual explanations appear in typewriter type style; fields in C structures (such as
content) appear in italics; and packages or modules are written in all capitals. Usage and

1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.
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1.4.1 BSD 3-Clause License

Copyright (c) 2002-2023, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.
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1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
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Chapter 2

Mathematical Considerations

KINSOL solves nonlinear algebraic systems in real /N-space.

Using Newton’s method, or the Picard iteration, one can solve
F(u)=0, F:RY RN, .1)

given an initial guess ug. Using a fixed-point iteration, the convergence of which can be improved with Anderson
acceleration, one can solve

Gu)=u, G:RYN -RY, (2.2)

given an initial guess uyg.

2.1 Basic Newton iteration

Depending on the linear solver used, KINSOL can employ either an Inexact Newton method [14, 16, 20, 22, 34], or a
Modified Newton method. At the highest level, KINSOL implements the following iteration scheme:

1. Set up = an initial guess

2. Forn = 0,1, 2, ... until convergence do:
a. Solve J(up)d, = —F(uy)
b. Set tpi41 = up + A6, 0 <A <1
c. Test for convergence

Here, u,, is the nth iterate to u, and J(u) = F’(u) is the system Jacobian. At each stage in the iteration process, a
scalar multiple of the step 6,,, is added to w,, to produce a new iterate, u, 1. A test for convergence is made before the
iteration continues.
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2.2 Newton method variants

For solving the linear system given in step (2a), KINSOL provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized in two families,
a direct family comprising direct linear solvers for dense, banded, or sparse matrices and a spils family comprising
scaled preconditioned iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

* dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementation (serial or
threaded vector modules only),

* band direct solvers, using either an internal implementation or a BLAS/LAPACK implementation (serial or
threaded vector modules only),

* sparse direct solver interfaces to various libraries, including KLU [3, 19], SuperLU_MT [8, 21, 35], SuperLU_-
Dist [7, 28, 36, 37], and cuSPARSE [6] [Note that users will need to download and install the relevant external
packages independent of KINSOL],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or
* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

When using a direct linear solver, the linear system in 2a is solved exactly, thus resulting in a Modified Newton method
(the Jacobian matrix is normally out of date; see below). Note that KINSOL allows the user to enforce a Jacobian
evaluation at each iteration thus allowing for an Exact Newton iteration. Note that each direct linear solver is only
compatible with a subset of vector representations (see §8.1.7 for details).

When using an iterative linear solver, the linear system in (2a) is solved only approximately, thus resulting in an Inexact
Newton method. Here right preconditioning is available by way of the preconditioning setup and solve routines supplied
by the user, in which case the iterative method is applied to the linear systems (JP~1)(Pd§) = —F, where P denotes
the right preconditioning matrix.

Additionally, it is possible for users to supply a matrix-based iterative linear solver to KINSOL, resulting in a Modified
Inexact Newton method. As with the direct linear solvers, the Jacobian matrix is updated infrequently; similarly as with
iterative linear solvers the linear system is solved only approximately.

2.3 Jacobian information update strategy

In general, unless specified otherwise by the user, KINSOL strives to update Jacobian information (the actual system
Jacobian J in the case of matrix-based linear solvers, and the preconditioner matrix P in the case of iterative linear
solvers) as infrequently as possible to balance the high costs of matrix operations against other costs. Specifically, these
updates occur when:

* the problem is initialized,

[AGn—1]

D..,00 > 1.5 (Inexact Newton only),
* mbset= 10 nonlinear iterations have passed since the last update,

* the linear solver failed recoverably with outdated Jacobian information,

the global strategy failed with outdated Jacobian information, or

[IA0n]l D, 00 < steptol with outdated Jacobian or preconditioner information,
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where the norm || - || p, o is defined below in (2.3).

KINSOL allows, through optional solver inputs, changes to the above strategy. Indeed, the user can disable the initial
Jacobian information evaluation or change the default value of mbset, the number of nonlinear iterations after which
a Jacobian information update is enforced.

2.4 Scaling

To address the case of ill-conditioned nonlinear systems, KINSOL allows users to prescribe scaling factors both for
the solution vector and for the residual vector. For scaling to be used, the user should supply values D,,, which are
diagonal elements of the scaling matrix such that D, u,, has all components roughly the same magnitude when u,, is
close to a solution, and D, which are diagonal scaling matrix elements such that D F' has all components roughly
the same magnitude when ., is not too close to a solution. Based on these scaling matrices, we define the following
scaled norms:

I2lp. = 1Duzll2, [zllpr = [[Drzll2, [I2lDy.co = [Duzlloc, and [|2[|pp 00 = [[Drzlle 23)

where || - || is the max norm. When scaling values are provided for the solution vector, these values are automati-
cally incorporated into the calculation of the perturbations used for the default difference quotient approximations for
Jacobian information; see (2.6) and (2.8) below.

2.5 Globalization strategy

Two methods of applying a computed step d,, to the previously computed solution vector are implemented. The first
and simplest is the standard Newton strategy which applies step 2(b) as above with A\ always set to 1. The other
method is a global strategy, which attempts to use the direction implied by d,, in the most efficient way for furthering
convergence of the nonlinear problem. This technique is implemented in the second strategy, called Linesearch. This
option employs both the « and 3 conditions of the Goldstein-Armijo linesearch given in [22] for step 2(b), where A is
chosen to guarantee a sufficient decrease in F' relative to the step length as well as a minimum step length relative to
the initial rate of decrease of F'. One property of the algorithm is that the full Newton step tends to be taken close to
the solution.

KINSOL implements a backtracking algorithm to first find a value A such that u,, + A\d,, satisfies the sufficient decrease
condition (or a-condition)

F(un + Mop) < F(uy) +aVF(u,)' A6,

where o = 10~*. Although backtracking in itself guarantees that the step is not too small, KINSOL secondly relaxes
A to satisfy the so-called S-condition (equivalent to Wolfe’s curvature condition):

F(up 4+ A6y) > Fuy) + BVF (un) Ao,
where 5 = 0.9. During this second phase, ) is allowed to vary in the interval [Ayin, Amaz] Where

I steptol o 5
e ||5n||oo ’ " 1/D{L + |u3| ’

and A, corresponds to the maximum feasible step size at the current iteration (typically A\p,q = stepmaz/||6, | p,,)-
In the above expressions, v’/ denotes the jth component of a vector v.

For more details, the reader is referred to [22].

2.4. Scaling 27



User Documentation for KINSOL, v6.6.0

2.6 Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step length. For the
former, the Newton iteration must pass a stopping test

|1 F'(tn) || Dpr,00 < ftol,

where ftol is an input scalar tolerance with a default value of U1/3. Here U is the machine unit roundoff. For the latter,
the Newton method will terminate when the maximum scaled step is below a given tolerance

[IA0n]l D, 00 < steptol,

where steptol is an input scalar tolerance with a default value of U2/3. Only the first condition (small residual) is
considered a successful completion of KINSOL. The second condition (small step) may indicate that the iteration is
stalled near a point for which the residual is still unacceptable.

2.7 Additional constraints

As a user option, KINSOL permits the application of inequality constraints, u* > 0 and u* < 0, as well as u* > 0 and
u® < 0, where 1 is the ith component of 1. Any such constraint, or no constraint, may be imposed on each component.
KINSOL will reduce step lengths in order to ensure that no constraint is violated. Specifically, if a new Newton iterate
will violate a constraint, the maximum step length along the Newton direction that will satisfy all constraints is found,
and d,, in Step 2(b) is scaled to take a step of that length.

2.8 Residual monitoring for Modified Newton method

When using a matrix-based linear solver, in addition to the strategy described above for the update of the Jacobian
matrix, KINSOL also provides an optional nonlinear residual monitoring scheme to control when the system Jacobian
is updated. Specifically, a Jacobian update will also occur when mbsetsub=5 nonlinear iterations have passed since
the last update and

1E(un) |l > W[ F(um)l[ Dy

where u,, is the current iterate and w,, is the iterate at the last Jacobian update. The scalar w is given by

max(0,p—1)

w = min (wmm e ,wmam) , 2.4)

with p defined as

P ()l
ftol ’

where ftol is the input scalar tolerance discussed before. Optionally, a constant value w,, s+ can be used for the param-
eter w.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their default values through
optional inputs to KINSOL. These include the parameters wyy,;, and w4z, the constant value weq,s:, and the threshold
mbsetsub.
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2.9 Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e. when an iterative linear solver is used), the convergence of the overall
nonlinear solver is intimately coupled with the accuracy with which the linear solver in 2(a) above is solved. KINSOL
provides three options for stopping criteria for the linear system solver, including the two algorithms of Eisenstat and
Walker [25]. More precisely, the Krylov iteration must pass a stopping test

1760 + Fllpe < (nn + U)|FllDp

where 7, is one of:

Eisenstat and Walker Choice 1

N Fun)llpe = I1F(un—1) + J(un—1)0n Dy |
n — b
[1F (un—1)llDp

Eisenstat and Walker Choice 2

__( NF@)lpe \*
”"‘”(|F<un_1>||Dp) !

where default values of v and « are 0.9 and 2, respectively.

Constant n
7Ny, = constant,

with 0.1 as the default.

The default strategy is “Eisenstat and Walker Choice 1. For both options 1 and 2, appropriate safeguards are incorpo-
rated to ensure that 77 does not decrease too quickly [25].

2.10 Difference quotient Jacobian approximations

With the SUNMATRIX_DENSE and SUNMATRIX_BAND matrix modules, the Jacobian may be supplied by a user
routine, or approximated by difference quotients, at the user’s option. In the latter case, we use the usual approximation

JU = [F'(u+oje’) — F'(u)]/a; . (2.5)
The increments o; are given by
o; = VU max {|u’|,1/Di} . (2.6)

In the dense case, this scheme requires N evaluations of F', one for each column of J. In the band case, the columns
of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of F' evaluations equal to the
bandwidth. The parameter U above can (optionally) be replaced by a user-specified value, relfunc.

We note that with sparse and user-supplied matrix-based linear solvers, the Jacobian must be supplied by a user routine,
i.e. it is not approximated internally within KINSOL.

In the case of a matrix-free iterative linear solver, Jacobian information is needed only as matrix-vector products Juv.
If a routine for Jv is not supplied, these products are approximated by directional difference quotients as

J(u)v = [F(u+ ov) — F(u)]/o, 2.7
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where w is the current approximation to a root of (2.1), and o is a scalar. The choice of ¢ is taken from [16] and is
given by

max{|ulv|, u?yp|v|}
0113

where u,,,, is a vector of typical values for the absolute values of the solution (and can be taken to be inverses of the
scale factors given for u as described below). This formula is suitable for scaled vectors v and v, and so is applied to
D,u and D,v. The parameter U above can (optionally) be replaced by a user-specified value, rel func. Convergence
of the Newton method is maintained as long as the value of o remains appropriately small, as shown in [14].

sign(uTv)VU , (2.8)

ag =

2.11 Basic Fixed Point iteration

The basic fixed-point iteration scheme implemented in KINSOL is given by:
1. Setup = an initial guess
2. Forn = 0,1, 2, ... until convergence do:
o Setupy1 = (1 — B)un + SG(uy).
* Test for convergence.

Here, u,, is the n-th iterate to u. At each stage in the iteration process, the function G is applied to the current iterate
with the damping parameter 3 to produce a new iterate, u, 1. A test for convergence is made before the iteration
continues.

For Picard iteration, as implemented in KINSOL, we consider a special form of the nonlinear function F, such that
F(u) = Lu — N(u), where L is a constant nonsingular matrix and N is (in general) nonlinear. Then the fixed-point
function G is defined as G(u) = u — L~ F(u). The Picard iteration is given by:

1. Setup = an initial guess

2. Forn =0,1,2, ... until convergence do:
e Setupi1 = (1 — B)un, + BG(uy) where G(uy) = u, — L7 (uy,).
e Test F'(uy+1) for convergence.

Here, u,, is the n-th iterate to w. Within each iteration, the Picard step is computed then added to w,, with the damping
parameter /3 to produce the new iterate. Next, the nonlinear residual function is evaluated at the new iterate, and
convergence is checked. Noting that L=!N(u) = u — L~1F(u), the above iteration can be written in the same form
as a Newton iteration except that here, L is in the role of the Jacobian. Within KINSOL, however, we leave this in a
fixed-point form as above. For more information, see page 182 of [39].

2.12 Anderson Acceleration

The Picard and fixed point methods can be significantly accelerated using Anderson’s method [10, 26, 38, 46]. Ander-
son acceleration can be formulated as follows:

1. Setup = an initial guess and m > 1

2. Setu; = G(ug)

3. Forn = 1,2, ... until convergence do:
a. Setm, = min{m,n}

b. Set F, = (fr—my,s---, [n), Where f; = G(u;) — u;
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c. Determine o) = (a(()"), e ,oz;?,)l) that solves min || F;,a™'||5 such that Z a; =1
i=0
d. Setu,,1 =0 Z agn)G(un_mn_H) +(1-p) Z agn)un_mnﬂ-
i=0 =0

e. Test for convergence

It has been implemented in KINSOL by turning the constrained linear least-squares problem in step 3c into an uncon-
strained one leading to the algorithm given below:

1. Set uy = an initial guess and m > 1

2. Setu; = G(up)

3. Forn = 1,2, ... until convergence do:
a. Setm,, = min{m,n}

b. Set AFn = (Afn,mn, ey Afnfl), where Afl = fi+1 — fz and fz = G(’LLZ) — U;

c. Determine (") = (fy(g"), e ,%(2_1) that solves min || f,, — AF, 7" |2
v
My —1 my,—1
d. Set upi1 = G(uy) — Z %’(n)AgnfmnH = (1= B)(f(un) — Z 'Yin)Afnfanri) with Ag; =

1=0 =0
G(uit1) — G(uy)

e. Test for convergence

The least-squares problem in 3c is solved by applying a QR factorization to AF,, = Q,, R, and solving R,y = QL f,,.
By default the damping is disabled i.e., 5 = 1.0.

The Anderson acceleration implementation includes an option to delay the start of acceleration until after a given
number of initial fixed-point or Picard iterations have been completed. This delay can be beneficial when the underlying
method has strong global convergence properties as the initial iterations may help bring the iterates closer to a solution
before starting the acceleration.

2.13 Anderson Acceleration QR Factorization

The default QR factorization routine used in Anderson acceleration is Modified Gram-Schmidet, a stable orthogonaliza-
tion routine that requires an increasing number of synchronizations per iteration dependent upon the number of vectors
being orthgonalized against. While practical use of Anderson acceleration only requires a small number of vectors to be
used in the QR factorization, this linearly scaling number of synchronizations per iteration can yield poor performance
when Anderson acceleration is performed in a parallel setting. To combat this poor performance, low synchronization
QR routines are available to the user, in particular: Inverse Compact WY Modified Gram-Schmidt [9], along with
variants of Classical Gram-Schmidt with Reorthogonalization [29]. While all of these QR factorization routines are
mathematically equivalent, they do not exhibit the same stability when performed with floating point arithmetic or in
a parallel setting.

Inverse Compact WY Modified Gram-Schmidt, which is based on triangular solve variants of Gram-Schmidt that were
developed within the context of GMRES, is an option that only requires two synchronizations per iteration. Addition-
ally, it adds a lower triangular solve at every iteration, but this generally does not affect performance due to the system
solve being small i.e., the number of vectors being orthgonalized against.

The remaining orthogonalization options are based on and include Classical Gram-Schmidt with Reorthogonalization
(CGS-2). CGS-2 only requires three synchronizations per iteration, but does not exhibit the same stability as Modified
Gram-Schmidt. Classical Gram-Schmidt with Delayed Reorthogolonization has the same stability as CGS-2, but it
reduces the number of synchronizations per iteration to two.
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2.14 Fixed-point - Anderson Acceleration Stopping Criterion

The default stopping criterion is
Uni1 — UnllDp 0o < gtol,
where D is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so that the components of

Dp(G(u) — u) have roughly the same order of magnitude. Note that when using Anderson acceleration, convergence
is checked after the acceleration is applied.

2.15 Picard - Anderson Acceleration Stopping Criterion

The default stopping criterion is

| F(tns1)|| D00 < ftol,

where D is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so that the components
of Dy F(u) have roughly the same order of magnitude. Note that when using Anderson acceleration, convergence is
checked after the acceleration is applied.
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Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 KINSOL organization

The KINSOL package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

The overall organization of the KINSOL package is shown in Fig. 3.3. KINSOL utilizes generic linear solvers defined
by the SUNLinearSolver (see §8). As such, KINSOL has no knowledge of the method being used to solve the linear
and nonlinear systems that arise. For any given user problem, there exists a single nonlinear solver interface and, if
necessary, one of the linear system solver interfaces is specified, and invoked as needed during the integration.

KINSOL has a single unified linear solver interface, KINSOLLS, supporting both direct and iterative linear solvers built
using the generic SUNLinearSolver interface (see §8). These solvers may utilize a SUNMatrix object (see §7) for
storing Jacobian information, or they may be matrix-free. Since KINSOL can operate on any valid SUNLinearSolver,
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Fig. 3.1: High-level diagram of the SUNDIALS suite.
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Fig. 3.2: Directory structure of the SUNDIALS source tree.
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KINLS

Linear Solver Interface

Vector | | Matrix | |

Linear Solver

v

Preconditioner Modules

KINBBDPRE

Fig. 3.3: Overall structure diagram of the KINSOL package. Components specific to KINSOL begin with “KINSOL”
(KINLS and KINSOLBBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and solver inter-

faces.

3.1. KINSOL organization
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the set of linear solver modules available to KINSOL will expand as new SUNLinearSolver implementations are
developed.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, KINSOL includes algorithms
for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, KINSOL includes an algorithm for the approximation by dif-
ference quotients of the product Jv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [15, 17], together with the example and demonstration programs included with KINSOL,
offer considerable assistance in building preconditioners.

KINSOL’s linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution
phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the inte-
gration, and only as required to achieve convergence. The call list within the central KINSOL module to each of the
four associated functions is fixed, thus allowing the central module to be completely independent of the linear system
method.

KINSOL also provides a preconditioner module, for use with any of the Krylov iterative linear solvers. It works in
conjunction with the NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each
block being a banded matrix.

All state information used by KINSOL to solve a given problem is stored in N_Vector instances. There is no global
data in the KINSOL package, and so, in this respect, it is reentrant. State information specific to the linear and nonlinear
solver are saved in the SUNLinearSolver and SUNNonlinearSolver instances respectively. The reentrancy of KIN-
SOL enables the setting where two or more problems are solved by intermixed or parallel calls to different instances of
the package from within a single user program.
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Using SUNDIALS

As discussed in §3, the six solvers packages (CVODE(S), IDA(S), ARKODE, KINSOL) that make up SUNDIALS
are built upon common classes/modules for vectors, matrices, and algebraic solvers. In addition, the six packages all
leverage some other common infrastructure, which we discuss in this section.

4.1 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

* ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

e Will return < 0O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

(continues on next page)
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(continued from previous page)

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free(SUNContext *ctx)
Frees the SUNContext object.

Arguments:
e ctx — pointer to a valid SUNContext object, NULL upon successful return.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
* ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.
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Returns:
e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —a valid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.1.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

¢ Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Ttis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;

(continues on next page)
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(continued from previous page)

int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx);
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.
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4.1.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>

{

public:

explicit Context(void* comm = nullptr)

{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

1

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.1. The SUNContext Type
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4.2 SUNDIALS Status Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.2.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPI is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §10.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).
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4.2.2 Logger API

The central piece of the Logger API is the SUNLogger type:
typedef struct SUNLogger_ *SUNLogger

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE

Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (void *comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (void *comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

* comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
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¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger —a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger — a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

* Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:

* logger —a SUNLogger object.
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e 1vl — the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
* label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

e 1v1 - the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger —a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.
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4.2.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.3 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [13] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.3.2).

4.3.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §10.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.
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4.3.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDTIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e. an instance of the struct

typedef struct _SUNProfiler *SUNProfiler

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(void *comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

* p—a SUNProfiler object
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* name — a name for the profiling region
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

e p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.3.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

VA

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

(continues on next page)
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(continued from previous page)

umax = N_VMaxNorm(uw);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.3.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.4 SUNDIALS Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
* patch — SUNDIALS release patch version number.
¢ label — string to hold the SUNDIALS release label.
¢ [en — allocated length of the label character array.
Return value:

e 0 if successful
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* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5 SUNDIALS Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, and farkode_mristep_mod modules provide in-
terfaces to the ARKStep, ERKStep, and MRIStep integrators respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

¢ CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.
¢ IDA via the fida_mod module.

e IDAS via the fidas_mod module.
e KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, and SUNLinearSolver) include Fortran
interface modules. A complete list of class implementations with Fortran 2003 interface modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fnvecpenmp_mod.<so|a>,
libsundials_nvecopenmp.<so|a>, libsundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.5.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.5.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, and SUNLinearSolver
classes is given alongside the C documentation (§6, §7, and §8, respectively). For details on where the Fortran 2003
module (.mod) files and libraries are installed see §10.

The Fortran 2003 interface modules were generated with SWIG Fortran [33], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules
Class/Module Fortran 2003 Module Name
ARKODE farkode_mod

continues on next page
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Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP

CVODE

CVODES

IDA

IDAS

KINSOL

NVECTOR
NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX
SUNMATRIX_BAND
SUNMATRIX_ DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE
SUNMATRIX_SPARSE
SUNLINSOL
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
fcvode_mod

fcvodes_mod

fida_mod

fidas_mod

fkinsol_mod
fsundials_nvector_mod
fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsundials_matrix_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod

Not interfaced

Not interfaced
fsunmatrix_sparse_mod
fsundials_linearsolver_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsundials_nonlinearsolver_mod
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced
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4.5.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double-precision the sunindextype size is 64-bits.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real (c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real (c_double), dimension(*)
realtype* return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
realtypel[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

T in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)
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4.5.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.5.1 discusses
equivalencies of data types in the two languages.

4.5.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
X => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.5.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
realtype” xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial(N, sunctx);

/% capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:
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type(N_Vector), pointer :: x

real (c_double), pointer :: xdataptr(:)

real (c_double) :: xdata(N)
integer(c_long) i1 leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.5.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.
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4.5.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.5.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it X, b

! Disassociate A
A = nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.5.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possi-
ble to directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages
with sensitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIn-
dexVectorArray () that can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, X);

/* Fill each array with ones */
for (dint i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, Xx)

(continues on next page)
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(continued from previous page)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray () (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

4.5.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_futils_mod.

FILE *SUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Arguments:

e filename — the path to the file, that should have Fortran type character (kind=C_CHAR, len=%).
There are two special filenames: stdout and stderr — these two filenames will result in output going
to the standard output file and standard error file, respectively.

¢ mode — the I/O mode to use for the file. This should have the Fortran type character (kind=C_CHAR,
len=%*). The string begins with one of the following characters:

— rto open a text file for reading

— r+ to open a text file for reading/writing

— wto truncate a text file to zero length or create it for writing

— w+ to open a text file for reading/writing or create it if it does not exist

— ato open a text file for appending, see documentation of fopen for your system/compiler

— a+toopen atext file for reading/appending, see documentation for fopen for your system/compiler
Return value:

¢ The function returns a type (C_PTR) which holds a C FILE*.

void SUNDIALSFileClose(fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Arguments:

e fp — the C FILE* that was previously obtained from fopen. This should have the Fortran type
type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALSFileOpen() then
that stream will not be closed by this function.
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4.5.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran

18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the

same compiler that was used to generate the modules.

4.5.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.

Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following

RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v = yarr(2)

! fill in the RHS function:

[0 0]*[(-1+ur2-r(t))/C*w] + [ 0 1
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

(continues on next page)
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(continued from previous page)

! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.6 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs (see Chapters §6, §7, and §8) or through user-supplied callback functions. Thus, under
the model, the overall structure of the user’s calling program, and the way users interact with the SUNDIALS packages
is similar to using SUNDIALS in CPU-only environments.

4.6.1 SUNDIALS GPU Programming Model

As described in [12], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [4], AMD ROCm/HIP [1], and Intel oneAPI [2]. Table 4.3-Table 4.5 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix, or
SUNLinearSolver implementation, and the capabilties will be leveraged since SUNDIALS operates on data through
these APIs.

In addition, SUNDIALS provides a memory management helper module (see §9) to support applications which imple-
ment their own memory management or memory pooling.
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Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-
ules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! X! X!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFQMR x! X! x! X! X!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Notes regarding the above tables:
1. This module inherits support from the NVECTOR module used
2. Support for ROCm/HIP and oneAPI are currently untested.
3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.
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4.6.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.
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Chapter 5

Using KINSOL for the Solution of
Nonlinear Systems

This section is concerned with the use of KINSOL for the solution of nonlinear systems.

The following sections treat the header files and the layout of the user’s main program, and provide descriptions of
the KINSOL user-callable functions and user-supplied functions. The sample programs described in the companion
document [18] may also be helpful. Those codes may be used as templates (with the removal of some lines used in
testing) and are included in the KINSOL package.

KINSOL uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §11.

The user should be aware that not all SUNLinearSolver and SUNMatrix objects are compatible with all N_Vector
implementations. Details on compatibility are given in the documentation for each SUNMatrix (Chapter §7) and
SUNLinearSolver (Chapter §8) implementation. For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver objects.
Please check Chapters §7 and §8 to verify compatibility between these objects. In addition to that documentation,
we note that the KINBBDPRE preconditioner can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector object with SuperLU_MT unless it is the NVECTOR_OPENMP module, and SuperLU_MT is also
compiled with OpenMP.

5.1 Access to library and header files

At this point, it is assumed that the installation of KINSOL, following the procedure described in §10, has been com-
pleted successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by KINSOL. The relevant library files
are

<libdir>/libsundials_kinsol.<so|a>
<libdir>/libsundials_nvec*.<so|a>
<libdir>/libsundials_sunmat*.<so|a>
<libdir>/libsundials_sunlinsol*.<so|a>
<libdir>/libsundials_sunnonlinsol*.<so|a>

where the file extension .so is typically for shared libraries and . a for static libraries. The relevant header files are
located in the subdirectories
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<incdir>/kinsol
<incdir>/sundials
<incdir>/nvector
<incdir>/sunmatrix
<incdir>/sunlinsol
<incdir>/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For a default installa-
tion, these are <instdir>/1ib or <instdir>/1ib64 and <instdir>/include, respectively, where instdir is the
directory where SUNDIALS was installed (see §10).

5.2 Data Types

The header file sundials_types.h contains the definition of the types:
» realtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices
* booleantype — the type used for logic operations within SUNDIALS
e SUNOutputFormat — an enumerated type for SUNDIALS output formats

5.2.1 Floating point types

type realtype

The type realtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest value repre-
sentable as a realtype, SMALL_REAL to be the smallest value representable as a realtype, and UNIT_ROUNDOFF to
be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that needs the ability
to branch on the definition of realtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a 1long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to 1.0F
if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro internally to
declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double, fabsf when
realtype is float, and fabsl when realtype is long double.
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A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros is
precision-independent except for any calls to precision-specific library functions. Our example programs use real-
type, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double in their code
(assuming that this usage is consistent with the typedef for realtype) and call the appropriate math library functions
directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying the code to use
realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use the corresponding precision
(see §10.1.2).

5.2.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDTALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §10.1.2).

5.2.3 Boolean type

type booleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type booleantype
as an int.

The advantage of using the name booleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type booleantype are intended to have
only the two values SUNFALSE (0) and SUNTRUE (1).

5.2.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.
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5.3 Header files

The calling program must include several header files so that various macros and data types can be used. The header
file that is always required is:

* kinsol/kinsol.h the main header file for kinsol, which defines the types and various constants, and includes
function prototypes. This includes the header file for KINLS, kinsol/kinsol_1s.h.

Note that kinsol.h includes sundials_types.h, which defines the types, realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_-
*_.h (see §6 for more information). This file in turn includes the header file sundials_nvector.h which defines the
abstract vector data type.

If using a Newton or Picard nonlinear solver that requires the solution of a linear system, then a linear solver module
header file will be required. If the linear solver is matrix-based, the linear solver header will also include a header file of
the from sunmatrix/sunmatrix_%*.h where * is the name of the matrix implementation compatible with the linear
solver. The matrix header file provides access to the relevant matrix functions/macros and in turn includes the header
file sundials_matrix.h which defines the abstract matrix data type.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example kinFood-
Web_kry_p (see [18]), preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_-
SPGMR linear solver is used, the header sundials/sundials_dense.his included for access to the underlying generic
dense matrix arithmetic routines.

5.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a nonlinear system
problem.. Most of the steps are independent of the N_Vector, SUNMatrix, and SUNLinearSolver implementations
used. For the steps that are not, refer to §6, §7, and §8 for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment (if appropriate)
For example, call MPI_Init to initialize MPI if used.
2. Create the SUNDIALS context object
Call SUNContext_Create() to allocate the SUNContext object.
3. Set the problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.
4. Create the vector with the initial guess

Construct an N_Vector of initial guess values using the appropriate functions defined by the particular N_Vector
implementation (see §6 for details).

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y®). Here, *** is the name of the vector implementation.

For hypre, PETSc, and Trilinos vector wrappers, first create and initialize the underlying vector, and then create
an N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a hypre, PETSc, or
Trilinos vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for
these vector wrappers.
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10.

11.

12.

13.

14.

Create matrix object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver) and the linear solver will be a matrix-
based linear solver, then a template Jacobian matrix must be created by calling the appropriate constructor defined
by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where **¥* is the name of the matrix (see §7 for details).

Create linear solver object (if appropriate)

If alinear solver is required (e.g., when using the default Newton solver), then the desired linear solver object must
be created by calling the appropriate constructor defined by the particular SUNLinearSolver implementation.

For any of the native SUNDIALS SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_***(...); where *** is the name of the linear
solver (see §8 for details).

Create KINSOL object

Call KINCreate() to create the KINSOL solver object.
Initialize KINSOL solver

Call KINInit() to allocate internal memory.

Attach the linear solver (if appropriate)

If a linear solver was created above, initialize the KINLS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with KINSetLinearSolver().

Set linear solver optional inputs (if appropriate)
See Table 5.1 for KINLS optional inputs and Chapter §8 for linear solver specific optional inputs.
Set optional inputs

Call KINSet*** functions to change any optional inputs that control the behavior of KINSOL from their default
values. See §5.5.4 for details.

Solve problem

Call ier = KINSol(...) to solve the nonlinear problem for a given initial guess.
See KINSol () for details.

Get optional outputs

Call KINGet*** functions to obtain optional output. See §5.5.5 for details.
Deallocate memory

Upon completion of the integration call the following, as necessary, to free any objects or memory allocated
above:

e Call N_VDestroy () to free vector objects.

Call SUNMatDestroy () to free matrix objects.

L]

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

Call KINFree () to free the memory allocated by KINSOL.

Call SUNContext_Free() to free the SUNContext object
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15. Finalize MPL, if used
Call MPI_Finalize to terminate MPI.

5.5 User-callable functions

This section describes the KINSOL functions that are called by the user to setup and then solve an IVP. Some of these
are required. However, starting with §5.5.4, the functions listed involve optional inputs/outputs or restarting, and those
paragraphs may be skipped for a casual use of KINSOL. In any case, refer to §5.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.5.4).

5.5.1 KINSOL initialization and deallocation functions

void KINCreate (SUNContext sunctx)
The function KINCreate () instantiates a KINSOL solver object.

Arguments:
* sunctx —the SUNContext object (see §4.1)
Return value:
e void
int KINInit (void *kin_mem, KINSysFn func, N_Vector tmpl)

The function KINInit () specifies the problem-defining function, allocates internal memory, and initializes KIN-
SOL.

Arguments:
e kin_mem — pointer to the KINSOL memory block returned by KINCreate ().

¢ func - is the CC function which computes the system function F'(u) (or G(u) for fixed-point iteration)
in the nonlinear problem. This function has the form func(u, fval, user_data). (For full details
see §5.6.1).

e tmpl — is any N_Vector (e.g. the initial guess vector u) which is used as a template to create (by
cloning) necessary vectors in kin_mem.

Return value:
e KIN_SUCCESS — The call to KINInit () was successful.

e KIN_MEM_NULL — The KINSOL memory block was not initialized through a previous call to KINCre-
ate().

e KIN_MEM_FAIL — A memory allocation request has failed.
e KIN_ILL_INPUT — An input argument to KINInit () has an illegal value.

Notes:
If an error occurred, KINInit () sends an error message to the error handler function.

void KINFree (void **kin_mem)

The function KINFree () frees the pointer allocated by a previous call to KINCreate().

Arguments:
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* kin_mem — pointer to the KINSOL solver object.
Return value:

e void

5.5.2 Linear solver specification functions

As previously explained, Newton and Picard iterations require the solution of linear systems of the form Jé = —F.
Solution of these linear systems is handled using the KINLS linear solver interface. This interface supports all valid
SUNLinearSolver modules. Here, matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store
the Jacobian matrix J = F’(u) and factorizations used throughout the solution process. Conversely, matrix-free
SUNLinearSolver modules instead use iterative methods to solve the linear systems of equations, and only require
the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only, on both the left and
the right, or not at all. However, only right preconditioning is supported within KINLS. If preconditioning is done,
user-supplied functions define the linear operator corresponding to a right preconditioner matrix P, which should
approximate the system Jacobian matrix J. For the specification of a preconditioner, see the iterative linear solver
sections in §5.5.4 and §5.6. A preconditioner matrix P must approximate the Jacobian J, at least crudely.

To specify a generic linear solver to KINSOL, after the call to KINCreate () but before any calls to KINSoI (), the
user’s program must create the appropriate SUNLinearSolver object and call the function KINSetLinearSolver(),
as documented below. To create the SUNLinearSolver object, the user may call one of the SUNDIALS-packaged
SUNLinearSolver module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

For a current list of such constructor routines see §8.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in Chapters §7 and §8.

Once this solver object has been constructed, the user should attach it to KINSOL via a call to KINSetLinear-
Solver(). The first argument passed to this function is the KINSOL memory pointer returned by KINCreate();
the second argument is the desired SUNLinearSolver object to use for solving Newton or Picard systems. The third
argument is an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free lin-
ear solvers, the third argument should be NULL). A call to this function initializes the KINLS linear solver interface,
linking it to the main KINSOL solver, and allows the user to specify additional parameters and routines pertinent to
their choice of linear solver.

int KINSetLinearSolver (void *kin_mem, SUNLinearSolver LS, SUNMatrix J)

The function KINSetLinearSolver () attaches a generic SUNLinSol object LS and corresponding template
Jacobian SUNMatrix object J (if applicable) to KINSOL, initializing the KINLS linear solver interface.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

e LS — SUNLINSOL object to use for solving Newton linear systems.

* J — SUNMATRIX object for used as a template for the Jacobian (or NULL if not applicable).
Return value:

e KINLS_SUCCESS — The KINLS initialization was successful.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.
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e KINLS_ILL_INPUT — The KINLS interface is not compatible with the LS or J input objects or is
incompatible with the current NVECTOR module.

* KINLS_SUNLS_FAIL — A call to the LS object failed.
e KINLS_MEM_FAIL — A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMatrix type in Chapter §7 for further information).

The previous routines KIND1sSetLinearSolver() and KINSpilsSetLinearSolver() are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these will be deprecated
in future releases, so we recommend that users transition to the new routine name soon.

5.5.3 KINSOL solver function

This is the central step in the solution process, the call to solve the nonlinear algebraic system.

int KINSol (void *kin_mem, N_Vector u, int strategy, N_Vector u_scale, N_Vector f_scale)

The function KINSol () computes an approximate solution to the nonlinear system.
Arguments:
* kin_mem — pointer to the KINSOL memory block.

e u — vector set to initial guess by user before calling KINSol () , but which upon return contains an
approximate solution of the nonlinear system F'(u) = 0.

* strategy — strategy used to solve the nonlinear system. It must be of the following:

KIN_NONE basic Newton iteration

KIN_LINESEARCH Newton with globalization

KIN_FP fixed-point iteration with Anderson Acceleration (no linear solver needed)

KIN_PICARD Picard iteration with Anderson Acceleration (uses a linear solver)

* u_scale — vector containing diagonal elements of scaling matrix D,, for vector u chosen so that the
components of D,, u (as a matrix multiplication) all have roughly the same magnitude when u is close
to a root of F'(u).

» f_scale - vector containing diagonal elements of scaling matrix Dp for F(u) chosen so that the
components of Dr F'(u) (as a matrix multiplication) all have roughly the same magnitude when u is
not too near a root of F'(u). In the case of a fixed-point iteration, consider F'(u) = G(u) — u.

Return value:
* KIN_SUCCESS — KINSol () succeeded; the scaled norm of F'(u) is less than fnormtol.

o KIN_INITTAL_GUESS_OK — The guess u = uy satisfied the system F'(u) = 0 within the tolerances
specified (the scaled norm of F'(ug) is less than §.81* fnormtol).

e KIN_STEP_LT_STPTOL — KINSOL stopped based on scaled step length. This means that the current
iterate may be an approximate solution of the given nonlinear system, but it is also quite possible that
the algorithm is “stalled” (making insufficient progress) near an invalid solution, or that the scalar sc-
steptol is too large (see KINSetScaledStepTol () in §5.5.4 to change scsteptol from its default
value).

e KIN_MEM_NULL — The KINSOL memory block pointer was NULL.
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e KIN_ILL_INPUT — An input parameter was invalid.
* KIN_NO_MALLOC — The KINSOL memory was not allocated by a call to KINCreate().
e KIN_MEM_FAIL — A memory allocation failed.

e KIN_LINESEARCH_NONCONV — The line search algorithm was unable to find an iterate sufficiently dis-
tinct from the current iterate, or could not find an iterate satisfying the sufficient decrease condition.
Failure to satisfy the sufficient decrease condition could mean the current iterate is “close” to an ap-
proximate solution of the given nonlinear system, the difference approximation of the matrix-vector
product J(u) v is inaccurate, or the real scalar scsteptol is too large.

e KIN_MAXITER_REACHED — The maximum number of nonlinear iterations has been reached.

e KIN_MXNEWT_S5X_EXCEEDED — Five consecutive steps have been taken that satisfy the inequality
IDupllz2 > 0.99 mxnewtstep , where p denotes the current step and mxnewtstep is a scalar up-
per bound on the scaled step length. Such a failure may mean that ||DpF(u)| 2 asymptotes from
above to a positive value, or the real scalar mxnewtstep is too small.

e KIN_LINESEARCH_BCFAIL — The line search algorithm was unable to satisfy the “beta-condition”
for MXNBCF+1 nonlinear iterations (not necessarily consecutive), which may indicate the algorithm is
making poor progress.

e KIN_LINSOLV_NO_RECOVERY — The user-supplied routine psolve encountered a recoverable error,
but the preconditioner is already current.

e KIN_LINIT_FAIL — The KINLS initialization routine (1init) encountered an error.

e KIN_LSETUP_FAIL — The KINLS setup routine (1setup) encountered an error; e.g., the user-supplied
routine pset (used to set up the preconditioner data) encountered an unrecoverable error.

e KIN_LSOLVE_FAIL — The KINLS solve routine (1solve) encountered an error; e.g., the user-supplied
routine psolve (used to to solve the preconditioned linear system) encountered an unrecoverable error.

* KIN_SYSFUNC_FAIL — The system function failed in an unrecoverable manner.
e KIN_FIRST_SYSFUNC_ERR — The system function failed recoverably at the first call.

e KIN_REPTD_SYSFUNC_ERR — The system function had repeated recoverable errors. No recovery is
possible.

Notes:
The components of vectors u_scale and f_scale should be strictly positive. KIN_SUCCESS=0, KIN_INI-
TIAL_GUESS_OK=1, and KIN_STEP_LT_STPTOL=2. All remaining return values are negative and therefore
atest flag < 0 will trap all KINSoI () failures.

5.5.4 Optional input functions

There are numerous optional input parameters that control the behavior of the KINSOL solver. KINSOL provides
functions that can be used to change these from their default values. Table 5.1 lists all optional input functions in
KINSOL which are then described in detail in the remainder of this section, beginning with those for the main KINSOL
solver and continuing with those for the KINLS linear solver interface.

‘We note that, on error return, all of these functions also send an error message to the error handler function. We also
note that all error return values are negative, so a test retval < 0 will catch any error.
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Table 5.1: Optional inputs for KINSOL and KINLS

Optional input

Function name

Default

KINSOL main solver

Error handler function

Pointer to an error file

Info handler function

Pointer to an info file

Data for problem-defining function
Verbosity level of output

Max. number of nonlinear iterations
No initial matrix setup

No residual monitoring

Max. iterations without matrix setup
Max. iterations without residual check
Form of 7 coeflicient

Constant value of i

Values of v and «

Values of w;,in, and wWoqe

Constant value of w

Lower bound on e

Max. scaled length of Newton step
Max. number of 5-condition failures
Rel. error for D.Q. Jv

Function-norm stopping tolerance
Scaled-step stopping tolerance
Inequality constraints on solution
Nonlinear system function

Return the newest fixed point iteration
Fixed point/Picard damping parameter
Anderson Acceleration subspace size
Anderson Acceleration damping parameter
Anderson Acceleration delay
Anderson Acceleration orthogonalization routine
KINLS linear solver interface
Jacobian function

Preconditioner functions and data
Jacobian-times-vector function and data
Jacobian-times-vector system function

KINSetErrHandlerFn()
KINSetErrFile()
KINSetInfoHandlerFn()
KINSetInfoFile()
KINSetUserData()
KINSetPrintLevel ()
KINSetNumMaxIters()
KINSetNoInitSetup()
KINSetNoResMon()
KINSetMaxSetupCalls()
KINSetMaxSubSetupCalls()
KINSetEtaForm()
KINSetEtaConstValue()
KINSetEtaParams ()
KINSetResMonParams ()
KINSetResMonConstValue()
KINSetNoMinEps ()
KINSetMaxNewtonStep ()
KINSetMaxBetaFails()
KINSetRelErrFunc()
KINSetFuncNormTol ()
KINSetScaledStepTol ()
KINSetConstraints()
KINSetSysFunc()
KINSetReturnNewest ()
KINSetDamping ()
KINSetMAA()
KINSetDampingAA()
KINSetDelayAA()
KINSetOrthAA()

KINSetJacFn()
KINSetPreconditioner()
KINSetJacTimesVecFn()
KINSetJacTimesVecSysFn()

internal fn.
stderr
internal fn.
stdout

NULL

0

200

SUNFALSE
SUNFALSE

10

5
KIN_ETACHOICE1
0.1

0.9 and 2.0
0.00001 and 0.9
0.9

SUNFALSE
1000|Dqu |2
10

v/ uround
uround'/3
uround?/?
NULL

none
SUNFALSE

1.0

0

1.0

0
KIN_ORTH_MGS

DQ

NULL, NULL, NULL
internal DQ, NULL
NULL

int KINSetErrFile(void *kin_mem, FILE *errfp)

The function KINSetErrFile () specifies the pointer to the file where all KINSOL messages should be directed
when the default KINSOL error handler function is used.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

* errfp — pointer to output file.

Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.
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Notes:
The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in which the KINSOL
memory pointer is NULL). This use of KINSetErrFile() is strongly discouraged.

Warning: If KINSetErrFile() isto be called, it should be called before any other optional input functions,
in order to take effect for any later error message.

int KINSetErrHandlerFn (void *kin_mem, KINErrHandlerFn ehfun, void *eh_data)

The function KINSetErrHandlerFn() specifies the optional user-defined function to be used in handling error
messages.

Arguments:
¢ kin_mem — pointer to the KINSOL memory block.
¢ ehfun - is the user’s CC error handler function (see §5.6.2).
* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:
e KIN_SUCCESS — The function ehfun and data pointer eh_data have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default internal error handler function directs error messages to the file specified by the file pointer
errfp (see KINSetErrFile() above).

Error messages indicating that the KINSOL solver memory is NULL will always be directed to stderr.

int KINSetInfoFile (void *kin_mem, FILE *infofp)

The function KINSetInfoFile() specifies the pointer to the file where all informative (non-error) messages
should be directed.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
» infofp — pointer to output file.
Return value:
¢ KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value for infofp is stdout.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

int KINSetInfoHandlerFn(void *kin_mem, KINInfoHandlerFn ihfun, void *ih_data)

The function KINSetInfoHandlerFn() specifies the optional user-defined function to be used in handling in-
formative (non-error) messages.

Arguments:
* kin_mem — pointer to the KINSOL memory block.

e ihfun - is the user’s CC information handler function (see §5.6.3).
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e ih_data — pointer to user data passed to ihfun every time it is called.

Return value:
* KIN_SUCCESS — The function ihfun and data pointer ih_data have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:

The default internal information handler function directs informative (non-error) messages to the file spec-
ified by the file pointer infofp (see KINSetInfoFile() above).

int KINSetPrintLevel (void *kin_mem, int printfl)
The function KINSetPrintLevel () specifies the level of verbosity of the output.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
» printfl - flag indicating the level of verbosity. Must be one of:
0 — no information is displayed.
1 — for each nonlinear iteration display the following information:
— the scaled Euclidean ¢5 norm of the system function evaluated at the current iterate,
— the scaled norm of the Newton step (only if using KIN_NONE), and
— the number of function evaluations performed so far.
2 —display level 1 output and the following values for each iteration:
- ||F(u)||py (only for KIN_NONE).
— ||F(u)|| pyr o0 (for KIN_NONE and KIN_LINESEARCH).
3 — display level 2 output plus
— additional values used by the global strategy (only if using KIN_LINESEARCH), and
— statistical information for iterative linear solver modules.
Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument printfl had an illegal value.

Notes:
The default value for print£fl is 0.

int KINSetUserData(void *kin_mem, void *user_data)

The function KINSetUserData() specifies the pointer to user-defined memory that is to be passed to all user-
supplied functions.

Arguments:
¢ kin_mem — pointer to the KINSOL memory block.
* user_data — pointer to the user-defined memory.
Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
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Notes:
If specified, the pointer to user_data is passed to all user-supplied functions that have it as an argument.
Otherwise, a NULL pointer is passed.

Warning: If user_data is needed in user linear solver or preconditioner functions, the call to KINSe-
tUserData () must be made before the call to specify the linear solver module.

int KINSetNumMaxIters(void *kin_mem, long int mxiter)

The function KINSetNumMaxIters () specifies the maximum number of nonlinear iterations allowed.
Arguments:

* kin_mem — pointer to the KINSOL memory block.

* mxiter — maximum number of nonlinear iterations.
Return value:

e KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT - The maximum number of iterations was non-positive.

Notes:
The default value for mxiter is MXITER_DEFAULT = 200.

int KINSetNoInitSetup (void *kin_mem, booleantype nolnitSetup)

The function KINSetNoInitSetup() specifies whether an initial call to the preconditioner or Jacobian setup
function should be made or not.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* noInitSetup — flag controlling whether an initial call to the preconditioner or Jacobian setup function
is made (pass SUNFALSE) or not made (pass SUNTRUE).

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value for noInitSetup is SUNFALSE, meaning that an initial call to the preconditioner or
Jacobian setup function will be made. A call to this function is useful when solving a sequence of problems,
in which the final preconditioner or Jacobian value from one problem is to be used initially for the next
problem.

int KINSetNoResMon (void *kin_mem, hooleantype noNNIResMon)

The function KINSetNoResMon () specifies whether or not the nonlinear residual monitoring scheme is used to
control Jacobian updating

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* noNNIResMon — flag controlling whether residual monitoring is used (pass SUNFALSE) or not used
(pass SUNTRUE).

Return value:
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* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
When using a direct solver, the default value for noNNIResMon is SUNFALSE, meaning that the nonlinear
residual will be monitored.

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetMaxSetupCalls(void *kin_mem, long int msbset)

The function KINSetMaxSetupCalls () specifies the maximum number of nonlinear iterations that can be per-
formed between calls to the preconditioner or Jacobian setup function.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* msbset — maximum number of nonlinear iterations without a call to the preconditioner or Jacobian
setup function. Pass O to indicate the default.

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument msbset was negative.

Notes:
The default value for msbset is MSBSET_DEFAULT=10. The value of msbset should be a multiple of
msbsetsub (see KINSetMaxSubSetupCalls()).

int KINSetMaxSubSetupCalls(void *kin_mem, long int msbsetsub)

The function KINSetMaxSubSetupCalls() specifies the maximum number of nonlinear iterations between
checks by the residual monitoring algorithm.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* msbsetsub — maximum number of nonlinear iterations without checking the nonlinear residual. Pass
0 to indicate the default.

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument msbsetsub was negative.

Notes:
The default value for msbsetsub is MSBSET_SUB_DEFAULT = 5. The value of msbset (see KINSet-
MaxSetupCalls()) should be a multiple of msbsetsub.

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.
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int KINSetEtaForm(void *kin_mem, int etachoice)

The function KINSetEtaForm() specifies the method for computing the value of the 7 coefficient used in the
calculation of the linear solver convergence tolerance.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* etachoice —flag indicating the method for computing 7. The value must be one of KIN_ETACHOICE1
, KIN_ETACHOICE2 , or KIN_ETACONSTANT (see Chapter §2 for details).

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument etachoice had an illegal value.

Notes:
The default value for etachoice is KIN_ETACHOICE1l. When using either KIN_ETACHOICE1 or KIN_-
ETACHOICE2 the safeguard

Tin = maX(ﬁn, nsafe)

is applied when g, > 0.1. For KIN_ETACHOICE1

S

1+
J— 2
Tsafe = 1,1

and for KIN_ETACHOICE?2

Nsafe = V1 —1

where v and « can be set with KINSetEtaParams ().
The following safeguards are always applied when using either KIN_ETACHOICE1 or KIN_ETACHOICE2 so
that TImin < Mn < TJmax -

n = maX(nm nmin)
N, = Min(Ny,, Mmax)
where Nmin = 1074 and npayx = 0.9.

int KINSetEtaConstValue (void *kin_mem, realtype eta)

The function KINSetEtaConstValue () specifies the constant value for ) in the case etachoice = KIN_-
ETACONSTANT.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* eta — constant value for 7. Pass 0.0 to indicate the default.
Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument eta had an illegal value

Notes:
The default value for eta is 0.1. The legal values are 0.0 < eta < 1.0.
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int KINSetEtaParams (void *kin_mem, realtype egamma, realtype ealpha)

The function KINSetEtaParams () specifies the parameters v and « in the formula for 7, in the case etachoice
= KIN_ETACHOICE2.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
* egamma — value of the y parameter. Pass 0.0 to indicate the default.
* ealpha — value of the v parameter. Pass 0.0 to indicate the default.
Return value:
* KIN_SUCCESS — The optional values have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — One of the arguments egamma or ealpha had an illegal value.

Notes:
The default values for egamma and ealpha are 0.9 and 2.0, respectively. The legal values are 0.0 < egamma
< 1.0and 1.0 < ealpha < 2.0.

int KINSetResMonConstValue (void *kin_mem, realtype omegaconst)

The function KINSetResMonConstValue () specifies the constant value for w when using residual monitoring.
Arguments:

* kin_mem — pointer to the KINSOL memory block.

* omegaconst — constant value for w. Passing 0.0 results in using Eqn. (2.4).
Return value:

e KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument omegaconst had an illegal value

Notes:
The default value for omegaconst is 0.9. The legal values are 0.0 < omegaconst < 1.0.

int KINSetResMonParams (void *kin_mem, realtype omegamin, realtype omegamax)
The function KINSetResMonParams () specifies the parameters w,,;, and wy,q, in the formula (2.4) for w.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
e omegamin — value of the w,,;, parameter. Pass 0.0 to indicate the default.
* omegamax — value of the w,, 4, parameter. Pass 0.0 to indicate the default.
Return value:
* KIN_SUCCESS — The optional values have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — One of the arguments omegamin or omegamax had an illegal value.

Notes:
The default values for omegamin and omegamax are 0.00001 and 0.9, respectively. The legal values are
0.0 < omegamin < omegamax < 1.0.
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Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetNoMinEps (void *kin_mem, booleantype noMinEps)

The function KINSetNoMinEps () specifies a flag that controls whether or not the value of ¢, the scaled linear
residual tolerance, is bounded from below.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* noMinEps — flag controlling the bound on e. If SUNFALSE is passed the value of € is constrained and
if SUNTRUE is passed then ¢ is not constrained.

Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value for noMinEps is SUNFALSE, meaning that a positive minimum value, equal to 0.01° %
“fnormtol‘, is applied to € (see KINSetFuncNormTol () below).

int KINSetMaxNewtonStep (void *kin_mem, realtype mxnewtstep)
The function KINSetMaxNewtonStep () specifies the maximum allowable scaled length of the Newton step.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

* mxnewtstep — maximum scaled step length (> 0.0). Pass 0.0 to indicate the default.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The input value was negative.

Notes:
The default value of mxnewtstep is 1000 ||uo|| p, , where ug is the initial guess.

int KINSetMaxBetaFails (void *kin_mem, realtype mxnbcf)

The function KINSetMaxBetaFails () specifies the maximum number of 3-condition failures in the linesearch
algorithm.

Arguments:

* kin_mem — pointer to the KINSOL memory block.

¢ mxnbcf — maximum number of 3 -condition failures. Pass 0.0 to indicate the default.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — mxnbcf was negative.

Notes:
The default value of mxnbcf is MXNBCF_DEFAULT = 10.
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int KINSetRelErrFunc (void *kin_mem, realtype relfunc)

The function KINSetRelErrFunc () specifies the relative error in computing F'(u), which is used in the differ-

ence quotient approximation to the Jacobian matrix [see Eq. (2.6) ] or the Jacobian-vector product [see Eq. (2.8)
]. The value stored is v/ relfunc.

Arguments:

* kin_mem — pointer to the KINSOL memory block.

* relfunc —relative error in F'(u) (relfunc > 0.0). Pass 0.0 to indicate the default.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The relative error was negative.

Notes:
The default value for relfunc is U = unit roundoff.

int KINSetFuncNormTol (void *kin_mem, realtype fnormtol)

The function KINSetFuncNormTol () specifies the scalar used as a stopping tolerance on the scaled maximum
norm of the system function F'(u).

Arguments:
* kin_mem — pointer to the KINSOL memory block.

+ fnormtol - tolerance for stopping based on scaled function norm (> 0.0). Pass 0.0 to indicate the
default.

Return value:

e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT - The tolerance was negative.

Notes:

The default value for fnormtol is (unit roundoff) /3.
int KINSetScaledStepTol (void *kin_mem, realtype scsteptol)

The function KINSetScaledStepTol () specifies the scalar used as a stopping tolerance on the minimum scaled
step length.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

 scsteptol — tolerance for stopping based on scaled step length (> 0.0). Pass 0.0 to indicate the
default.

Return value:

* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT - The tolerance was non-positive.

Notes:

The default value for scsteptol is (unit roundoff) 2/3.
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int KINSetConstraints (void *kin_mem, N_Vector constraints)

The function KINSetConstraints () specifies a vector that defines inequality constraints for each component
of the solution vector u.

Arguments:
* kin_mem — pointer to the KINSOL memory block.

e constraints — vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on u;.

1.0 then u; will be constrained to be u; > 0.0.

— —1.0 then u; will be constrained to be u; < 0.0.

2.0 then wu; will be constrained to be u; > 0.0.

— —2.0 then u; will be constrained to be u; < 0.0.

Return value:

e KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The constraint vector contains illegal values.
Notes:

The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. If a NULL vector is supplied, constraint checking will be disabled. The function

creates a private copy of the constraints vector. Consequently, the user-supplied vector can be freed after
the function call, and the constraints can only be changed by calling this function.

int KINSetSysFunc (void *kin_mem, K/INSysFn func)

The function KINSetSysFunc () specifies the user-provided function that evaluates the nonlinear system func-
tion F'(u) or G(u).

Arguments:

e kin_mem — pointer to the KINSOL memory block.

* func - user-supplied function that evaluates F'(u) (or G(u) for fixed-point iteration).
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument func was NULL.
Notes:

The nonlinear system function is initially specified through KINInit (). The option of changing the system

function is provided for a user who wishes to solve several problems of the same size but with different
functions.

int KINSetReturnNewest (void *kin_mem, booleantype ret_newest)

The function KINSetReturnNewest () specifies if the fixed point iteration should return the newest iteration or
the iteration consistent with the last function evaluation.

Arguments:

* kin_mem — pointer to the KINSOL memory block.
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e ret_newest — SUNTRUE — return the newest iteration. SUNFALSE — return the iteration consistent with
the last function evaluation.

Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value of ret_newest is SUNFALSE.

int KINSetDamping (void *kin_mem, realtype beta)

The function KINSetDamping () specifies the value of the damping parameter in the fixed point or Picard itera-
tion.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
¢ beta - the damping parameter value 0 < beta < 1.0.
Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument beta was zero or negative.

Notes:

This function sets the damping parameter value, which needs to be greater than zero and less than one
if damping is to be used. A value > 1 disables damping. The default value of beta is 1.0, indicating no
damping. To set the damping parameter used in Anderson acceleration see KINSetDampingAA (). With the
fixed point iteration the difference between successive iterations is used to determine convergence. As such,
when damping is enabled, the tolerance used to stop the fixed point iteration is scaled by beta to account
for the effects of damping. If beta is extremely small (close to zero), this can lead to an excessively tight
tolerance.

int KINSetMAA (void *kin_mem, long int maa)

The function KINSetMAA() specifies the size of the subspace used with Anderson acceleration in conjunction
with Picard or fixed-point iteration.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* maa — subspace size for various methods. A value of 0 means no acceleration, while a positive value
means acceleration will be done.

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT - The argument maa was negative.

Notes:
This function sets the subspace size, which needs to be > 0 if Anderson Acceleration is to be used. It
also allocates additional memory necessary for Anderson Acceleration. The default value of maa is O,
indicating no acceleration. The value of maa should always be less than mxiter. This function MUST be
called before calling KINInit (). If the user calls the function KINSetNumMaxIters, that call should be
made before the call to KINSetMAA, as the latter uses the value of mxiter.
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int KINSetDampingAA (void *kin_mem, realtype beta)
The function KINSetDampingAA () specifies the value of the Anderson acceleration damping paramter.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
* beta — the damping parameter value 0 < beta < 1.0.
Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT - The argument beta was zero or negative.

Notes:
This function sets the damping parameter value, which needs to be greater than zero and less than one if
damping is to be used. A value > 1 disables damping. The default value of beta is 1.0, indicating no
damping. When delaying the start of Anderson acceleration with KINSetDelayAA(), use KINSetDamp-
ing () to set the damping parameter in the fixed point or Picard iterations before Anderson acceleration
begins. When using Anderson acceleration without delay, the value provided to KINSetDampingAA() is
applied to all iterations and any value provided to KINSetDamping () is ignored.

int KINSetDelayAA (void *kin_mem, long int delay)
The function KINSetDelayAA() specifies the number of iterations to delay the start of Anderson acceleration.

Arguments:

* kin_mem — pointer to the KINSOL memory block.

* delay — the number of iterations to delay Anderson acceleration.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument delay was less than zero.

Notes:
The default value of delay is 0, indicating no delay.

int KINSetOrthAA (void *kin_mem, int orthaa)

The function KINSetOrthAA () specifies the orthogonalization routine to be used in the QR factorization portion
of Anderson acceleration.

Arguments:
* kin_mem — pointer to the KINSOL memory block.

 orthaa - the orthogonalization routine parameter. Can be set to any of
the following

KIN_ORTH_MGS — Modified Gram Schmidt (default)
KIN_ORTH_ICWY — Inverse Compact WY Modified Gram Schmidt

KIN_ORTH_CGS2 — Classical Gram Schmidt with Reorthogonalization (CGS2)

KIN_ORTH_DCGS2 — Classical Gram Schmidt with Delayed Reorthogonlization
Return value:

* KIN_SUCCESS — The optional value has been successfully set.
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e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument orthaa was not one of the predefined orthogonalization routines
defined in KINSOL.

Note: This function must be called before calling KINInit ().

An example of how to use this function can be found in examples/kinsol/serial/kinAnalytic_£p.c

5.5.4.1 Linear solver interface optional input functions

For matrix-based linear solver modules, the KINLS solver interface needs a function to compute an approximation
to the Jacobian matrix J(u). This function must be of type KINLsJacFn. The user can supply a Jacobian function,
or if using the SUNMATRIX_DENSE or SUNMATRIX_BAND modules for J can use the default internal difference
quotient approximation that comes with the KINLS solver. To specify a user-supplied Jacobian function jac, KINLS
provides the function KINSetJacFn(). The KINLS interface passes the pointer user_data to the Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian function, without using global data in the program. The pointer user_data may be specified
through KINSetUserData().

int KINSetJacFn(void *kin_mem, KINLsJacFn jac)

The function KINSetJacFn () specifies the Jacobian approximation function to be used for a matrix-based solver
within the KINLS interface.

Arguments:

* kin_mem — pointer to the KINSOL solver object.

* jac —user-defined Jacobian approximation function. See KINLsJacFn for more details.
Return value:

* KINLS_SUCCESS — The optional value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver interface has not been initialized.

Notes:
This function must be called after the KINLS linear solver interface has been initialized through a call to
KINSetLinearSolver(). By default, KINLS uses an internal difference quotient function for the SUN-
MATRIX_DENSE and SUNMATRIX_BAND modules. If NULL is passed to jac, this default function is
used. An error will occur if no jac is supplied when using other matrix types.

Warning: The previous routine KIND1sSetJacFn() is now a wrapper for this routine, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new routine name soon.

When using matrix-free linear solver modules, the KINLS linear solver interface requires a function to compute an
approximation to the product between the Jacobian matrix J(u) and a vector v. The user can supply his/her own
Jacobian-times-vector approximation function, or use the internal difference quotient approximation that comes with
the KINLS solver interface.

A user-defined Jacobian-vector function must be of type KINLsJacTimesVecFn and can be specified through a call to
KINLsSetJacTimesVecFn() (see §5.6.5 for specification details). The pointer user_data received through KINSe-
tUserData() (or a pointer to NULL if user_data was not specified) is passed to the Jacobian-times-vector function
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jtimes each time it is called. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied functions without using global data in the program.

int KINSetJacTimesVecFn(void *kin_mem, KINLsJacTimesVecFn jtimes)
The function KINSetJacTimesVecFn() specifies the Jacobian-vector product function.
Arguments:
e kin_mem — pointer to the KINSOL memory block.
* jtimes — user-defined Jacobian-vector product function.
Return value:
e KINLS_SUCCESS — The optional value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

e KINLS_SUNLS_FAIL — An error occurred when setting up the system matrix-times-vector routines in
the SUNLINSOL object used by the KINLS interface.

Notes:
The default is to use an internal difference quotient for jtimes. If NULL is passed as jtimes, this default
is used. This function must be called after the KINLS linear solver interface has been initialized through
a call to KINSetLinearSolver (). The function type KINLsJacTimesVecFn is described in §5.6.5. The
previous routine KINSpilsSetJacTimesVecFn() is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new routine name soon.

When using the internal difference quotient the user may optionally supply an alternative system function for use in
the Jacobian-vector product approximation by calling KINSetJacTimesVecSysFn(). The alternative system func-
tion should compute a suitable (and differentiable) approximation of the system function provided to KINInit (). For
example, as done in [23] when solving the nonlinear systems that arise in the implicit integration of ordinary differ-
ential equations, the alternative function may use lagged values when evaluating a nonlinearity to avoid differencing a
potentially non-differentiable factor.

int KINSetJacTimesVecSysFn(void *kin_mem, KINSysFn jtimesSysFn)

The function KINSetJacTimesVecSysFn() specifies an alternative system function for use in the internal
Jacobian-vector product difference quotient approximation.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* jtimesSysFn —is the CC function which computes the alternative system function to use in Jacobian-
vector product difference quotient approximations. This function has the form func(u, fval,
user_data). (For full details see §5.6.1.)

Return value:
e KINLS_SUCCESS — The optional value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
e KINLS_ILL_INPUT — The internal difference quotient approximation is disabled.

Notes:
The default is to use the system function provided to KINInit () in the internal difference quotient. If the
input system function is NULL, the default is used. This function must be called after the KINLS linear
solver interface has been initialized through a call to KINSetLinearSolver().
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When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to KINLS using the
function KINSetPreconditioner(). The psetup function supplied to this routine should handle evaluation and
preprocessing of any Jacobian data needed by the user’s preconditioner solve function, psolve. Both of these functions
are fully specified in §5.6. The user data pointer received through KINSetUserData() (or a pointer to NULL if user
data was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

int KINSetPreconditioner (void *kin_mem, KINLsPrecSetupFn psetup, KINLsPrecSolveFn psolve)
The function KINSetPreconditioner () specifies the preconditioner setup and solve functions.

Arguments:
e kin_mem — pointer to the KINSOL solver object.

* psetup —user-defined function to set up the preconditioner. See KINLsPrecSetupFn for more details.
Pass NULL if no setup is necessary.

¢ psolve —user-defined preconditioner solve function. See KINLsPrecSolveFn for more details.
Return value:

e KINLS_SUCCESS — The optional values have been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

e KINLS_SUNLS_FAIL — An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the KINLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning). This function must be called after the
KINLS linear solver interface has been initialized through a call to KINSetLinearSolver().

Warning: The previous routine KINSpilsSetPreconditioner() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be removed in future releases, so we recom-
mend that users transition to the new routine name soon.

5.5.5 Optional output functions

KINSOL provides an extensive list of functions that can be used to obtain solver performance information. Table
5.2 lists all optional output functions in KINSOL, which are then described in detail in the remainder of this section,
beginning with those for the main KINSOL solver and continuing with those for the KINLS linear solver interface.
Where the name of an output from a linear solver module would otherwise conflict with the name of an optional output
from the main solver, a suffix LS (for Linear Solver) has been added here (e.g., 1enrwLS).
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Table 5.2: Optional outputs from KINSOL and KINLS

Optional output

Function name

KINSOL main solver

Size of KINSOL real and integer workspaces
Number of function evaluations

Number of nonlinear iterations

Number of (3-condition failures

Number of backtrack operations

Scaled norm of F

Scaled norm of the step

User data pointer

Print all statistics

Name of constant associated with a return flag
KINLS linear solver interface

Stored Jacobian of the nonlinear system
Nonlinear iteration number at which the Jacobian was evaluated
Size of real and integer workspaces

No. of Jacobian evaluations

. of F calls for D.Q. Jacobian[-vector] evals.
. of linear iterations

. of linear convergence failures

. of preconditioner evaluations

. of preconditioner solves

No. of Jacobian-vector product evaluations
Last return from a KINLS function

Name of constant associated with a return flag

KINGetWorkSpace ()
KINGetNumFuncEvals()
KINGetNumNonlinSolvIters()
KINGetNumBetaCondFails()
KINGetNumBacktrackOps()
KINGetFuncNorm()
KINGetStepLength()
KINGetUserData()
KINPrintAllStats()
KINGetReturnFlagName ()

KINGetJac()
KINGetJacNumIters()
KINGetLinWorkSpace ()
KINGetNumJacEvals()
KINGetNumLinFuncEvals()
KINGetNumLinIters()
KINGetNumLinConvFails ()
KINGetNumPrecEvals()
KINGetNumPrecSolves()
KINGetNumJtimesEvals()
KINGetLastLinFlag()
KINGetLinReturnFlagName ()

5.5.5.1 Main solver optional output functions

KINSOL provides several user-callable functions that can be used to obtain different quantities that may be of interest
to the user, such as solver workspace requirements and solver performance statistics. These optional output functions
are described next.

int KINGetWorkSpace (void *kin_mem, long int lenrw, long int leniw)
The function KINGetWorkSpace () returns the KINSOL integer and real workspace sizes.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
e lenrw — the number of realtype values in the KINSOL workspace.
* leniw — the number of integer values in the KINSOL workspace.
Return value:
* KIN_SUCCESS — The optional output values have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
KINSOL solver In terms of the problem size NN, the actual size of the real workspace is 17+ 5N realtype
words. The real workspace is increased by an additional N words if constraint checking is enabled (see
KINSetConstraints()).
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The actual size of the integer workspace (without distinction between int and long int) is 22 + 5N
(increased by NV if constraint checking is enabled).

int KINGetNumFuncEvals (void *kin_mem, long int nfevals)
The function KINGetNumFuncEvals () returns the number of evaluations of the system function.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

» nfevals — number of calls to the user-supplied function that evaluates F'(u).
Return value:

* KIN_SUCCESS — The optional output value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetNumNonlinSolvIters (void *kin_mem, long int nniters)
The function KINGetNumNonlinSolvIters() returns the number of nonlinear iterations.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
e nniters — number of nonlinear iterations.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetNumBetaCondFails (void *kin_mem, long int nbcfails)

The function KINGetNumBetaCondFails () returns the number of 5-condition failures.
Arguments:

e kin_mem — pointer to the KINSOL memory block.

¢ nbcfails — number of [ -condition failures.
Return value:

* KIN_SUCCESS — The optional output value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetNumBacktrackOps (void *kin_mem, long int nbacktr)

The function KINGetNumBacktrackOps () returns the number of backtrack operations (step length adjustments)
performed by the line search algorithm.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* nbacktr — number of backtrack operations.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

86 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems



User Documentation for KINSOL, v6.6.0

int KINGetFuncNorm(void *kin_mem, realtype fnorm)

The function KINGetFuncNorm() returns the scaled Euclidean /5 norm of the nonlinear system function F'(u)
evaluated at the current iterate.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
 fnorm - current scaled norm of F'(u).
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetStepLength(void *kin_mem, realtype steplength)

The function KINGetStepLength() returns the scaled Euclidean /5 norm of the step used during the previous
iteration.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
¢ steplength — scaled norm of the Newton step.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetUserData (void *kin_mem, void **user_data)
The function KINGetUserData () returns the user data pointer provided to KINSetUserData().

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* user_data — memory reference to a user data pointer.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
New in version 6.3.0.

int KINPrintAllStats (void *cvode_mem, FILE *outfile, SUNOutputFormat fmt)

The function KINPrintAllStats() outputs all of the nonlinear solver, linear solver, and other statistics.
Arguments:
e kin_mem — pointer to the KINSOL memory block.
* outfile — pointer to output file.
e fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl,
valuel,key2,value2,...

Return value:

* KIN_SUCCESS — The output was successfully.
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e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_TILL_INPUT — An invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 6.2.0.

char *KINGetReturnFlagName (int flag)
The function KINGetReturnFlagName () returns the name of the KINSOL constant corresponding to flag.

Arguments:
e flag - return flag from a KINSOL function.

Return value:

* A string containing the name of the corresponding constant

5.5.5.2 KINLS linear solver interface optional output functions

The following optional outputs are available from the KINLS modules:

int KINGetJac (void *kin_mem, SUNMatrix *J])
Returns the internally stored copy of the Jacobian matrix of the nonlinear system function.

Parameters
* kin_mem — the KINSOL solver object
* J — the Jacobian matrix
Return values
* KINLS_SUCCESS - the output value has been successfully set
e KINLS_MEM_NULL — kin_mem was NULL
* KINLS_LMEM_NULL - the linear solver interface has not been initialized

Warning: With linear solvers that overwrite the input Jacobian matrix as part of the linear solver setup (e.g.,
performing an in-place LU factorization) the matrix returned by KINGetJac () may differ from the matrix
returned by the last Jacobian evaluation.

Warning: This function is provided for debugging purposes and the values in the returned matrix should
not be altered.

int KINGetJacNumIters (void *kin_mem, sunrealtype *nni_J)
Returns the nonlinear iteration number at which the Jacobian was evaluated.

Parameters
e kin_mem — the KINSOL memory structure

e nni_J — the nonlinear iteration number
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Return values
* KINLS_SUCCESS - the output value has been successfully set
e KINLS_MEM_NULL — kin_mem was NULL
» KINLS_LMEM_NULL - the linear solver interface has not been initialized

int KINGetLinWorkSpace (void *kin_mem, long int *lenrwLS, long int *leniwLS)

The function KINGetLinlWorkSpace () returns the sizes of the real and integer workspaces used by the KINLS
linear solver interface.

Arguments:

e kin_mem — pointer to the KINSOL solver object.

* lenrwLS — the number of real values in the KINLS workspace.

* leniwLS — the number of integer values in the KINLS workspace.
Return value:

e KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of KINLS is not included in this report.

Warning: The previous routines KIND1sGetWorkspace () and KINSpilsGetWorkspace() are now dep-
recated.

int KINGetNumJacEvals (void *kin_mem, long int *njevals)

The function KINGetNumJacEvals () returns the cumulative number of calls to the KINLS Jacobian approxi-
mation function.

Arguments:

e kin_mem — pointer to the KINSOL solver object.

* njevals — the cumulative number of calls to the Jacobian function total so far.
Return value:

e KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Warning: The previous routine KIND1sGetNumJacEvals() is now deprecated,

int KINGetNumLinFuncEvals (void *kin_mem, long int *nrevalsLS)

The function KINGetNumLinResEvals () returns the cumulative number of calls to the user residual function
due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approximation.

Arguments:
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* kin_mem — pointer to the KINSOL solver object.

* nrevalsLS — the cumulative number of calls to the user residual function.
Return value:

* KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

* KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Notes:
The value nrevalsLS is incremented only if one of the default internal difference quotient functions is
used.

Warning: The previous routines KIND1sGetNumRhsEvals () and KINSpilsGetNumRhsEvals() are now
deprecated.

int KINGetNumLinIters (void *kin_mem, long int *nliters)

The function KINGetNumLinIters () returns the cumulative number of linear iterations.
Arguments:

e kin_mem — pointer to the KINSOL solver object.

* nliters — the current number of linear iterations.
Return value:

» KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Warning: The previous routine KINSpilsGetNumLinIters() is now deprecated.

int KINGetNumLinConvFails (void *kin_mem, long int *nlcfails)

The function KINGetNumLinConvFails () returns the cumulative number of linear convergence failures.
Arguments:

* kin_mem — pointer to the KINSOL solver object.

* nlcfails - the current number of linear convergence failures.
Return value:

* KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Warning: The previous routine KINSpilsGetNumConvFails () is now deprecated.
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int KINGetNumPrecEvals (void *kin_mem, long int *npevals)

The function KINGetNumPrecEvals () returns the cumulative number of preconditioner evaluations, i.e., the
number of calls made to psetup.

Arguments:
* kin_mem — pointer to the KINSOL solver object.
¢ npevals — the cumulative number of calls to psetup.
Return value:
* KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Warning: The previous routine KINSpilsGetNumPrecEvals () is now deprecated.

int KINGetNumPrecSolves (void *kin_mem, long int *npsolves)

The function KINGe tNumPrecSolves () returns the cuamulative number of calls made to the preconditioner solve
function, psolve.

Arguments:
* kin_mem — pointer to the KINSOL solver object.
¢ npsolves — the cumulative number of calls to psolve.
Return value:
e KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Warning: The previous routine KINSpilsGetNumPrecSolves() is now deprecated.

int KINGetNumJtimesEvals (void *kin_mem, long int *njvevals)

The function KINGetNumJtimesEvals () returns the cumulative number of calls made to the Jacobian-vector
product function, jtimes.

Arguments:
e kin_mem — pointer to the KINSOL solver object.
e njvevals — the cumulative number of calls to jtimes.
Return value:
» KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Warning: The previous routine KINSpilsGetNumJtimesEvals() is now deprecated.
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int KINGetLastLinFlag(void *kin_mem, long int *Isflag)
The function KINGetLastLinFlag () returns the last return value from an KINLS routine.

Arguments:
* kin_mem — pointer to the KINSOL solver object.
* 1sflag — the value of the last return flag from an KINLS function.
Return value:
e KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Notes:
If the KINLS setup function failed (i.e., KINSolve () returned KIN_LSETUP_FAIL) when using the SUN-
LINSOL_DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is equal to the column index
(numbered from one) at which a zero diagonal element was encountered during the LU factorization of the
(dense or banded) Jacobian matrix.

If the KINLS setup function failed when using another SUNLinearSolver object, then 1sflag will be
SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or SUNLS_PACKAGE_FAIL_UNREC.

If the KINLS solve function failed (KINSolve () returned KIN_LSOLVE_FAIL), 1sflag contains the error
return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL, indicating that the
SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in
the J * v function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve
failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure (generated only
in SPGMR or SPFGMR); SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be singular
during the QR solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an
unrecoverable failure in an external iterative linear solver package.

Warning: The previous routines KIND1sGetLastFlag() and KINSpilsGetLastFlag() are now depre-
cated.

char *KINGetLinReturnFlagName (long int Isflag)
The function KINGetLinReturnFlagName () returns the name of the KINLS constant corresponding to 1sflag.

Arguments:
e flag - the flag returned by a call to an KINSOL function
Return value:

e char* — the flag name string or if 1 < 1sflag < N (LU factorization failed), this function returns
“NONE”.

Warning: The previous routines KIND1sGetReturnFlagName () and KINSpilsGetReturnFlagName ()
are now deprecated.
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5.6 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a function that handles
error and warning messages, (optionally) a function that handles informational messages, (optionally) one or two func-
tions that provides Jacobian-related information for the linear solver, and (optionally) one or two functions that define
the preconditioner for use in any of the Krylov iterative algorithms.

5.6.1 Problem defining function

The user must provide a function of type KINSysFn defined as follows:
typedef int (FKINSysFn)(N_Vector u, N_Vector fval, void *user_data)

This function computes the F'(u) (or G(u) for fixed-point iteration and Anderson acceleration) for a given value
of the vector u.

Arguments:
e u —is the current value of the dependent variable vector, u
 fval — is the output vector F'(u)

* user_data —is a pointer to user data, the same as the user_data pointer parameter passed to KIN-
SetUserData()

Return value:
An KINSysFn function type should return a value of 0 if successful, a positive value if a recoverable error
occurred (in which case KINSOL will attempt to correct), or a negative value if a nonrecoverable error
occurred. In the last case, the integrator halts. If a recoverable error occurred, the integrator will attempt
to correct and retry.

Notes:
Allocation of memory for fval is handled within KINSOL.

5.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
KINSetErrFile()), the user may provide a function of type KINErrHandlerFn to process any such messages. The
function type KINErrHandlerFn is defined as follows:

typedef void (*KINErrHandlerFn)(int error_code, const char *module, const char *function, char *msg, void
*user_data)

This function processes error and warning messages from KINSOL and its sub-modules.
Arguments:

e error_code — is the error code

* module — is the name of the KINSOL module reporting the error

e function - is the name of the function in which the error occurred

e eH_data — is a pointer to user data, the same as the eh_data parameter passed to KINSetErrHan-
dlerFn()

Return value:
This function has no return value.
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Notes:
error_code is negative for errors and positive (KIN_WARNING) for warnings. If a function that returns a
pointer to memory encounters an error, it sets error_code to 0.

5.6.3 Informational message handler function

As an alternative to the default behavior of directing informational (meaning non-error) messages to the file pointed
to by infofp (see KINSetInfoFile()), the user may provide a function of type KINInfoHandlerFn to process any
such messages. The function type KINInfoHandlerFn is defined as follows:

typedef void (*KINInfoHandlerFn)(const char *module, const char *function, char *msg, void *ih_data)
This function processes error and warning messages from KINSOL and its sub-modules.

Arguments:
* error_code —is the error code
* module — is the name of the KINSOL module reporting the error
e function — is the name of the function in which the error occurred

* ih_data —is a pointer to user data, the same as the ih_data parameter passed to KINSetInfoHan-
dlerFn()

Return value:
This function has no return value.

5.6.4 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL SUNMatrix object was supplied to KINSetLinear-
Solver()), the user may provide a function of type KINLsJacFn defined as follows:

typedef int (*KINLsJacFn)(N_Vector u, N_Vector fu, SUNMatrix J, void *user_data, N_Vector tmpl, N_Vector
tmp2)

This function computes the Jacobian matrix J(u) (or an approximation to it).
Arguments:

e u —is the current (unscaled) iterate.

 fu - is the current value of the vector, F'(u).

* J —is the output (approximate) Jacobian matrix (of type SUNMatrix), F”(u).

* user_data - is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

e tmpl, tmp2, — are pointers to memory allocated for variables of type N_Vector which can be used by
KINLsJacFn function as temporary storage or work space.

Return value:
An KINLsJacFn should return O if successful, or a non-zero value otherwise.

Notes:
Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see Chapter §7 for details).
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With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(u) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need to be
loaded into J.

If the user’s KINLsJacFn function uses difference quotient approximations, it may need to access quantities
not in the call list. These quantities may include the scale vectors and the unit roundoff. To obtain the scale
vectors, the user will need to add to user_data pointers to u_scale and/or £_scale as needed. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N x N dense matrix J with an approximation to
the Jacobian matrix J(u) at the point (u). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying
representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i, j)-th element
of the dense matrix J (with i, j= 0...N—1). This macro is meant for small problems for which efficiency
of access is not a major concern. Thus, in terms of the indices m and n ranging from 1 to N, the Jacobian
element J,, ,, can be set using the statement SM_ELEMENT_D(J, m-1, n-1) =J,, ,. Alternatively, SM_-
COLUMN_D(J, j) returns a pointer to the first element of the j-th column of J (with j=0...N — 1), and
the elements of the j-th column can then be accessed using ordinary array indexing. Consequently, J,, ,,
can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1] = .J,, ,. For large
problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that both of these
macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor macros are
documented in §7.3.

banded:

A user-supplied banded Jacobian function must load the N x N banded matrix J with an approximation
to the Jacobian matrix J(u) at the point (u). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write banded matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j) ref-
erences the (i, j)-th element of the banded matrix J, counting from 0. This macro is meant for use in
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and
n ranging from 1 to N with (m, n) within the band defined by mupper and mlower, the Jacobian element
Jm n can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) =J,, ,. The elements within the
band are those with -mupper < m-n < mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to
the diagonal element of the j-th column of J, and if we assign this address to realtype *col_j, then
the i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j), counting from
0. Thus, for (m,n) within the band, J,, ,, can be loaded by setting col_n = SM_COLUMN_B(J, n-1);
and SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) =J,, ,. The elements of the j-th column can also be
accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from —mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the SM_-
ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in §7.6.

sparse:

A user-supplied sparse Jacobian function must load the N x N compressed-sparse-column or compressed-
sparse-row matrix J with an approximation to the Jacobian matrix J(u) at the point (u). Storage for J
already exists on entry to this function, although the user should ensure that sufficient space is allocated
in J to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object may
be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ. The SUNMATRIX_SPARSE
type and accessor macros are documented in §7.8.
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Warning: The previous function type KIND1sJacFn() is identical to KINLsJacFn, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new function type name soon.

5.6.5 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMatrix was supplied to KINSetLinearSolver()),
the user may provide a function of type KINLsJacTimesVecFn in the following form, to compute matrix-vector prod-
ucts Jv. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*KINLsJacTimesVecFn)(N_Vector v, N_Vector Jv, N_Vector u, booleantype *new_u, void *user_data)

This function computes the product Jv (or an approximation to it).
Arguments:
* v —is the vector by which the Jacobian must be multplied to the right.
e Jv —is the computed output vector.
* u —is the current value of the dependent variable vector.

* user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the Jacobian-times-vector function should be 0 if successful. If a recoverable failure
occurred, the return value should be positive. In this case, KINSOL will attempt to correct by calling the
preconditioner setup function. If this information is current, KINSOL halts. If the Jacobian-times-vector
function encounters an unrecoverable error, it should return a negative value, prompting KINSOL to halt.

Notes:
If a user-defined routine is not given, then an internal jtimes function, using a difference quotient approx-
imation, is used.

This function must return a value of J * v that uses the current value of .J, i.e. as evaluated at the current
U.

If the user’s KINLsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These might include the scale vectors and the unit roundoff. To obtain the
scale vectors, the user will need to add to user_data pointers to u_scale and/or £_scale as needed. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

Warning: The previous function type KINSpilsJacTimesVecFn is identical to KINLsJacTimesVecFn,
and may still be used for backward-compatibility. However, this will be removed in future releases, so we
recommend that users transition to the new function type name soon.
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5.6.6 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver solver module, then the user must provide a
function to solve the linear system Pz = r where P is the preconditioner matrix which approximates (at least crudely)
the Jacobian matrix J = F’(u). This function must be of type KINLsPrecSolveFn, defined as follows:

typedef int (*KINLsPrecSolveFn)(N_Vector u, N_Vector uscale, N_Vector fval, N_Vector fscale, N_Vector v, void
*user_data)

This function solves the preconditioning system Pz = r.
Arguments:
¢ u —is the current (unscaled) value of the iterate.
* uscale —is a vector containing diagonal elements of the scaling matrix u
o fval —is the vector F'(u) evaluated at u
» fscale —is a vector containing diagonal elements of the scaling matrix for fval

* v —on inpuut, v is set to the right-hand side vector of the linear system, r. On output, v must contain
the solution z of the linear system Pz = r

* user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the preconditioner solve function should be 0 if successful, positive for a recoverable
error, or negative for an unrecoverable error.

Notes:
If the preconditioner solve function fails recoverably and if the preconditioner information (set by the pre-
conditioner setup function) is out of date, KINSOL attempts to correct by calling the setup function. If the
preconditioner data is current, KINSOL halts.

5.6.7 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then this needs to be
done in a user-supplied function of type KINLsPrecSetupFn, defined as follows:

typedef int (*KINLsPrecSetupFn)(N_Vector u, N_Vector uscale, N_Vector fval, N_Vector fscale, void *user_data)

This function evaluates and/or preprocesses Jacobian-related data needed by the preconditioner solve function.
Arguments:

¢ u —is the current (unscaled) value of the iterate.

* uscale —is a vector containing diagonal elements of the scaling matrix u

 fval —is the vector F'(u) evaluated at u

e fscale —is a vector containing diagonal elements of the scaling matrix for fval

* user_data — is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the preconditioner setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).
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Notes:
The user-supplied preconditioner setup subroutine should compute the right preconditioner matrix P
(stored in the memory block referenced by the user_data pointer) used to form the scaled preconditioned
linear system

(DpJ(u)P~'D;Y) (D, Px) = —DpF(u),

where D,, and D denote the diagonal scaling matrices whose diagonal elements are stored in the vectors
uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the preconditioner solve
function, but will instead be called only as often as necessary to achieve convergence of the Newton iteration.

If the user’s KINLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These might include the scale vectors and the unit roundoff. To obtain the
scale vectors, the user will need to add to user_data pointers to u_scale and/or £_scale as needed. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

If the preconditioner solve routine requires no preparation, then a preconditioner setup function need not
be given.

5.7 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, KINSOL
provides a band-block-diagonal preconditioner module KINBBDPRE, to be used with the parallel N_Vector module
described in §6.5.

This module provides a preconditioner matrix for KINSOL that is block-diagonal with banded blocks. The blocking
corresponds to the distribution of the dependent variable vector u amongst the processes. Each preconditioner block
is generated from the Jacobian of the local part (associated with the current process) of a given function G(u) ap-
proximating F'(u) (G = F is allowed). The blocks are generated by each process via a difference quotient scheme,
utilizing a specified band structure. This structure is given by upper and lower half-bandwidths, mudq and m1dq, defined
as the number of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mukeep 4 mlkeep 41 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of G, if smaller values
provide a more efficient preconditioner. Such an efficiency gain may occur if the couplings in the system outside a
certain bandwidth are considerably weaker than those within the band. Reducing mukeep and mlkeep while keeping
mudg and mldq at their true values, discards the elements outside the narrower band. Reducing both pairs has the
additional effect of lumping the outer Jacobian elements into the computed elements within the band, and requires
more caution and experimentation to see whether the lower cost of narrower band matrices offsets the loss of accuracy
in the blocks.

The KINBBDPRE module calls two user-provided functions to construct P: arequired function Gloc (of type KINBBD-
LocalFn) which approximates the nonlinear system function G(u) ~ F(u) and which is computed locally, and an
optional function Gcomm (of type KINBBDCommFn) which performs all interprocess communication necessary to eval-
uate the approximate function G. These are in addition to the user-supplied nonlinear system function that evaluates
F(u). Both functions take as input the same pointer user_data as that passed by the user to KINSetUserData() and
passed to the user’s function func, and neither function has a return value. The user is responsible for providing space
(presumably within user_data) for components of u that are communicated by Gcomm from the other processes, and
that are then used by Gloc, which should not do any communication.

typedef int (*KINBBDLocalFn)(sunindextype Nlocal, N_Vector u, N_Vector gval, void *user_data)

This Gloc function computes G(u), and outputs the resulting vector as gval.
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Arguments:
e Nlocal —is the local vector length.
* u —is the current value of the iterate.
e gval —is the output vector.

* user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
An KINBBDLocalFn function type should return 0 to indicate success, or non-zero if an error occured.

Notes:
This function must assume that all inter-processor communication of data needed to calculate gval has
already been done, and this data is accessible within user_data.

The case where G is mathematically identical to F' is allowed.

typedef int (*KINBBDCommFn)(sunindextype Nlocal, N_Vector u, void *user_data)

This Gcomm function performs all inter-processor communications necessary for the execution of the Gloc func-
tion above, using the input vectors u.

Arguments:
* Nlocal —is the local vector length.
e u — is the current value of the iterate.

* user_data — is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
An KINBBDLocalFn function type should return 0 to indicate success, or non-zero if an error occured.

Notes:
The Gcomm function is expected to save communicated data in space defined within the structure user_-
data.

Each call to the Gcomm function is preceded by a call to the residual function func with the same u argu-
ment. Thus Gcomm can omit any communications done by func if relevant to the evaluation of Gloc. If
all necessary communication was done in func, then Gcomm = NULL can be passed in the call to KINBB-
DPrecInit().

Besides the header files required for the integration of the DAE problem (see §5.3), to use the KINBBDPRE module,
the main program must include the header file kin_bbdpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in the user main program.
Steps that are unchanged from the user main program presented in §5.4 are not bold.

1.

AN

Initialize parallel or multi-threaded environment (if appropriate)
Create the SUNDIALS context object

Set the problem dimensions etc.

Create the vector with the initial guess

Create matrix object (if appropriate)

Create linear solver object (if appropriate)

When creating the iterative linear solver object, specify the use of right preconditioning (SUN_PREC_RIGHT) as
KINSOL only supports right preconditioning.
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10.
11.

12.

13.
14.
15.

16.
17.

Create nonlinear solver object (if appropriate)
Create KINSOL object

Initialize KINSOL solver

Attach the linear solver (if appropriate)

Set linear solver optional inputs (if appropriate)

Note that the user should not overwrite the preconditioner setup function or solve function through calls to
KINSetPreconditioner () optional input function.

Initialize the KINBBDPRE preconditioner module

Call KINBBDPrecInit () to allocate memory and initialize the internal preconditioner data. The last two argu-
ments of KINBBDPrecInit () are the two user-supplied functions described above.

Set optional inputs
Solve problem
Get optional outputs

Additional optional outputs associated with KINBBDPRE are available by way of two routines described below,
KINBBDPrecGetlWorkSpace () and KINBBDPrecGetNumGfnEvals ().

Deallocate memory

Finalize MPI, if used

The user-callable functions that initialize or re-initialize the KINBBDPRE preconditioner module are described next.

int KINBBDPrecInit (void *kin_mem, sunindextype Nlocal, sunindextype mudq, sunindexype mldq, sunindextype

mukeep, sunindextype mlkeep, realtype dq_rel_u, KINBBDLocalFn Gloc, KINBBDCommFn
Gcomm)

The function KINBBDPrecInit () initializes and allocates memory for the KINBBDPRE preconditioner.
Arguments:

* kin_mem — pointer to the KINSOL memory block.

* Nlocal —local vector length.

* mudq — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

* mldg — lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

» mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.

¢ mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

e dg_rel_u - the relative increment in components of u used in the difference quotient approximations.
The default is dq_rel_u = +/unit roundoff , which can be specified by passing dg_rel_u= 0.0.

* Gloc — the CC function which computes the approximation G (u) =~ F'(u).

¢ Gcomm — the optional CC function which performs all interprocess communication required for the
computation of G(u).

Return value:
e KINLS_SUCCESS — The call to KINBBDPrecInit () was successful.
e KINLS_MEM_NULL — The kin_mem pointer was NULL.
e KINLS_MEM_FAIL — A memory allocation request has failed.
e KINLS_LMEM_NULL — The KINLS linear solver interface has not been initialized.
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e KINLS_ILL_INPUT — The supplied vector implementation was not compatible with the block band
preconditioner.

Notes:
If one of the half-bandwidths mudq or mldgq to be used in the difference-quotient calculation of the approx-
imate Jacobian is negative or exceeds the value Nlocal-1, it is replaced with 0 or Nlocal-1 accordingly.

The half-bandwidths mudg and m1dq need not be the true half-bandwidths of the Jacobian of the local block
of GG, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.
The following two optional output functions are available for use with the KINBBDPRE module:

int KINBBDPrecGetWorkSpace (void *kin_mem, long int *lenrwBBDP, long int *leniwBBDP)

The function KINBBDPrecGetlorkSpace() returns the local sizes of the KINBBDPRE real and integer
workspaces.

Arguments:

* kin_mem — pointer to the KINSOL solver object.

* lenrwBBDP — local number of real values in the KINBBDPRE workspace.

* leniwBBDP — local number of integer values in the KINBBDPRE workspace.
Return value:

e KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer was NULL.

e KINLS_PMEM_NULL — The KINBBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
KINBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding KINGetLin-
WorkSpace () function.

int KINBBDPrecGetNumGfnEvals (void *kin_mem, long int *ngevalsBBDP)

The function KINBBDPrecGetNumGfnEvals () returns the cumulative number of calls to the user Gres function
due to the finite difference approximation of the Jacobian blocks used within KINBBDPRE’s preconditioner setup
function.

Arguments:

* kin_mem — pointer to the KINSOL solver object.

* ngevalsBBDP — the cumulative number of calls to the user Gres function.
Return value:

* KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer was NULL.

e KINLS_PMEM_NULL — The KINBBDPRE preconditioner has not been initialized.
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In addition to the ngevalsBBDP evaluations of Gres, the costs associated with KINBBDPRE also includes nlin-
setups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and nrevalsLS residual
function evaluations, where nlinsetups is an optional KINSOL output (see §5.5.5.1), and npsolves and nrevalsLS
are linear solver optional outputs (see §5.5.5.2).

5.8 Alternative to KINSOL for difficult systems

A nonlinear system F'(u) = 0 may be difficult to solve with KINSOL (or any other nonlinear system solver) for a
variety of reasons. The possible reasons include high nonlinearity, small region of convergence, and lack of a good
initial guess. For systems with such difficulties, there is an alternative approach that may be more successful. This is
an old idea, but deserves some new attention.

If the nonlinear system is F'(u) = 0, consider instead the ODE system du/dt = —M ~1 F(u), where M is a nonsingular
matrix that is an approximation (even a crude approximation) to the system Jacobian F,, = dF'/du. Whatever M is, if
this ODE is solved until it reaches a steady state u*, then u* is a zero of the right-hand side of the ODE, and hence a
solution to F'(u) = 0. There is no issue of having a close enough initial guess.

A further basis for this choice of ODE is the following: If M approximates F,, then the Jacobian of the ODE system,
—M~'F,, is approximately equal to —I where I is the identity matrix. This means that (in a local approximation
sense) the solution modes of the ODE behave like exp(—t), and that asymptotically the approach to the steady state
goes as exp(—t). Of course, the closer M is to F,,, the better this basis applies.

Using (say) CVODE to solve the above ODE system requires, in addition to the objective function F'(u), the calculation
of a suitable matrix M and its inverse, or at least a routine that solves linear systems Mz = b. This is similar to the
KINSOL requirement of supplying the system Jacobian J (or solutions to Jx = b), but differs in that M may be
simpler than J and hence easier to deal with. Depending on the nature of M, this may be handled best with a direct
solver, or with a preconditioned Krylov solver. The latter calls for the use of a preconditioner P that may be a crude
approximation to M, hence even easier to solve. Note if using ARKODE, the ODE system may be posed in the linearly
implicit from Mdu/dt = —F(u) where M is the “mass matrix” for the system. This use case requires supplying
ARKODE with a function to evaluate M or to compute its action on a vector (Mv = w) and attaching a linear solver
(direct or iterative) to solve the linear systems Mx = b.

The solution of the ODE may be made easier by solving instead the equivalent DAE, M du/dt + F'(u) = 0. Applying
IDA to this system requires solutions to linear systems whose matrix is the DAE system Jacobian, J = F,, +aM, where
acis the scalar coeflicient c; supplied to the user’s Jacobian or preconditioner routine. Selecting a preconditioned Krylov
method requires an approximation to this Jacobian as preconditioner P. Given that M approximates F,, (possibly
crudely), the appropriate approximation to J is P = M + oM = (1 + «)M. Again the user must supply a routine
that solves linear systems Pz = b, or Mz = b/(1 + «). If M is too difficult to solve, than an approximation M’ that
is easier can be substituted, as long as it achieves convergence. As always, there is a trade-off between the expense of
solving M and the difficulty of achieving convergence in the linear solver.

For the solution of either the ODE or DAE system above, the chances for convergence can be improved with a piecewise
constant choice for M. Specifically, starting from an initial guess wy, an initial choice for M might be My = F,(uy),
or some approximation to this Jacobian. Then one could integrate Mydu/dt + F(u) = 0 from¢ = Otot = T for
some sizable value T, evaluate Fy, (u(T')), and take M; to be an approximation to that Jacobian. Then integrate using
M, fromt = T tot = 2T, and repeat the process until it converges to a steady state.

102 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems



Chapter 6

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_-
Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users can
provide a custom implementation of the NVECTOR module or use one provided within SUNDIALS. The generic op-
erations are described below. In the sections following, the implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the vector, and an ops field pointing to a structure with generic vector operations.
The type N_Vector is defined as

typedef struct _generic_N_Vector *N_Vector
and the generic structure is defined as

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;
1

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector oper-
ations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid) (N_Vector);

(continues on next page)
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(continued from previous page)

N_Vector (*nvclone) (N_Vector);

N_Vector (*nvcloneempty) (N_Vector) ;

void (*nvdestroy) (N_Vector);

void (*nvspace) (N_Vector, sunindextype *, sunindextype *);

realtype® (*nvgetarraypointer) (N_Vector);

realtype* (*nvgetdevicearraypointer) (N_Vector) ;

void (*nvsetarraypointer) (realtype *, N_Vector);

void* (*nvgetcommunicator) (N_Vector) ;

sunindextype (*nvgetlength) (N_Vector);

sunindextype (*nvgetlocallength) (N_Vector);

void (*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst) (realtype, N_Vector);

void (*nvprod) (N_Vector, N_Vector, N_Vector);

void (*nvdiv) (N_Vector, N_Vector, N_Vector);

void (*nvscale) (realtype, N_Vector, N_Vector);

void (*nvabs) (N_Vector, N_Vector);

void (*nvinv) (N_Vector, N_Vector);

void (*nvaddconst) (N_Vector, realtype, N_Vector);

realtype (*nvdotprod) (N_Vector, N_Vector);

realtype (*nvmaxnorm) (N_Vector) ;

realtype (*nvwrmsnorm) (N_Vector, N_Vector);

realtype (*nvwrmsnormmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvmin) (N_Vector);

realtype (*nvwl2norm) (N_Vector, N_Vector);

realtype (*nvllnorm) (N_Vector);

void (*nvcompare) (realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient) (N_Vector, N_Vector);

int (*nvlinearcombination) (int, realtype *, N_Vector *, N_Vector);

int (*nvscaleaddmulti) (int, realtype *, N_Vector, N_Vector *, N_Vector *);

int (*nvdotprodmulti) (int, N_Vector, N_Vector *, realtype *);

int (*nvlinearsumvectorarray) (int, realtype, N_Vector *, realtype,
N_Vector *, N_Vector *);

int (*nvscalevectorarray) (int, realtype *, N_Vector *, N_Vector *);

int (*nvconstvectorarray) (int, realtype, N_Vector *);

int (*nvwrmsnomrvectorarray) (int, N_Vector *, N_Vector *, realtype *);

int (*nvwrmsnomrmaskvectorarray) (int, N_Vector *, N_Vector *, N_Vector,

realtype *);
int (*nvscaleaddmultivectorarray) (int, int, realtype *, N_Vector *,
N_Vector **, N_Vector **);
int (*nvlinearcombinationvectorarray) (int, int, realtype *, N_Vector **,
N_Vector *);

realtype (*nvdotprodlocal) (N_Vector, N_Vector);

realtype (*nvmaxnormlocal) (N_Vector) ;

realtype (*nvminlocal) (N_Vector);

realtype (*nvllnormlocal) (N_Vector);

booleantype (*nvinvtestlocal)(N_Vector, N_Vector);

booleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsumlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal (N_Vector, N_Vector, N_Vector);

(continues on next page)
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int (*nvdotprodmultilocal) (int, N_Vector, N_Vector *, realtype *);
int (*nvdotprodmultiallreduce) (int, N_Vector, realtype *);

int (*nvbufsize) (N_Vector, sunindextype *);

int (*nvbufpack) (N_Vector, void*);

int (*nvbufunpack) (N_Vector, void*);

e

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z 4+ cx for vectors x and z and a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§6.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §6.2.2,
§6.2.3,§6.2.4,§6.2.5, and §6.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §6.2.2 and §6.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §6.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANY VECTOR object
(see §6.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§6.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §6.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

6.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects — these functions are particularly useful for Fortran users to utilize the NVECTOR_MANY VECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCIloneVectorArray () and N_VCloneVectorArrayEmpty () create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray (int count, N_Vector w)

Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).

Arguments:

6.1. Description of the NVECTOR Modules 105



User Documentation for KINSOL, v6.6.0

e count — number of N_Vector objects to create.
* w— template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty (int count, N_Vector w)

Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:
* count — number of N_Vector objects to create.
* w—template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray (N_Vector *vs, int count)

Destroys an array of count N_Vector objects.
Arguments:
e vs — N_Vector array to destroy.
e count — number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy () operation.

If vs was allocated using N_VCIloneVectorArray () then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCIloneVectorArrayEmpty () then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray (), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray (), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray (int count)

Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.
Arguments:

* count — length of desired N_Vector array.
Return value:

* pointer to a new N_Vector array on success.

e NULL pointer on failure.
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N_Vector *N_VGetVecAtIndexVectorArray (N_Vector *vs, int index)

Accesses the N_Vector at the location index within the N_Vector array vs.

Arguments:

* vs — N_Vector array.

¢ index — desired N_Vector to access from within vs.
Return value:

* pointer to the indexed N_Vector on success.

* NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray (N Vector *vs, int index, N_Vector w)

Sets a pointer to w at the location index within the vector array vs.
Arguments:
* vs — N_Vector array.
* index — desired location to place the pointer to w within vs.
* w— N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

6.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

Specify the content field of the N_Vector structure.

Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty () and N_VCopyOps (). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty ()

This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the
operations structure to NULL.
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Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty (N_Vector v)

This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:
e v —an N_Vector object

int N_VCopyOps (N_Vector w, N_Vector V)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:
e w — the vector to copy operations from
* v —the vector to copy operations to

Return value: If successful, this function returns 0. If either of the inputs are NULL or the ops structure of either
input is NULL, then is function returns a non-zero value.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration and shown
in Table 6.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_NVEC_CUSTOM
identifier.

Table 6.1: Vector Identifications associated with vector kernels supplied

with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAIJA vector 9
SUNDIALS NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “Many Vector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled ‘“Many Vector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15
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6.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§6.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin() and N_VMinLocal () should return the minimum of all real components of the vector, i.e., m =
min real(x;).
0<i<n (1)

e N_VConst () (and similarly N_VConstVectorArray ()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., z; = ¢+ 05 for 0 <7 < n.

e N_VAddConst () should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

e N_VWrmsNorm(), N_VWrmsNormMask (), N_VWSqrSumLocal () and N_VWSqrSumMaskLocal () should assume
that all entries of the weight vector w and the mask vector id are real-valued.

e N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current realtype, this routine should be set to NULL in the custom NVECTOR imple-
mentation.

e N_VCompare(), N_VConstrMask(), N_VMinQuotient (), N_VConstrMaskLocal() and N_VMinQuotient-
Local () are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §8.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare (), N_VConstrMask (), N_VMinQuotient (), N_VCon-
strMaskLocal () and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_£2003. £90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod. £90.

6.2 Description of the NVECTOR operations

6.2.1 Standard vector operations

The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these
operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N Vector w)

Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in Table 6.1.

Usage:
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id = N_VGetVectorID(w);

N_Vector N_VClone (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field.
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w) ;

void N_VDestroy(N_Vector v)

Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace (N_Vector v, sunindextype *lrw, sunindextype *liw)
Returns storage requirements for the N_Vector v:

¢ [rw contains the number of realtype words
* [iw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements;
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

realtype *N_VGetArrayPointer (N_Vector v)

It does not copy the

. It does not allocate

it could be a dummy

Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in the

N_Vector is a contiguous array of realtype and is accesible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial)

linear solvers, and in

the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with

SUNDIALS.
Usage:

vdata = N_VGetArrayPointer(v);

realtype *N_VGetDeviceArrayPointer (N_Vector v)

Returns a device pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data
in N_Vector is a contiguous array of realtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:
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vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer (realtype *vdata, N_Vector v)

Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes that the
internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:
N_VSetArrayPointer(vdata,v);

void *N_VGetCommunicator (N_Vector v)

Returns a pointer to the MPI_Comm object associated with the vector (if applicable). For MPI-unaware vector
implementations, this should return NULL.

Usage:
commptr = N_VGetCommunicator(v);

sunindextype N_VGetLength(N_Vector v)

Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:
global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength (N_Vector v)

Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer () or N_VGetDeviceArrayPointer().

Usage:
local_length = N_VGetLocalLength(v);

void N_VLinearSum(realtype a, N_Vector X, realtype b, N_Vector 'y, N_Vector z)

Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:
zi=ax; +by;,, 1=0,...,n—1

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst (realtype ¢, N_Vector z)
Sets all components of the N_Vector z to realtype c:

Usage:

N_VConst(c, z);
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void N_VProd(N_Vector x, N_Vector'y, N_Vector z)

Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:
zi =%y, 1=0,...,n—1.
Usage:
N_VProd(x, y, z);
void N_VDiv(N_Vector x, N_Vector y, N_Vector z)

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

Lq

2 = s i=0,...,n—1.
Yi
The y; may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.
Usage:

N_VDiv(x, y, z);

void N_VScale (realtype ¢, N_Vector X, N_Vector z)
Scales the N_Vector x by the realtype scalar ¢ and returns the result in z:

zi=czr;, 1=0,...,n—1
Usage:
N_VScale(c, x, z);
void N_VAbs (\NV_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:
ZL=|JZZ‘, iZO,...,n—l.
Usage:
N_VAbs(x, z);
void N_VInv(N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

1 .
zi=—, t=0,...,n—1.
T

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:
N_VInv(x, z);
void N_VAddConst (N_Vector x, realtype b, N_Vector z)
Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:
zi=z;+b, i=0,...,n—1.

Usage:
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N_VAddConst(x, b, z);

realtype N_VDotProd (N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

n—1
=0

Usage:
d = N_VDotProd(x, y);
realtype N_VMaxNorm (N_Vector X)
Returns the value of the [, norm of the N_Vector x:

m = max |z;|.
0<i<n

Usage:

m = N_VMaxNorm(x);

realtype N_VWrmsNorm(N_Vector x, N_Vector w)

Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector w:

=0

n—1
m= <Z(xlw2)2> /n

Usage:

m = N_VWrmsNorm(x, w);

realtype N_VWrmsNormMask (N_Vector x, N_Vector w, N_Vector id)

Returns the weighted root mean square norm of the N_Vector x with realtype weight vector w built using only

the elements of x corresponding to positive elements of the N_Vector id:

m = (z_:(l‘lwzH(ldz))Q) /TL,

=0

1 >0
where H(a) = “ .
0 <0
Usage:
m = N_VWrmsNormMask(x, w, id);
realtype N_-VMin(N_Vector x)

Returns the smallest element of the N_Vector x:

m = min x;.
0<i<n

Usage:
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m = N_VMin(x);

realtype N_VW12Norm(N_Vector X, N_Vector w)
Returns the weighted Euclidean /5 norm of the N_Vector x with realtype weight vector w:

Usage:
m = N_VWL2Norm(x, w);

realtype N_VL1INorm(N_Vector x)
Returns the /1 norm of the N_Vector x:

n—1
m= Z | 2]
i=0
Usage:
m = N_VL1Norm(x);

void N_VCompare (realtype ¢, N_Vector x, N_Vector z)

Compares the components of the N_Vector x to the realtype scalar ¢ and returns an N_Vector z such that for
all0 <7< n,

. {1.0 if |z;| > ¢,
" 00 otherwise
Usage:
N_VCompare(c, x, z);
booleantype N_VInvTest (N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:
t = N_VInvTest(x, z);

booleantype N_VConstrMask (N_Vector ¢, N_Vector x, N_Vector m)

Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
r, < 0 if ¢ =-2,
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There is no constraint on z; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

t = N_VConstrMask(c, x, m);

realtype N_VMinQuotient (NV_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

num;
mm ———--.
0<i<n denom;
A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL (defined

in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotient(num, denom) ;

6.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.

int N_VLinearCombination(int nv, realtype *c, N_Vector *X, N_Vector z)

This routine computes the linear combination of nv vectors with n elements:

nv—1

Zi = E CiTj.iy i:O,...,n—l,
3=0

where c is an array of nv scalars, x; is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns O for
success and a non-zero value otherwise.

Usage:
retval = N_VLinearCombination(nv, c, X, z);

int N_VScaleAddMulti (int nv, realtype *c, N_Vector X, N_Vector *Y, N_Vector *Z.)
This routine scales and adds one vector to nv vectors with n elements:

Zji = ¢jxi + Y5 Jj=0,...,mv—1 1=0,...,n—1,

where ¢ is an array of scalars, x is a vector, y; is a vector in the vector array Y, and z; is an output vector in the
vector array Z. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VScaleAddMulti(nv, c, x, Y, Z2);
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int N_VDotProdMulti (int nv, N_Vector x, N_Vector *Y, realtype *d)

This routine computes the dot product of a vector with nv vectors having n elements:

n—1
dj:inyj,ia j:(),...7n1]—1,
=0

where d is an array of scalars containing the computed dot products, x is a vector, and y; is a vector the vector
array Y. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VDotProdMulti(nv, x, Y, d);

6.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

int N_VLinearSumVectorArray (int nv, realtype a, N_Vector X, realtype b, N_Vector *Y, N_Vector *Z)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:
zj,i:aa:j,i—i—byj’i, 1=0,....n—1 5=0,...,nv—1,

where a and b are scalars, z; and y; are vectors in the vector arrays X and Y respectively, and z; is a vector in
the output vector array Z. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

int N_VScaleVectorArray (int nv, realtype *c, N_Vector *X, N_Vector *Z.)

This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

Zji = CjTjq, Z:(),.../n*l ]:07...,711}71,

where c is an array of scalars, x; is a vector in the vector array X, and z; is a vector in the output vector array Z.
The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VScaleVectorArray(nv, c, X, Z);

int N_VConstVectorArray (int nv, realtype c, N_Vector *Z)

This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:
zj;=¢ 1=0,...,n—1 j=0,...,nv—1,

where c is a scalar and z; is a vector in the vector array Z. The operation returns 0 for success and a non-zero
value otherwise.

Usage:
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retval = N_VConstVectorArray(nv, c, Z);

int N_VWrmsNormVectorArray (int nv, N_Vector *X, N_Vector *W, realtype *m)

This routine computes the weighted root mean square norm of each vector in a vector array:

n—1 1/2

1

j : 2 .
m; = % (xj7iwj7i) 5 ] = O, e U — 1,
=0

where x; is a vector in the vector array X, w; is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

int N_VWirmsNormMaskVectorArray (int nv, N_Vector *X, N_Vector *W, N_Vector id, realtype *m)

This routine computes the masked weighted root mean square norm of each vector in a vector array:

n—1

1/2
1

mi=\5 Z (2j,w;,:H (id;))* v J=0,,mv—1,
i=0

where H(id;) = 1if id; > 0 and is zero otherwise, x; is a vector in the vector array X, w; is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

int N_VScaleAddMultiVectorArray (int nv, int nsum, realtype *c, N_Vector *X, N_Vector **YY, N_Vector **ZZ.)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:
Zkji = CkTji + Ykji, =0,...,n—1 j=0,...,nv—-1, k=0,...,nsum—1

where c is an array of scalars, x; is a vector in the vector array X, ¥y, ; is a vector in the array of vector arrays YY,
and zy, ; is an output vector in the array of vector arrays ZZ. The operation returns 0 for success and a non-zero
value otherwise.

Usage:

retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

int N_VLinearCombinationVectorArray (int nv, int nsum, realtype *c, N_Vector **XX, N_Vector *Z)

This routine computes the linear combination of nsum vector arrays containing nv vectors:

nsum—1

Zji = E kT i, t=0,...,n—1 57=0,...,nv—1,
k=0

where c is an array of scalars, xj, ; is a vector in array of vector arrays XX, and z; ; is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns O for success and a non-zero value otherwise.

Usage:
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retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

6.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

realtype N_VDotProdLocal (N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

Niocal —1

d= Yz
i=0

where n,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

realtype N_VMaxNormLocal (N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m= max |z,
0<i<niocal

where 1ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal (x);

realtype N_VMinLocal (N_Vector X)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m= min 1z,
0<i<niocal

where 1,cq; corresponds to the number of components in the vector on this MPI task (or nj4cq; = 1 for MPI-
unaware applications).

Usage:

m = N_VMinLocal (x);

realtype N_VL1NormLocal (N_Vector x)
This routine computes the MPI task-local portion of the /; norm of the N_Vector x:

Niocal —1

=S b

i=0

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications).

Usage:
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n = N_VLINormLocal (x);

realtype N_VWSqrSumLocal (N_Vector x, N_Vector w)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

Niocal —1

s= > (zw)

=0

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

realtype N_VWSqrSumMaskLocal (N_Vector x, N_Vector w, N_Vector id)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

Niocal —1
m= Y (zwH(id;))?,
i=0
where
1 0
H(a) = a >
0 a<0

and nyeeq; corresponds to the number of components in the vector on this MPI task (or njycq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

booleantype N_VInvTestLocal (N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

1 .
zi=—,1=0,...,npcar — 1
L

where 1y,cq; corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:
t = N_VInvTestLocal(x);

booleantype N_VConstrMaskLocal (N_Vector ¢, N_Vector X, N_Vector m)
Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
x, < 0 if C; = —2,
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for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

realtype N_VMinQuotientLocal (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by term-wise dividing num; by denom;, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotientLocal (num, denom);

6.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

int N_VDotProdMultiLocal (int nv, N_Vector X, N_Vector *Y, realtype *d)

This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors y;:

Niocal —1
dj: E xiyj,ia j=0,...,m}—1,
=0

where d is an array of scalars containing the computed dot products, x is a vector, y; is a vector in the vector array
Y, and ny,cq; corresponds to the number of components in the vector on this MPI task. The operation returns 0
for success and a non-zero value otherwise.

Usage:
retval = N_VDotProdMultilocal(nv, x, Y, d);
int N_VDotProdMultiAllReduce (int nv, N_Vector X, realtype *d)
This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)

where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);
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6.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

int N_VBufSize (N_Vector x, sunindextype *size)
This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

int N_VBufPack (V_Vector x, void *buf)

This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

int N_VBufUnpack (N_Vector x, void *buf)

This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

6.3 NVECTOR functions used by KINSOL

In Table 6.2 below, we list the vector functions used in the N_Vector module used by the KINSOL package. The table
also shows, for each function, which of the code modules uses the function. The KINSOL column shows function
usage within the main integrator module, while the remaining columns show function usage within the KINLS linear
solvers interface, and the KINBBDPRE preconditioner module.

At this point, we should emphasize that the KINSOL user does not need to know anything about the usage of vector
functions by the KINSOL code modules in order to use KINSOL. The information is presented as an implementation
detail for the interested reader.
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Table 6.2: List of vector functions usage by KINSOL code modules

Function name KINSOL KINLS KINBBDPRE

N_VGetVectorID()
N_VGetLength() 4
N_VClone()
N_VCloneEmpty ()
N_VDestroy ()
N_VSpace()
N_VGetArrayPointer()
N_VSetArrayPointer()
N_VLinearSum()
N_VConst ()

N_VProd()

N_VDiv()

N_VScale()

N_VAbs ()

N_VInv()

N_VDotProd()
N_VMaxNorm()

N_VMin()

N_VWL2Norm()
N_VLINorm()
N_VConstrMask ()
N_VMinQuotient ()
N_VLinearCombination()
N_VDotProdMulti()

>
>

o o T B B O B B B T I I I T T B e

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing SUNMATRIX_DENSE
or SUNMATRIX_BAND Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for IDA modules for user feedback.

3. These routines are only required if the internal difference-quotient routine for approximating the Jacobian-vector
product is used.

4. This routine is only used when an iterative SUNLinearSolver module that does not support the SUNLin-
SolSetScalingVectors () routine is supplied to KINSOL.

Each SUNLinearSolver object may require additional N_Vector routines not listed in the table above. Please see the
the relevant descriptions of these modules in §8 for additional detail on their N_Vector requirements.

The vector functions listed in §6.2 that are not used by KINSOL are N_VAddConst (), N_ViWrmsNorm(), N_ViWrm-
sNormMask (), N_VCompare (), N_VInvTest (), and N_VGetCommunicator (). Therefore a user-supplied N_Vector
module for KINSOL could omit these functions.

The optional function N_VLinearCombination() is only used when Anderson acceleration is enabled or the SPBCG,
SPTFQMR, SPGMR, or SPFGMR linear solvers are used. N_VDotProd() is only used when Anderson acceleration
is enabled or Classical Gram-Schmidt is used with SPGMR or SPFGMR. The remaining operations from §6.2.2 and
§6.2.3 are unused and a user-supplied N_Vector module for KINSOL could omit these operations.
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6.4 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of an N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to link to
is libsundials_nvecserial.lib where .1ib is typically . so for shared libraries and .a for static libraries.

6.4.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)

This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector content
structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial) (v->content) )

NV_OWN_DATA_S(v)

Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

NV_DATA_S(v)

The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data.

Implementation:

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

NV_LENGTH_S(v)

Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_1len to be the length of v. On the other hand, the call NV_-
LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:
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#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

NV_Ith_S(v, 1)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,1) sets r to be the value of the i-th component of v.
The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

6.4.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in §6.2.1, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Serial (e.g. N_-
VDestroy_Serial). All the standard vector operations listed in §6.2.1 with the suffix _Serial appended are callable
via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_Vector N_VNew_Serial (sunindextype vec_length, SUNContext sunctx)

This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial (sunindextype vec_length, SUNContext sunctx)

This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial (sunindextype vec_length, realtype *v_data, SUNContext sunctx)

This function creates and allocates memory for a serial vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)

void N_VPrint_Serial (N_Vector v)

This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial (N _Vector v, FILE *outfile)

This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector
using N_VCIlone (). This guarantees that the new vectors will have the same operations enabled/disabled as cloned
vectors inherit the same enable/disable options as the vector they are cloned, from while vectors created with N_-
VNew_Serial () will have the default settings for the NVECTOR_SERIAL module.

int N_VEnableFusedOps_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Serial (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleAddMulti_Serial (NV_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableDotProdMulti_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the serial
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the serial
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Serial (\N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Serial (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector arrays
operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearCombinationVectorArray_Serial (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = NV_DATA_S(v), or equivalently v_data = N_VGetArrayPointer(v), and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v, i) within the loop.

e N_VNewEmpty_Serial(), N_VMake_Serial(), and N_VCloneVectorArrayEmpty_Serial() set the field
own_data to SUNFALSE. The functions N_VDestroy_Serial() and N_VDestroyVectorArray_Serial()
will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than one
N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
length.
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6.4.3 NVECTOR_SERIAL Fortran Interface

The NVECTOR_SERIAL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use fnvec-
tor_serial_mod, and linking to the library 1ibsundials_fnvectorserial_mod.1ib in addition to the C library.
For details on where the library and module file fnvector_serial_mod.mod are installed see §10. We note that the
module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the 1ibsundials_-
fnvectorserial_mod library.

6.5 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPL
It defines the content field of an N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library to link
tois libsundials_nvecparallel.lib where .1lib is typically .so for shared libraries and . a for static libraries.

6.5.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content structure
of type struct N_VectorContent_Parallel.

Implementation:
#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel) (v->content) )

NV_OWN_DATA_P(v)

Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )
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NV_DATA_P(v)

The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the local_data
for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the pointer
v_data into data.

Implementation:

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

NV_LOCLENGTH_P (v)
The assignment v_1len = NV_LOCLENGTH_P(v) sets v_l1en to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be 11len_v.

Implementation:

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

NV_GLOBLENGTH_P (v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

NV_COMM_P (v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,1i) sets r to be the value of the i-th component of the local part of v.
The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.
Here i ranges from O to n — 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

6.5.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in §6.2. Their
names are obtained from the generic names by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.
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N_Vector N_VNewEmpty_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parallel N_Vector with an empty (NULL) data array.
N_Vector N_VMake_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length, realtype
*vy_data, SUNContext sunctx)

This function creates and allocates memory for a parallel vector with user-provided data array.
(This function does not allocate memory for v_data itself.)

sunindextype N_VGetLocalLength_Parallel (N_Vecror v)
This function returns the local vector length.

void N_VPrint_Parallel (N _Vector v)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel (NN _Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone (). This guarantees that the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from, while vectors created with
N_VNew_Parallel () will have the default settings for the NVECTOR_PARALLEL module.
int N_VEnableFusedOps_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Parallel (\N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parallel
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is ® for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_Parallel (\N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parallel
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parallel
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableWrmsNormVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Parallel (NV_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Parallel (\N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parallel vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the local component
array via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_P(v), and then access
v_data[i] within the loop than it is to use NV_Ith_P(v,1i) within the loop.

e N_VNewEmpty_Parallel(), N_VMake_Parallel(), and N_VCloneVectorArrayEmpty_Parallel() set
the field own_data to SUNFALSE. The routines N_VDestroy_Parallel () and N_VDestroyVectorArray_-
Parallel () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.5.3 NVECTOR_PARALLEL Fortran Interface

The NVECTOR_PARALLEL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_parallel_mod Fortran module defines interfaces to all NVECTOR_PARALLEL C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Parallel is interfaced as FN_VNew_Parallel.

The Fortran 2003 NVECTOR_PARALLEL interface module can be accessed with the use statement, i.e. use fn-
vector_parallel_mod, and linking to the library 1ibsundials_fnvectorparallel_mod.1lib in addition to the
C library. For details on where the library and module file fnvector_parallel_mod.mod are installed see §10. We
note that the module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the
libsundials_fnvectorparallel_mod library.
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6.6 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content field
of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous data array,
a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on the vector
are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module library to link to
is libsundials_nvecopenmp.lib where .1ib is typically .so for shared libraries and . a for static libraries. The
Fortran module file to use when using the Fortran 2003 interface to this module is fnvector_openmp_mod .mod.

6.6.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP (v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP (v) sets v_cont to be a pointer to the OpenMP N_Vector content
structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP) (v->content) )

NV_OWN_DATA_OMP(v)

Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

NV_DATA_OMP (v)

The assignment v_data = NV_DATA_OMP (v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:
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#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

NV_LENGTH_OMP (v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

NV_NUM_THREADS_OMP (v)

Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

NV_Ith_OMP(v, i)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,1i) sets r to be the value of the i-th component of v.
The assignment NV_Ith_OMP(v,1i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

6.6.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _OpenMP (e.g. N_-
VDestroy_OpenMP). All the standard vector operations listed in §6.2 with the suffix _OpenMP appended are callable
via the Fortran 2003 interface by prepending an F’ (e.g. “'FN_VDestroy_OpenMP").

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP (sunindextype vec_length, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP (sunindextype vec_length, realtype *v_data, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)
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void N_VPrint_OpenMP (N_Vector v)

This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP (N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenlMP (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenlMP () will
have the default settings for the NVECTOR_OPENMP module.
int N_VEnableFusedOps_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the OpenMP
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is 8 for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormMaskVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMultiVectorArray_OpenMP (N _Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.
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int N_VEnableLinearCombinationVectorArray_OpenMP (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_OMP(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_OMP (v, i) within the loop.

e N_VNewEmpty_OpenMP (), N_VMake_OpenMP(), and N_VCloneVectorArrayEmpty_OpenMP() set the field
own_data to SUNFALSE. The functions N_VDestroy_OpenMP() and N_VDestroyVectorArray_OpenMP ()
will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

* To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.6.3 NVECTOR_OPENMP Fortran Interface

The NVECTOR_OPENMP module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenlP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use fnvec-
tor_openmp_mod, and linking to the library libsundials_fnvectoropenmp_mod.1lib in addition to the C library.
For details on where the library and module file fnvector_openmp_mod.mod are installed see §10.

6.7 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library to link
tois libsundials_nvecpthreads.lib where .1ib is typically . so for shared libraries and . a for static libraries.
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6.7.1 NVECTOR_PTHREADS accessor macros

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT (v)

This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector content
structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads) (v->content) )

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

NV_DATA_PT(v)

The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

NV_LENGTH_PT (v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

NV_NUM_THREADS_PT(v)

Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

NV_Ith_PT(v, i)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,1i) sets r to be the value of the i-th component of v.
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The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

6.7.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Pthreads (e.g.
N_VDestroy_Pthreads). All the standard vector operations listed in §6.2 are callable via the Fortran 2003 interface
by prepending an F’ (e.g. “FN_VDestroy_Pthreads ). The module NVECTOR_PTHREADS provides the following
additional user-callable routines:
N_Vector N_VNew_Pthreads (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.
N_Vector N_VNewEmpty_Pthreads (sunindextype vec_length, int num_threads, SUNContext sunctx)

This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads (sunindextype vec_length, realtype *v_data, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)

void N_VPrint_Pthreads (V_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads (N Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads (),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads () will have the default settings for the NVECTOR_PTHREADS module.

int N_VEnableFusedOps_Pthreads (N_Vecror v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the Pthreads
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Pthreads (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.
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int N_VEnableDotProdMulti_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormVectorArray_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the Pthreads vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Pthreads (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Pthreads(/N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the Pthreads vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_PT(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,1i) within the loop.

e N_VNewEmpty_Pthreads(), N_VMake_Pthreads(), and N_VCloneVectorArrayEmpty_Pthreads() set
the field own_data to SUNFALSE. The functions N_VDestroy_Pthreads() and N_VDestroyVectorArray_-
Pthreads () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

136 Chapter 6. Vector Data Structures



User Documentation for KINSOL, v6.6.0

6.7.3 NVECTOR_PTHREADS Fortran Interface

The NVECTOR_PTHREADS module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.

The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use fn-
vector_pthreads_mod, and linking to the library 1libsundials_fnvectorpthreads_mod.1lib in addition to the
C library. For details on where the library and module file fnvector_pthreads_mod.mod are installed see §10.

6.8 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating ownership
of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
booleantype own_parvector;
realtype *data;
MPI_Comm comm;
hypre_ParVector *x;

e

The header file to be included when using this module is nvector_parhyp.h. The installed module library to link to
is libsundials_nvecparhyp.lib where .1ib is typically . so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member variables.
Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

6.8.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in §6.2 except for N_VSe-
tArrayPointer () and N_VGetArrayPointer () because accessing raw vector data is handled by low-level HYPRE
functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When access to raw vector
data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to access the data. Usage
examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph. c example programs for CVODE and the
ark_diurnal_kry_ph.c example program for ARKODE.

The names of parhyp methods are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional user-
callable routines:

N_Vector N_VNewEmpty_ParHyp (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.
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N_Vector N_VMake_ParHyp (hypre_ParVector *x, SUNContext sunctx)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp (N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

void N_VPrint_ParHyp (IV_Vector v)

This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp (N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_ParHyp () will
have the default settings for the NVECTOR_PARHYP module.
int N_VEnableFusedOps_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is O for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parhyp
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormMaskVectorArray_ParHyp (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleAddMultiVectorArray_ParHyp (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, booleantype tf)

Notes

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parhyp vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

* When there is a need to access components of an N_Vector_ParHyp v, itis recommended to extract the HYPRE

vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate HYPRE func-
tions.

N_VNewEmpty_ParHyp (), N_VMake_ParHyp (), and N_VCloneVectorArrayEmpty_ParHyp() set the field
own_parvector to SUNFALSE. The functions N_VDestroy_ParHyp() and N_VDestroyVectorArray_-
ParHyp () will not attempt to delete an underlying HYPRE vector for any N_Vector with own_parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.9 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an MPI
communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {

e

sunindextype local_length;
sunindextype global_length;
booleantype own_data;

Vec *pvec;

MPI_Comm comm;

The header file to be included when using this module is nvector_petsc.h. The installed module library to link to
is libsundials_nvecpetsc.lib where .1lib is typically . so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member variables.
Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.
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6.9.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in §6.2 except for N_VGe-
tArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used with SUNDIALS Fortran
interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first, and then use
PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffice
_Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following additional user-callable
routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)
This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It is
used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great caution.
N_Vector N_VMake_Petsc(Vec *pvec, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.
Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.
By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_Petsc () will
have the default settings for the NVECTOR_PETSC module.
int N_VEnableFusedOps_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the PETSc
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is 8 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the PETSc vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector

arrays operation in the PETSc vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the PETSc vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

* When there is a need to access components of an N_Vector_Petsc v, it is recommeded to extract the PETSc
vector via x_vec = N_VGetVector_Petsc(v); and then access components using appropriate PETSc func-
tions.

e The functions N_VNewEmpty_Petsc(), N_VMake_Petsc(), and N_VCloneVectorArrayEmpty_Petsc()
set the field own_data to SUNFALSE. The routines N_VDestroy_Petsc() and N_VDestroyVectorArray_-
Petsc() will not attempt to free the pointer pvec for any N_Vector with own_data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

» To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda

{
sunindextype length;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;

SUNCudaExecPolicy* stream_exec_policy;

(continues on next page)
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(continued from previous page)

SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};
typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, and a private data structure which holds additonal members
that should not be accessed directly.

When instantiated with N_VNew_Cuda (), the underlying data will be allocated on both the host and the device. Al-
ternatively, a user can provide host and device data arrays by using the N_VMake_Cuda () constructor. To use CUDA
managed memory, the constructors N_VNewManaged_Cuda () and N_VMakelManaged_Cuda () are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewl/i th-
MemHelp_Cuda (). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library 1ibsundials_nveccuda.
1ib. The extension, .1ib, is typically . so for shared libraries and .a for static libraries.

6.10.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:
realtype *N_VGetHostArrayPointer_Cuda(N_Vecror v)

This function returns pointer to the vector data on the host.

realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in §6.2, §6.2.2,
§6.2.3, and §6.2.4, except for N_VSetArrayPointer (), and, if using unmanaged memory, N_VGetArrayPointer().
As such, this vector can only be used with SUNDIALS direct solvers and preconditioners when using managed mem-
ory. The NVECTOR_CUDA module provides separate functions to access data on the host and on the device for the
unmanaged memory use case. It also provides methods for copying from the host to the device and vice versa. Usage
examples of NVECTOR_CUDA are provided in example programs for CVODE [32].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:
N_Vector N_VNew_Cuda (sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.
N_Vector N_VNewManaged_Cuda (sunindextype vec_length, SUNContext sunctx)

This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in managed
memory.
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N_Vector N_VNewWithMemHelp_Cuda (sunindextype length, booleantype use_managed_mem, SUNMemoryHelper
helper, SUNContext sunctx)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Cuda (sunindextype vec_length, SUNContext sunctx)
This function creates a new CUDA N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Cuda (sunindextype vec_length, realtype *h_vdata, realtype *d_vdata, SUNContext sunctx)
This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda (sunindextype vec_length, realtype *vdata, SUNContext sunctx)

This function creates a CUDA N_Vector with a user-supplied managed memory data array.

N_Vector N_VMakeWithManagedAllocator_Cuda (sunindextype length, void *(*allocfn)(size_t size), void
(*freefn)(void *ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to provide
a corresponding free function as well. The memory allocated by the allocator function must behave like CUDA
managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy *stream_exec_policy,
SUNCudaExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction CUDA kernels. By default the vector is setup to use the SUNCudaThreadDirectExecPol-
icy() and SUNCudaBlockReduceAtomicExecPolicy (). Any custom execution policy for reductions must
ensure that the grid dimensions (number of thread blocks) is a multiple of the CUDA warp size (32). See §6.10.2
below for more information about the SUNCudaExecPolicy class. Providing NULL for an argument will result
in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution
policy. It is strongly recommended that this function is called immediately after constructing the vector, and
any subsequent vector be created by cloning to ensure consistent execution policies across vectors

realtype *N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.
realtype *N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.
void N_VPrint_Cuda (N Vector v)
This function prints the content of a CUDA vector to stdout.
void N_VPrintFile_Cuda (N _Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda (), enable/disable

the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
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the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda () will
have the default settings for the NVECTOR_CUDA module.
int N_VEnableFusedOps_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Cuda(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableDotProdMulti_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Cuda (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the CUDA vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

* When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use functions N_-
VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda (). However, when using managed
memory, the function N_VGetArrayPointer () may also be used.

» To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.
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6.10.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: : cuda: : ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNCudaExecPolicy class is defined as

typedef sundials::cuda::ExecPolicy SUNCudaExecPolicy

where the sundials: :cuda: :ExecPolicy class is defined in the header file sundials_cuda_policies.hpp, as
follows:

class ExecPolicy
{
public:
ExecPolicy(cudaStream_t stream = 0) : stream_(stream) { }
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;
virtual const cudaStream_t* stream() const { return (&stream_); }
virtual ExecPolicy* clone() const = 0;
ExecPolicy* clone_new_stream(cudaStream_t stream) const {
ExecPolicy* ex = clone();
ex->stream_ = stream;
return ex;

1l
(=]

}
virtual bool atomic() const { return false; }
virtual ~ExecPolicy() {}
protected:
cudaStream_t stream_;
};

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :cuda: : ThreadDirectExecPolicy (aka in the global
namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, cudaStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)
{3

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{

/* ceil(n/m) = floor((n +m - 1) / m) */

return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t /*numliorkUnits*/ = 0, size_t /*gridDim*/ = Q) const

(continues on next page)
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{
return blockDim_;
}
virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;
3

In total, SUNDIALS provides 3 execution policies:

SUNCudaThreadDirectExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a CUDA stream is provided, it will be used to execute the kernel.

SUNCudaGridStrideExecPolicy (const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a CUDA stream is provided, it
will be used to execute the kernel.

SUNCudaBlockReduceExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim)
can be set to any value greater than 0. If it is set to O, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a CUDA stream is provided, it will be used to execute
the kernel.

SUNCudaBlockReduceAtomicExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a CUDA stream is provided,
it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate(&stream) ;
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.
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6.11 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library [1]. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are already
familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The vector
content layout is as follows:

struct _N_VectorContent_Hip

{
sunindextype length;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */
};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. itis in charge
of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy implementations
that control how the HIP kernels are launched for streaming and reduction vector kernels, and a private data structure
which holds additonal members that should not be accessed directly.

When instantiated with N_VNew_Hip (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Hip () constructor. To use managed
memory, the constructors N_VNewlManaged_Hip() and N_VMakelManaged_Hip () are provided. Additionally, a user-
defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewlVi thMemHelp_-
Hip (). Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library libsundials_nvechip.1lib.
The extension, .1ib, is typically . so for shared libraries and .a for static libraries.

6.11.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:
realtype *N_VGetHostArrayPointer_Hip (N_Vector v)

This function returns pointer to the vector data on the host.

realtype *N_VGetDeviceArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Hip (N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_HIP module defines implementations of all standard vector operations defined in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VSetArrayPointer (). The names of vector operations are obtained from those in §6.2,
§6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Hip (e.g. N_VDestroy_Hip()). The module NVECTOR_HIP
provides the following additional user-callable routines:
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N_Vector N_VNew_Hip (sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both the
host and device.

N_Vector N_VNewManaged_Hip (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Hip (sunindextype length, booleantype use_managed_mem, SUNMemoryHelper

helper, SUNContext sunctx)

This function creates a new HIP N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing mem-
ory.

N_Vector N_VNewEmpty_Hip (sunindextype vec_length, SUNContext sunctx)
This function creates a new HIP N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip (sunindextype vec_length, realtype *h_vdata, realtype *d_vdata, SUNContext sunctx)

This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Hip (sunindextype vec_length, realtype *vdata, SUNContext sunctx)

This function creates a HIP N_Vector with a user-supplied managed memory data array.
The module NVECTOR_HIP also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Hip (N_Vector v, SUNHipExecPolicy *stream_exec_policy, SUNHipExecPolicy
*reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction HIP kernels. By default the vector is setup to use the SUNHipThreadDirectExecPolicy ()
and SUNHipBlockReduceExecPolicy (). Any custom execution policy for reductions must ensure that the grid
dimensions (number of thread blocks) is a multiple of the HIP warp size (32 for NVIDIA GPUs, 64 for AMD
GPUs). See §6.11.2 below for more information about the SUNHipExecPolicy class. Providing NULL for an
argument will result in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution
policy. It is strongly recommended that this function is called immediately after constructing the vector, and
any subsequent vector be created by cloning to ensure consistent execution policies across vectors*®

realtype *N_VCopyToDevice_Hip(N_Vector v)
This function copies host vector data to the device.
realtype *N_VCopyFromDevice_Hip (N_Vector v)
This function copies vector data from the device to the host.
void N_VPrint_Hip(N_Vector v)
This function prints the content of a HIP vector to stdout.
void N_VPrintFile_Hip (/N_Vector v, FILE *outfile)
This function prints the content of a HIP vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following additional

user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip (), enable/disable the
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desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-

VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit

the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Hip () will have

the default settings for the NVECTOR_HIP module.

int N_VEnableFusedOps_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the HIP vector. The return value is ® for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableDotProdMulti_Hip(N_Vecror v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the HIP
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the HIP
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the HIP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Hip (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableLinearCombinationVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the HIP vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector_Hip, v, it is recommeded to use functions N_-
VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when using managed
memory, the function N_VGetArrayPointer () may also be used.
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» To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one N_-
Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.11.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: :hip: :ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNHipExecPolicy class is defined as

typedef sundials::hip::ExecPolicy SUNHipExecPolicy

where the sundials: :hip: :ExecPolicy class is defined in the header file sundials_hip_policies.hpp, as fol-
lows:

class ExecPolicy
{
public:
ExecPolicy(hipStream_t stream = 0) : stream_(stream) { }
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
virtual const hipStream_t* stream() const { return (&stream_); }
virtual ExecPolicy* clone() const = 0;
ExecPolicy* clone_new_stream(hipStream_t stream) const {
ExecPolicy* ex = clone();
ex->stream_ = stream;
return ex;
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}
virtual bool atomic() const { return false; }
virtual ~ExecPolicy() {}
protected:
hipStream_t stream_;
3

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :hip: :ThreadDirectExecPolicy (aka in the global
namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, hipStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)
{1

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)
{1

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{

(continues on next page)
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/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t /*numliorkUnits*/ = 0, size_t /*gridDim*/ = Q) const
{

return blockDim_;

}
virtual ExecPolicy* clone() const
! return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;
3

In total, SUNDIALS provides 4 execution policies:

SUNHipThreadDirectExecPolicy (const size_t blockDim, const hipStream_t stream = 0)

Maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a HIP stream is provided, it will be used to execute the kernel.

SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a HIP stream is provided, it will
be used to execute the kernel.

SUNHipBlockReduceExecPolicy (const size_t blockDim, const hipStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can
be set to any value greater than 0. If it is set to O, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a HIP stream is provided, it will be used to execute
the kernel.

SUNHipBlockReduceAtomicExecPolicy(const size_t blockDim, const hipStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a HIP stream is provided, it
will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&stream) ;
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.
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6.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer. At
present the only supported SYCL compiler is the DPC++ (Intel one API) compiler. This module allows for SUNDIALS
vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with SYCL and
GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl

{
sunindextype length;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl: :queue*® queue;
void* priv; /* 'private' data */
3

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Syc1 (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Sycl () constructor. To use managed
(shared) memory, the constructors N_VNewManaged_Sycl () and N_VMakeManaged_Sycl () are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewl/i th-
MemHelp_Sycl(). Details on each of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to link to is 1ibsundi-
als_nvecsycl.lib. The extension .1ib is typically . so for shared libraries .a for static libraries.

6.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and §6.2.4,
except for N_VDotProdMulti(), N_ViirmsNormVectorArray (), N_VWirmsNormMaskVectorArray () as support for
arrays of reduction vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementa-
tion in the future. The names of vector operations are obtained from those in the aforementioned sections by appending
the suffix _Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:
N_Vector N_VNew_Sycl (sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)

This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.
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N_Vector N_VNewManaged_Sycl (sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in man-
aged (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Syc1 (sunindextype length, realtype *h_vdata, realtype *d_vdata, sycl::queue *Q, SUNContext

sunctx)

This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl (sunindextype length, realtype *vdata, sycl::queue *Q, SUNContext sunctx)
This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl (sunindextype length, booleantype use_managed_mem, SUNMemoryHelper

helper, sycl::queue *Q, SUNContext sunctx)

This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl ()
This function creates a new N_Vector where the members of the content structure have not been allocated. This

utility function is used by the other constructors to create a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host and device and
copying data between the two memory spaces. Note the generic NVECTOR operations N_VGetArrayPointer () and
N_VSetArrayPointer () are mapped to the corresponding HostArray functions given below. To ensure memory
coherency, a user will need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host
and device, unless managed (shared) memory is used.

realtype *N_VGetHostArrayPointer_Sycl (N_Vector v)
This function returns a pointer to the vector host data array.
realtype *N_VGetDeviceArrayPointer_Sycl (N_Vector v)
This function returns a pointer to the vector device data array.
void N_VSetHostArrayPointer_Sycl (realtype *h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.
void N_VSetDeviceArrayPointer_Sycl (realtype *d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.
void N_VCopyToDevice_Sycl (N_Vector v)
This function copies host vector data to the device.
void N_VCopyFromDevice_Sycl (N_Vector v)
This function copies vector data from the device to the host.
booleantype N_VIsManagedMemory_Sycl (N_Vector v)

This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it returns
SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on a
device.

int N_VSetKernelExecPolicy_Sycl (N_Vector v, SUNSyclExecPolicy *stream_exec_policy, SUNSyclExecPolicy
*reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction kernels. By default the vector is setup to use the SUNSyclThreadDirectExecPolicy () and
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SUNSyclBlockReduceExecPolicy (). See §6.12.2 below for more information about the SUNSyclExecPol-
icy class.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any subsequent
vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is used,
a user may need to call N_VCopyFromDevice_Sycl () to ensure consistency between the host and device array.
void N_VPrint_Sycl (N_Vector v)

This function prints the host data array to stdout.

void N_VPrintFile_Sycl (N_Vector v, FILE *outfile)
This function prints the host data array to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To ensure
consistency across vectors it is recommended to first create a vector with one of the above constructors, enable/disable
the desired operations on that vector with the functions below, and then use this vector in conjunction with N_VClone ()
to create any additional vectors. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created by any
of the constructors above will have the default settings for the NVECTOR_SYCL module.
int N_VEnableFusedOps_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the SYCL
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.
int N_VEnableLinearSumVectorArray_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the SYCL
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMultiVectorArray_Sycl (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector arrays
operation in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.
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int N_VEnableLinearCombinationVectorArray_Sycl (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the SYCL vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

* When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use N_VGetDe-
viceArrayPointer () to access the device array or N_VGetArrayPointer () for the host array. When using
managed (shared) memory, either function may be used. To ensure memory coherency, a user may need to call
the CopyTo or CopyFrom functions as necessary to transfer data between the host and device, unless managed
(shared) memory is used.

» To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: :sycl: :ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNSyclExecPolicy class is defined as

typedef sundials::sycl::ExecPolicy SUNSyclExecPolicy

where the sundials: :sycl::ExecPolicy class is defined in the header file sundials_sycl_policies.hpp, as
follows:

class ExecPolicy

{

public:
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;
virtual ExecPolicy* clone() const = 0;
virtual ~ExecPolicy() {}

};

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors. In
the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per group).
The gridSize is the number of local work groups so the global work-group range in a one-dimensional nd_range is
blockSize * gridSize (total number of threads). All vector kernels are written with a many-to-one mapping where
work units (vector elements) are mapped in a round-robin manner across the global range. As such, the blockSize
and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :sycl: :ThreadDirectExecPolicy (aka in the global
namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)

(continues on next page)
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{3

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)
{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}
virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:
const size_t blockDim_;

e

SUNDIALS provides the following execution policies:

SUNSyclThreadDirectExecPolicy (const size_t blockDim)

Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread). Based on the local work-group range (number of threads per group, blockSize) the
number of local work-groups (gridSize) is computed so there are enough work-items in the global
work-group range ( total number of threads, blockSize * gridSize) for one work unit per work-
item (thread).

SUNSyclGridStrideExecPolicy (const size_t blockDim, const size_t gridDim)

Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value. In
this case the global work-group range (total number of threads, blockSize * gridSize) may be
less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy (const size_t blockDim)

Is for kernels performing a reduction, the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value or the
gridSize may be set to 0 in which case the global range is chosen so that there are enough threads
for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduce-
ExecPolicy where the default blockDim is determined by querying the device for the max_work_group_size. User
may specify different policies by constructing a new SyclExecPolicy and attaching it with N_VSetKernelExecPol-
icy_Sycl(). For example, a policy that uses 128 work-items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length, SUNContext sunctx);
SUNSyclThreadDirectExecPolicy thread_ direct(128);

(continues on next page)

156 Chapter 6. Vector Data Structures



User Documentation for KINSOL, v6.6.0

(continued from previous page)

SUNSyclBlockReduceExecPolicy block_reduce(128);
flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.13 The NVECTOR_RAJA Module

The NVECTOR_RAIJA module is an experimental NVECTOR implementation using the RAJA hardware abstraction
layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD, NVIDIA, or Intel GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building this
vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environment, the
AMD ROCm HIP programming environment, or a compiler that supports the SYCL abstraction layer. When using the
AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can select which backend to compile
with by setting the SUNDTALS_RAJA_BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the CUDA,
HIP, and SYCL backends, RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not
used in this SUNDIALS release.

The vector content layout is as follows:

struct _N_VectorContent_Raja

{

sunindextype length;

booleantype own_data;

realtype* host_data;

realtype® device_data;

void* priv; /* 'private' data */
};

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Raja () constructor. To use managed
memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided. Details on each of
these constructors are provided below.

The header file to include when using this is nvector_raja.h. The installed module library to link to is 1ibsun-
dials_nveccudaraja.lib when using the CUDA backend, libsundials_nvechipraja.lib when using the HIP
backend, and libsundials_nvecsyclraja.lib when using the SYCL backend. The extension .1lib is typically
. so for shared libraries . a for static libraries.
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6.13.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:
realtype *N_VGetHostArrayPointer_Raja(/N_Vector v)

This function returns pointer to the vector data on the host.

realtype *N_VGetDeviceArrayPointer_Raja(N_Vector v)

This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Raja(/N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAIJA module defines the implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and
§6.2.4, except for N_VDotProdMulti (), N_VWirmsNormVectorArray (), and N_VWrmsNormMaskVectorArray () as
support for arrays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVEC-
TOR_RAJA implementation in the future. Additionally, the operations N_VGetArrayPointer () and N_VSetArray-
Pointer() are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS direct
solvers and preconditioners. The NVECTOR_RAJA module provides separate functions to access data on the host and

on the device. It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_RAIJA are provided in some example programs for CVODE [32].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Raja
(e.g. N_VDestroy_Raja). The module NVECTOR_RAIJA provides the following additional user-callable routines:
N_Vector N_VNew_Raja (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.
N_Vector N_VNewManaged_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in managed
memory.
N_Vector N_VMake_Raja(sunindextype length, realtype *h_data, realtype *v_data, SUNContext sunctx)
This function creates an NVECTOR_RAIJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.
N_Vector N_VMakeManaged_Raja(sunindextype length, realtype *vdata, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.
N_Vector N_VNewWithMemHelp_Raja(sunindextype length, booleantype use_managed_mem, SUNMemoryHelper
helper, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.
N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.
void N_VCopyToDevice_Raja(N_Vector v)

This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(/N_Vector v)

This function copies vector data from the device to the host.

158 Chapter 6. Vector Data Structures



User Documentation for KINSOL, v6.6.0

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vecror v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja (), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja() will
have the default settings for the NVECTOR_RAIJA module.

int N_VEnableFusedOps_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearSumVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the RAJA
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Raja(/N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector arrays
operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the RAJA vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an NVECTOR_RAJA vector, it is recommended to use func-
tions N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when using
managed memory, the function N_VGetArrayPointer () may also be used.

* To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.
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6.14 The NVECTOR_KOKKOS Module

New in version 6.4.0.

The NVECTOR_KOKKOS N_Vector implementation provides a vector data structure using Kokkos [24, 44] to sup-
port a variety of backends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library,
the module is also written in modern C++ (it requires C++14) as a header only library. To utilize this N_Vector
users will need to include nvector/nvector_kokkos.hpp. More instructions on building SUNDIALS with Kokkos
enabled are given in §10.1.4. For instructions on building and using Kokkos, refer to the Kokkos documentation.

6.14.1 Using NVECTOR_KOKKOS

The NVECTOR_KOKKOS module is defined by the Vector templated class in the sundials: :kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector,
public sundials::ConvertibleTo<N_Vector>

To use the NVECTOR_KOKKOS module, we construct an instance of the Vector class e.g.,

// Vector with extent length using the default execution space
sundials: :kokkos: :Vector<> x{length, sunctx};

// Vector with extent length using the Cuda execution space
sundials: :kokkos: :Vector<Kokkos: :Cuda> x{length, sunctx};

// Vector based on an existing Kokkos::View
Kokkos: :View<> view{"a view", length};
sundials: :kokkos: :Vector<> x{view, sunctx};

// Vector based on an existing Kokkos::View for device and host

Kokkos: :View<Kokkos: :Cuda> device_view{"a view", length};

Kokkos: :View<Kokkos: :HostMirror> host_view{Kokkos: :create_mirror_view(device_view)};
sundials: :kokkos: :Vector<> x{device_view, host_view, sunctx};

Instances of the Vector class are implicitly or explicitly (using the Convert () method) convertible to a N_Vector
e.g.,

sundials: :kokkos: :Vector<> x{length, sunctx};
N_Vector x2 = X; // implicit conversion to N_Vector
N_Vector x3 = x.Convert(); // explicit conversion to N_Vector

No further interaction with a Vector is required from this point, and it is possible to use the N_Vector API to operate
on X2 or x3.

Warning: N_VDestroy () should never be called on a N_Vector that was created via conversion from a sundi -
als: :kokkos: :Vector. Doing so may result in a double free.

The underlying Vector can be extracted from a N_Vector using GetVec() e.g.,

auto x_vec = GetVec<>(x3);
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6.14.2 NVECTOR_KOKKOS API

In this section we list the public API of the sundials: :kokkos: :Vector class.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = class
ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector, public sundials::ConvertibleTo<N_Vector>

Vector () = default
Default constructor — the vector must be copied or moved to.

Vector (size_type length, SUNContext sunctx)

Constructs a single Vector which is based on a 1D Kokkos: : View with the ExecutionSpace and Memo-
rySpace provided as template arguments.

Parameters
¢ length — length of the vector (i.e., the extent of the View)
* sunctx — the SUNDIALS simulation context object (SUNContext)

Vector (view_type view, SUNContext sunctx)

Constructs a single Vector from an existing Kokkos: :View. The View ExecutionSpace and MemoryS-
pace must match the ExecutionSpace and MemorySpace provided as template arguments.

Parameters
e view— A 1D Kokkos: :View
* sunctx — the SUNDIALS simulation context object (SUNContext)

Vector (view_type view, host_view_type host_view, SUNContext sunctx)

Constructs a single Vector from an existing Kokkos: : View for the device and the host. The Execution-
Space and MemorySpace of the device View must match the ExecutionSpace and MemorySpace provided
as template arguments.

Parameters
e view — A 1D Kokkos: : View for the devic