The xpeckahead Package
Version 1.3a

Alceu Frigeri*

November 2025

Abstract

This package offers a few commands aiming at peeking ahead environments and commands
in simple cases. It’s based on expl3 and a question at stackexchange [2].

Contents

1 Introduction 1

2 Expl3 Commands 2
2.1 Defining Action Commands . . . . . . .. . ... Lo 2
2.2 Peeking Ahead . . . . . . . . .. 2

3 LaTeX2e Commands 3
3.1 Defining Action Commands . . . . . . . . . ... L oL 3
3.2 Peeking Ahead . . . . . . . L 3

4 Examples 4
4.1 Peeking Ahead Simple Commands . . . . . . .. .. ... oL 4
4.2 Peeking Ahead Environments . . . . ... ..o oL 4

1 Introduction

expl3 offers a solid base for programmatically peeking ahead (with the many \peek_ commands),
nevertheless some constructions might be extensive and, at times, tricky. This package is focused
in two cases:

« detecting the first token (perhaps a command) past the end of the current one, ignoring all
spaces, blanks, new lines.

o same, but past the end of an environment (the tricky part)

This should be enough in most cases where one wants to fine tune formatting, e.g. spacing, based
on what follows.
Two sets of commands are defined, one to be used in a exp13 package (see 2), and another for
use in a BTEX 2¢ code régime (see 3).
Note: In fact, given \peek_regex: flexibility, it is possible to construct a regular
expression that will look past a single/few tokens, in which case one is probably best
served with the exp13 \peek_ functions.
Note: The BETEX 2¢ commands at 3 are just aliases to some of the expl3 commands
at 2.

*https://github.com/alceu-frigeri/xpeekahead



2 Expl3 Commands

When peeking ahead, a regular expression is needed to match against, the commands in 2.2 have
the option to express the regular expression directly, (regex), with a pre-compiled regex variable,
(pre-regex), or through a pre-defined command, 2.1.

Note: All conditionals, T, F and TF are defined, it’s possible to generate variants with,
for instance, \prg_generate_conditional_variant: None of them is expandable.

2.1 Defining Action Commands

\xpeekahead_set:NnTF \xpeekahead_set:NnTF {(cmd)} {(regex)} {(if-true)} {(if-false)}
\xpeekahead_gset :NnTF \xpeekahead_gset:NnTF {(cmd)} {(regex)} {(if-true)} {(if-false)}
\xpeekahead_set:NNTF \xpeekahead_set:NNTF {(cmd)} {(pre-regex)} {(if-true)} {(if-false)}
\xpeekahead_gset:NNTF \xpeekahead_gset:NNTF {(cmd)} {(pre-regex)} {(if-true)} {(if-false)}

updated: 2025/10/07

These will create a new command (cmd), the peeked ahead token(s) will be compared with (regex)
and (if-true) or (if-false) will be left on the input stream, before the peeked ahead token(s). For
instance, \c{begin}\cB{envx} will match \begin{envx}.

The \xpeekahead_set: will create the new command in the current group, whilst \xpeekahead_gset:
will create it grobally

Note: (regex) can be any valid Regular Expression, as described in [1], in particular
take a look on the section Matching exact tokens.

Warning: These commands won’t check if (cmd) is already defined, and will overwrite
any previous definition.

2.2 Peeking Ahead

\xpeekahead_cmd_peek:N \xpeekahead_cmd_peek:N {(cmd)}
\xpeekahead_cmd_peek:nTF \xpeekahead_cmd_peek:nTF {(regex)} {(if-true)} {(if-false)}
\xpeekahead_cmd_peek:NTF \xpeekahead_cmd_peek:NTF {(pre-regex)} {(if-true)} {(if-false)}

updated: 2025/10/07

These are for the most simple cases, where \xpeekahead_cmd_peek: will be placed at the very end
of a command definition. (regex), (if-true) and (if-false) are the same as defined in 2.1 and
(cmd) is any command defined using \xpeekahead_(g)set:.

\xpeekahead_env_set:nN \xpeekahead_env_set:nN {(env-name)} {(cmd)}
\xpeekahead_env_set:nnTF \xpeekahead_env_set:nnTF {(env-name)} {(regex)} {(if-true)} {(if-false)}
\xpeekahead_env_set:nNTF \xpeekahead_env_set:nNTF {(env-name)} {(pre-regex)} {(if-true)} {(if-false)}

updated: 2025/10/07

These are for the cases where one wants to detect what comes after the end of an environment. In
this case, those commands are to be placed in the “begin part” of an environment definition. Note
that the peek ahead command will be injected past the end of the environment, meaning any local
assignment made inside of the environment won’t be accessible.

(regex), (if-true) and (if-false) are the same as defined in 2.1 and (cmd) is any command defined
using \xpeekahead_(g)set:.

Important: The (env-name) HAS TO BE the name of the environment being defined.
It will be used by the injected function to evaluate if it should peek ahead or not (in
case it’s called in the context of another (inner) environment).

Note: These commands are reentrant safe, meaning, the resulting environment can
be nested as needed.

Warning: The peek ahead command injection assumes that the macro “end ” (with
a space at the end of it) doesn’t change (thanks David, [2]). Since the macro capture
occurs at the outermost call to \xpeekahead_env_set: it should be safe.



3 LaTeX2e Commands

When peeking ahead, a regular expression is needed to match against, the commands in 3.2 have
the option to express the regular expression directly, (regex) or through a pre-defined command.

3.1 Defining Action Commands

\xpeekSetCmd

\xpeekSetCmd {(cmd)} {(regex)} {(if-true)} {(if-false)}

\xpeekSetCmdGlobal \xpeekSetCmdGlobal {(cmd)} {(regex)} {(if-true)} {(if-false)}

\xpeekTokCmd
\xpeekTok

\xpeekEnvCmd
\xpeekEnv

These will create a new command (cmd), the peeked ahead token(s) will be compared with (regex)
and (if-true) or (if-false) will be left on the input stream, before the peeked ahead token(s). For
instance, \c{begin}\cB{envx} will match \begin{envx}.

The \xpeekSetCmd will create the new command in the current group, whilst \xpeekSetCmdGlobal
will create it grobally

Note: (regex) can be any valid Regular Expression, as described in [1], in particular
take a look on the section Matching exact tokens.

Warning: These commands won’t check if (cmd) is already defined, and will overwrite
any previous definition.

3.2 Peeking Ahead

\xpeekTokCmd {(cmd)}
\xpeekTok {(regex)} {(if-true)} {(if-false)?}

These are for the most simple cases, where \xpeekTokCmd or \xpeekTok will be placed at the very
end of a command definition. (regex), (if-true) and (if-false) are the same as defined in 3.1 and
(cmd) is any command defined using \xpeekSetCmd or \xpeekSetCmdGlobal.

\xpeekEnvCmd {(env-name)} {(cmd)}
\xpeekEnv {(env-name)} {(regex)} {(if-true)} {(if-false)}

These are for the cases where one wants to detect what comes after the end of an environment. In
this case, those commands are to be placed in the “begin part” of an environment definition. Note
that the peek ahead command will be injected past the end of the environment, meaning any local
assignment made inside of the environment won’t be accessible.

(regex), (if-true) and (if-false) are the same as defined in 3.1 and (cmd) is any command defined
using \xpeekSetCmd or \xpeekSetCmdGlobal.

Important: The (env-name) HAS TO BE the name of the environment being defined.
It will be used by the injected function to evaluate if it should peek ahead or not (in
case it’s called in the context of another (inner) environment).

Note: These commands are reentrant safe, meaning, the resulting environment can
be nested as needed.

Warning: The peek ahead command injection assumes that the macro “end ” (with
a space at the end of it) doesn’t change (thanks David, [2]). Since the macro capture
occurs at the outermost call to \xpeekEnv or \xpeekEnvCmd it should be safe.



4 Examples

To keep things simple, in the examples below I¥TEX 2¢ syntax will be used, since they are just
aliases to their exp13 counter parts.

4.1 Peeking Ahead Simple Commands

Note that, in this first example, the \xpeekTok and \xpeekTokCmd were the last command on both
\cmdA and \cmdB.

Of course, in a more real case, one will (instead of adding some conditional text as in those
examples) perhaps adjust vertical spacing and/or set auxiliary variables, etc.

%% This will match either \cmdA or \cmdC
\xpeekSetCmd{\detectAC}

{\c{cmdA} | \c{cmdC}}

{\hspace{5mm} A or C will be next\par}

{\hspace{5mm} something else\par}

%% This will match only \cmdB
\xpeekSetCmd{\detectB}

{\c{cmdB}}

{\hspace{5mm} B will be next\par}

{\hspace{5mm} something else\par}

% using the pre-defined \detectAC
\NewDocumentCommand{\cmdA}{m}
{\par .. command A (#1).. \par\xpeekTokCmd{\detectACl}}

% given the matching regular expression directly
\NewDocumentCommand{\cmdB}{m}
{\par .. command B (#1).. \par\xpeekTok{\c{cmdC}}{\hspace{3mm}C will be next\par}{\hspace{3mm}
something else\parl}}

\NewDocumentCommand{\cmdC}{m}
{\par .. command C (#1).. \par}

. command A (some par for A)..
A or C will be next

\cmdA{some par for A, again} .. command A (some par for A, again)..
something else

. command B (some for B)..

\cmdC{some for C} C will be next

. command C (some for C)..

\cmdA{some par for A}

\cmdB{some for B}

4.2 Peeking Ahead Environments

Note that all one needs to detect an environment is to recognise the sequence \c{begin} followed
by whatever environment one wants to detect:

%% This will match the begin of two environments: \begin{envA} or \begin{envC}
\xpeekSetCmd{\detectEnvAC}

{\c{begin} (\cB{envA}|\cB{envC})}

{\hspace{5mm} envA or envC will be next\par}

{\hspace{5mm} something else\par}

%% This will match only \begin{envB}
\xpeekSetCmd{\detectEnvB}

{\c{begin}\cB{envB}}

{\hspace{5mm} B will be next\par}

{\hspace{5mm} something else\par}



\NewDocumentCommand{\cmdD}{m}
{
\par .. command D (#1) .. \par
\xpeekTok{\c{begin}\cB{envA}}
{\hspace{3mm}env A will be next\par}
{\hspace{3mm}something else\par}
}

\NewDocumentEnvironment{envA}{}
{

\par beginning of environment A\par

%this can be put anywhere in the beginning block... no need to be the last command.
\xpeekEnvCmd{envA}
{\detectEnvAC}
}
{
\par end of environment A\par

}

\NewDocumentEnvironment{envB}{}
{

\par beginning of environment B\par

%this can be put anywhere in the beginning block... no need to be the last command.
\xpeekEnv{envB}
{\c{begin}\cB{envC}}
{\hspace{3mm}env C will be next\par}
{\hspace{3mm}something else\par}
}
{
\par end of environment B\par

}

\NewDocumentEnvironment{envC}{}
{
\par beginning of environment C\par
}
{
\par end of environment C\par

}

. command D (some par for D) ..

\cmdD{some par for D} .
P env A will be next

\begin{envA} beginning of environment A
some text some text
NCEREH end of environment A
\begin{envC} envA or envC will be next
some text beginning of environment C
\end{envC} some text
end of environment C
\begin{envB} beginning of environment B
some text some text
\end{envB} end of environment B
Vol env C will be next
some text beginning of environment C
\end{envC} some text
end of environment C
References

[1] The LaTeX3 Project. The LaTeX3 Interfaces. 2025. URL: https://mirrors . ctan. org/
macros/latex/required/13kernel/interface3.pdf (visited on 09/14/2025).

[2] David Purton. peek ahead in expl3. 2025. URL: https://tex.stackexchange.com/a/745603/
207840 (visited on 09/14/2025).


https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://tex.stackexchange.com/a/745603/207840
https://tex.stackexchange.com/a/745603/207840

	Introduction
	Expl3 Commands
	Defining Action Commands
	Peeking Ahead

	LaTeX2e Commands
	Defining Action Commands
	Peeking Ahead

	Examples
	Peeking Ahead Simple Commands
	Peeking Ahead Environments


