\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}% sauf si vous avez changé l'encodage
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{amsmath,amssymb,stmaryrd,calc}%}% pour geqslant qui existe ds fourier
\usepackage{xkeyval}
\usepackage{multirow,longtable}
\usepackage[%
      a4paper,%
      textwidth=16cm,
      top=2cm,%
      bottom=2cm,%
      headheight=25pt,%
      headsep=12pt,%
      footskip=25pt]{geometry}%

\usepackage{alterqcm}
% on charge le package
% longtable en cas de débordement du tableau
% amsmath car les exemples sont des annales du bac en mathématiques.
\usepackage[frenchb]{babel}
\parindent=0pt
\begin{document}

\begin{alterqcm}[correction,corsymb=\dingchecksquare,lq=100mm]
\AQquestion[br=3,pq=3mm]{Among the following propositions, which one allows us to affirm that the exponential function admits for asymptote the line of equation $y = 0$ ?}
{{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$},
{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$}
}

\AQquestion[br=2]{exp$(\ln x) = x$ for any $x$ belonging to }
{{$\mathbf{R}$},
{$\big]0~;~+ \infty\big[$},
{$\big[0~;~+\infty\big[$}
}

\end{alterqcm}


\end{document}