## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----ex1---------------------------------------------------------------------- library(xtune) data("example") X <- example$X; Y <- example$Y; Z <- example$Z dim(X);dim(Z) ## ----dim---------------------------------------------------------------------- X[1:3,1:10] ## ----------------------------------------------------------------------------- Z[1:10,] ## ----fit1--------------------------------------------------------------------- fit.example1 <- xtune(X,Y,Z, family = "linear", c = 1) ## ----ex1uni------------------------------------------------------------------- unique(fit.example1$penalty.vector) ## ----ex2_data----------------------------------------------------------------- data(diet) head(diet$DietItems) head(diet$weightloss) ## ----ex2ex-------------------------------------------------------------------- head(diet$NuitritionFact) ## ----exfit-------------------------------------------------------------------- fit.diet = xtune(X = diet$DietItems,Y=diet$weightloss,Z = diet$NuitritionFact, family="binary", c = 0) ## ----indiv-------------------------------------------------------------------- fit.diet$penalty.vector ## ----ex3_data----------------------------------------------------------------- data(gene) gene$GeneExpression[1:3,1:5] gene$PreviousStudy[1:5,] ## ----multiclass--------------------------------------------------------------- data("example.multiclass") dim(example.multiclass$X); dim(example.multiclass$Y); dim(example.multiclass$Z) head(example.multiclass$X)[,1:5] head(example.multiclass$Y) head(example.multiclass$Z) ## ----------------------------------------------------------------------------- fit.multiclass = xtune(X = example.multiclass$X,Y=example.multiclass$Y,Z = example.multiclass$Z, U = example.multiclass$U, family = "multiclass", c = 0.5) # check the tuning parameter fit.multiclass$penalty.vector ## ----------------------------------------------------------------------------- pred.prob = predict_xtune(fit.multiclass,newX = cbind(example.multiclass$X, example.multiclass$U)) head(pred.prob) ## ----------------------------------------------------------------------------- pred.class <- predict_xtune(fit.multiclass,newX = cbind(example.multiclass$X, example.multiclass$U), type = "class") head(pred.class) ## ----------------------------------------------------------------------------- misclassification(pred.class,true = example.multiclass$Y) ## ----sp1---------------------------------------------------------------------- fit.eb <- xtune(X,Y, family = "linear", c = 0.5) ## ----sp2---------------------------------------------------------------------- Z_iden = diag(ncol(diet$DietItems)) fit.diet.identity = xtune(diet$DietItems,diet$weightloss,Z_iden, family = "binary", c = 0.5) ## ----sp22--------------------------------------------------------------------- fit.diet.identity$penalty.vector