## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>",size = 10, fig.height = 6, fig.width = 6 ) ## ----include=FALSE------------------------------------------------------------ ##Load package library(vectorsurvR) ## ----results='hide', eval=F--------------------------------------------------- # # token = getToken() # ## ----eval=F, echo=T----------------------------------------------------------- # #Example # collections = getArthroCollections(token, 2022,2023, 'mosquito',55) ## ----eval=F, echo=T----------------------------------------------------------- # #Example # pools = getPools(token, 2022,2023, 'mosquito') ## ----eval=F, echo=T----------------------------------------------------------- # #creates a file named "collections_18_23.csv" in your current directory # write.csv(x = collections, file = "collections_22_23.csv") # # #loads collections data # collections = read.csv("collections_22_23.csv") # ## ----------------------------------------------------------------------------- #Subset using column names or index number colnames(sample_collections) #displays column names and associated index #Subseting by name head(sample_collections[c("collection_date", "species_display_name", "num_count")]) #by index head(sample_collections[c(2, 4, 10)]) #to save a subset collections_subset = sample_collections[c(2, 4, 10)] ## ----------------------------------------------------------------------------- #NOTE: library was loaded above library(dplyr) #Subsetting columns with 'select()' sample_collections %>% dplyr::select(collection_date, species_display_name, num_count) %>% head() ## ----------------------------------------------------------------------------- #filtering with dplyr 'filter' collections_pip = sample_collections %>% filter(species_display_name == "Cx pipiens") #filtering multiple arguments using '%in%' collections_pip_tar = sample_collections %>% filter(species_display_name %in% c("Cx pipiens", "Cx tarsalis")) ## ----------------------------------------------------------------------------- #groups by species and collection date and sums the number counted sample_collections %>% group_by(collection_date, species_display_name) %>% summarise(sum_count = sum(num_count, na.rm = T)) %>% head() #groups by species and collection date and takes the average the number counted sample_collections %>% group_by(collection_date, species_display_name) %>% summarise(avg_count = mean(num_count, na.rm = T)) %>% head() ## ----------------------------------------------------------------------------- library(tidyr) collections_wide = pivot_wider( sample_collections, names_from = c("species_display_name","sex_type"), values_from = "num_count" ) ## ----------------------------------------------------------------------------- getAbundance( sample_collections, interval = "Biweek", species = c("Cx tarsalis", "Cx pipiens"), trap = "CO2", separate_by = NULL ) ## ----------------------------------------------------------------------------- getAbundanceAnomaly(sample_collections, interval = "Biweek", target_year = 2020, species = c("Cx tarsalis", "Cx pipiens"), trap = "CO2", separate_by = "species") ## ----------------------------------------------------------------------------- getInfectionRate(sample_pools, interval = "Week", target_disease = "WNV", pt_estimate = "mle", scale = 1000, species = c("Cx pipiens", "Cx tarsalis"), trap = c("CO2"), separate_by="species", wide = FALSE ) ## ----------------------------------------------------------------------------- getVectorIndex(sample_collections, sample_pools, interval = "Biweek", target_disease = "WNV", pt_estimate = "bc-mle", species = c("Cx tarsalis"), trap = c("CO2"), wide = FALSE) ## ----------------------------------------------------------------------------- getPoolsComparisionTable( sample_pools, interval = "Week", target_disease = "WNV" ) ## ----------------------------------------------------------------------------- library(kableExtra) AbAnOutput = getAbundance( sample_collections, interval = "Biweek", species = c("Cx tarsalis", "Cx pipiens"), trap = "CO2", separate_by = "species") head(AbAnOutput) #kable table where column names, font_size, style and much more can be customized AbAnOutput %>% kbl() %>% kable_styling( bootstrap_options = "striped", font_size = 14, latex_options = "scale_down" ) %>% footnote(general = "Table X: Combined biweekly Abundance Calculation for Cx. tarsalis, pipiens in CO2 traps", general_title = "") ## ----------------------------------------------------------------------------- library(DT) AbAnOutput %>% datatable(colnames = c("Disease Year", "Biweek", "Count", "Species","Trap Type","Trap Events", "Abundance"))