## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----eval=FALSE, include=TRUE------------------------------------------------- # install_r_tensorflow(python_path = "system_path_of_python.exe", env_name = "r-tensorflow") ## ----eval=FALSE, include=TRUE------------------------------------------------- # install_r_tensorflow(python_path = "C:/Users/User_name/AppData/Local/Programs/Python/Python312/python.exe", env_name = "r-tensorflow") ## ----eval=FALSE, include=TRUE------------------------------------------------- # install_r_keras(tensorflow_python_path = "virtual_environment_path_of_python.exe", env_name = "r-tensorflow") ## ----eval=FALSE, include=TRUE------------------------------------------------- # install_r_keras(tensorflow_python_path = "C:/Users/kabil/Documents/.virtualenvs/r-tensorflow/Scripts/python.exe", env_name = "r-tensorflow") ## ----eval=FALSE, include=TRUE------------------------------------------------- # install_r_pandas(tensorflow_python_path = "virtual_environment_path_of_python.exe", env_name = "r-tensorflow") ## ----eval=FALSE, include=TRUE------------------------------------------------- # install_r_pandas(tensorflow_python_path = "C:/Users/kabil/Documents/.virtualenvs/r-tensorflow/Scripts/python.exe", env_name = "r-tensorflow") ## ----eval=FALSE, include=TRUE------------------------------------------------- # library(transformerForecasting) # data("S_P_500_Close_data") # df <- S_P_500_Close_data ## ----eval=FALSE, include=TRUE------------------------------------------------- # result <- TRANSFORMER( # df = df, # study_variable = "Price", # tensorflow_python_path = "C:/Users/kabil/Documents/.virtualenvs/r-tensorflow/Scripts/python.exe", # env_name = "r-tensorflow", # sequence_size = 10, # head_size = 128, # num_heads = 8, # ff_dim = 256, # num_transformer_blocks = 4, # mlp_units = c(128), # mlp_dropout = 0.3, # dropout = 0.2, # epochs = 100, # batch_size = 32, # patience = 15 # ) ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$PREDICTIONS ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$RMSE ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$MAE ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$MAPE ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$sMAPE ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$RRMSE ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$Quantile_Loss ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$Loss_plot ## ----echo=FALSE, out.width = "500px"------------------------------------------ knitr::include_graphics("images/loss_plot.png", dpi = 72) ## ----eval=FALSE, include=TRUE------------------------------------------------- # result$Actual_vs_Predicted ## ----echo=FALSE, out.width = "500px"------------------------------------------ knitr::include_graphics("images/act_vs_pred.png", dpi = 72)