## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, echo = FALSE, message = FALSE------------------------------------- library(svytest) library(survey) ## ----------------------------------------------------------------------------- # Construct survey design des <- svydesign(ids = ~1, weights = ~FINLWT21, data = svytestCE) # Fit weighted regression fit <- svyglm(TOTEXPCQ ~ ROOMSQ + BATHRMQ + BEDROOMQ + FAM_SIZE + AGE, design = des) ## ----------------------------------------------------------------------------- # Run all diagnostic tests all_results <- run_all_diagnostic_tests(fit, alpha = 0.05) print(all_results) ## ----------------------------------------------------------------------------- # Run DC test with equal residual variance res_equal <- diff_in_coef_test(fit, var_equal = TRUE) print(res_equal) # Run DC test with heteroskedasticity-robust variance (HC3) res_robust <- diff_in_coef_test(fit, var_equal = FALSE, robust_type = "HC3") summary(res_robust) ## ----------------------------------------------------------------------------- results <- wa_test(fit, type = "DD") print(results) ## ----------------------------------------------------------------------------- results <- wa_test(fit, type = "PS1") print(results) ## ----------------------------------------------------------------------------- results <- wa_test(fit, type = "PS2") print(results) ## ----------------------------------------------------------------------------- results <- wa_test(fit, type = "WF") print(results) ## ----------------------------------------------------------------------------- linear_results <- estim_eq_test(fit, q_method = "linear") print(linear_results) log_results <- estim_eq_test(fit, q_method = "log") print(log_results) ## ----------------------------------------------------------------------------- perm_mean_results <- perm_test(fit, stat = "pred_mean", B = 1000, engine = "R") print(perm_mean_results) library(Rcpp) perm_mahal_results <- perm_test(fit, stat = "coef_mahal", B = 1000, engine = "C++") print(perm_mahal_results) ## ----echo=FALSE, results='asis', message = FALSE------------------------------ library(knitr) library(dplyr) reject_table <- readRDS(system.file("extdata/st1_reject_table.rds", package = "svytest")) reject_table_perm <- readRDS(system.file("extdata/perm_reject_table.rds", package = "svytest")) reject_table |> left_join(reject_table_perm, by = c("n", "sigma", "delta", "alpha")) |> select(n, sigma, delta, alpha, DD, PS1, PS1q, PS2, PS2q, HP, PS3, pred_mean, coef_mahal) |> kable(digits = 3, caption = "Empirical rejection rates (Study 1 design). Columns correspond to diagnostic tests; rows to simulation scenarios.")