## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(stxplore) library(dplyr) library(tidyr) library(cubelyr) library(stars) ## ----loaddata----------------------------------------------------------------- data("aerosol_australia") aerosol_australia ## ----ssnap1------------------------------------------------------------------- aerosol_australia4 <- aerosol_australia %>% slice(date, 1:4) spatial_snapshots(aerosol_australia4) ## ----tempsnap----------------------------------------------------------------- xvals <- c(120, 150) yvals <- c(-20, -35) temporal_snapshots(aerosol_australia, xvals = xvals, yvals = yvals) ## ----spmeans------------------------------------------------------------------ spmeans <- spatial_means(aerosol_australia) autoplot(spmeans) ## ----tempmeans---------------------------------------------------------------- tem <- temporal_means(aerosol_australia) autoplot(tem) ## ----hovmoller1--------------------------------------------------------------- hov <- hovmoller(aerosol_australia, lat_or_lon = 'lon') autoplot(hov) ## ----hovmoller2--------------------------------------------------------------- hov <- hovmoller(aerosol_australia, lat_or_lon = 'lat') autoplot(hov) ## ----ridgeline---------------------------------------------------------------- ridgeline(aerosol_australia, group_dim = 1) ## ----empcov1------------------------------------------------------------------ aerosol_region <- aerosol_australia %>% filter(x > 150, x < 170, y < -20, y> -40 ) # longitudinal strips emp <- emp_spatial_cov(aerosol_region, num_strips = 2) autoplot(emp) ## ----empcov2------------------------------------------------------------------ # latitude strips emp <- emp_spatial_cov(aerosol_region, num_strips = 2, lat_or_lon_strips = 'lat') autoplot(emp) ## ----semivariogram1----------------------------------------------------------- semi <- semivariogram(aerosol_region) autoplot(semi) ## ----eof---------------------------------------------------------------------- eoff <- emp_orth_fun(aerosol_australia) autoplot(eoff, EOF_num = 1) autoplot(eoff, EOF_num = 2) autoplot(eoff, EOF_num = 3) ## ----eof2--------------------------------------------------------------------- pc1 <- eoff$pcts %>% filter(EOF == 'X1') %>% pull(nPC) pc2 <- eoff$pcts %>% filter(EOF == 'X2') %>% pull(nPC) cor(pc1, pc2) ## ----eof3--------------------------------------------------------------------- pcs <- eoff$pcts %>% select(t, EOF, nPC) %>% pivot_wider(names_from = EOF, values_from = nPC) %>% select(-t) cormat <- cor(pcs)[1:3, 1:3] cormat ## ----cancor------------------------------------------------------------------- cc1 <- cancor_eof(aerosol_australia, lag = 6, n_eof = 4) autoplot(cc1)