## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>", dev = "png", fig.width = 7, fig.height = 5, message = FALSE, warning = FALSE) if (!requireNamespace("sjmisc", quietly = TRUE) || !requireNamespace("haven", quietly = TRUE) || !requireNamespace("ggplot2", quietly = TRUE) || !requireNamespace("sjlabelled", quietly = TRUE)) { knitr::opts_chunk$set(eval = FALSE) } ## ----------------------------------------------------------------------------- library(sjPlot) library(sjmisc) library(sjlabelled) library(ggplot2) theme_set(theme_bw()) data(efc) plot_grpfrq(efc$e42dep, efc$c172code, geom.colors = "gs") ## ----------------------------------------------------------------------------- # create binrary response y <- ifelse(efc$neg_c_7 < median(na.omit(efc$neg_c_7)), 0, 1) # create data frame for fitting model df <- data.frame( y = to_factor(y), sex = to_factor(efc$c161sex), dep = to_factor(efc$e42dep), barthel = efc$barthtot, education = to_factor(efc$c172code) ) # set variable label for response set_label(df$y) <- "High Negative Impact" # fit model fit <- glm(y ~., data = df, family = binomial(link = "logit")) # plot marginal effects plot_model( fit, type = "pred", terms = c("barthel", "sex","dep"), colors = "bw", ci.lvl = NA ) ## ----------------------------------------------------------------------------- # plot coefficients plot_model(fit, colors = "black")