## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE---- ###***************************** # INITIAL COMMANDS TO RESET THE SYSTEM seedNo=14159 set.seed(seedNo) ###***************************** ###***************************** require("sicegar") require("dplyr") require("ggplot2") require("cowplot") ###***************************** ## ----------------------------------------------------------------------------- # simulate sigmoidal data time <- seq(3, 24, 0.5) noise_parameter <- 0.1 intensity_noise <- runif(n = length(time), min = 0, max = 1) * noise_parameter intensity <- sigmoidalFitFormula(time, maximum = 4, slope = 1, midPoint = 8) intensity <- intensity + intensity_noise dataInputSigmoidal <- data.frame(intensity = intensity, time = time) # simulate double-sigmoidal data noise_parameter <- 0.2 intensity_noise <- runif(n = length(time),min = 0,max = 1) * noise_parameter intensity <- doublesigmoidalFitFormula(time, finalAsymptoteIntensityRatio = .3, maximum = 4, slope1 = 1, midPoint1Param = 7, slope2 = 1, midPointDistanceParam = 8) intensity <- intensity + intensity_noise dataInputDoubleSigmoidal <- data.frame(intensity = intensity, time = time) # fit models to both datasets fitObj_sm <- fitAndCategorize(dataInput = dataInputSigmoidal) fitObj_dsm <- fitAndCategorize(dataInput = dataInputDoubleSigmoidal) ## ----plot raw data, echo=TRUE, fig.height=4, fig.width=6---------------------- # sigmoidal raw data only figureModelCurves(dataInput = fitObj_sm$normalizedInput) # double-sigmoidal raw data only figureModelCurves(dataInput = fitObj_dsm$normalizedInput) ## ----plot raw data and fit, echo=TRUE, message=FALSE, warning=FALSE, comment=FALSE, fig.height=4, fig.width=6---- # sigmoidal fit figureModelCurves(dataInput = fitObj_sm$normalizedInput, sigmoidalFitVector = fitObj_sm$sigmoidalModel) # double-sigmoidal fit figureModelCurves(dataInput = fitObj_dsm$normalizedInput, doubleSigmoidalFitVector = fitObj_dsm$doubleSigmoidalModel) ## ----plot raw data and fit with parameter related lines, echo=TRUE, message=FALSE, warning=FALSE, comment=FALSE, fig.height=4, fig.width=6---- # sigmoidal fit with parameter related lines figureModelCurves(dataInput = fitObj_sm$normalizedInput, sigmoidalFitVector = fitObj_sm$sigmoidalModel, showParameterRelatedLines = TRUE) # double-sigmoidal fit with parameter related lines figureModelCurves(dataInput = fitObj_dsm$normalizedInput, doubleSigmoidalFitVector = fitObj_dsm$doubleSigmoidalModel, showParameterRelatedLines = TRUE)