## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE---- ###***************************** seedNo=14159 set.seed(seedNo) ###***************************** ###***************************** require("sicegar") require("dplyr") require("ggplot2") ###***************************** ## ----generate data for double - sigmoidal------------------------------------- time <- seq(3, 24, 0.5) noise_parameter <- 0.2 intensity_noise <- runif(n = length(time), min = 0, max = 1) * noise_parameter intensity <- doublesigmoidalFitFormula(time, finalAsymptoteIntensityRatio = .3, maximum = 4, slope1Param = 1, midPoint1Param = 7, slope2Param = 1, midPointDistanceParam = 8) intensity <- intensity + intensity_noise dataInput <- data.frame(time, intensity) head(dataInput) # the generated input data ## ----normalize_data----------------------------------------------------------- normalizedInput <- normalizeData(dataInput = dataInput, dataInputName = "doubleSigmoidalSample") head(normalizedInput$timeIntensityData) # the normalized time and intensity data ## ----normalized_data_output--------------------------------------------------- normalizedInput$dataScalingParameters # scaling parameters normalizedInput$dataInputName # data input name ## ----time normalization, eval=FALSE------------------------------------------- # timeRange <- time # timeNormalized <- time/timeRange # normalized time values ## ----intensity normalization, eval=FALSE-------------------------------------- # intensityMin <- min(intensity) # intensityMax <- max(intensity) # intensityRange <- intensityMax - intensityMin # # intensityNormalized <- (intensity-intensityMin)/intensityRange # normalized intensity values ## ----------------------------------------------------------------------------- # Do the sigmoidal fit sigmoidalModel <- multipleFitFunction(dataInput=normalizedInput, model="sigmoidal") # Do the double-sigmoidal fit doubleSigmoidalModel <- multipleFitFunction(dataInput=normalizedInput, model="doublesigmoidal") ## ----parameter vectors-------------------------------------------------------- t(sigmoidalModel) t(doubleSigmoidalModel)