## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----install packages, echo=FALSE, warning=FALSE, results='hide', message=FALSE---- ###***************************** # INITIAL COMMANDS TO RESET THE SYSTEM rm(list = ls()) if (is.integer(dev.list())){dev.off()} cat("\014") seedNo=14159 set.seed(seedNo) ###***************************** ###***************************** require("sicegar") require("dplyr") require("ggplot2") ###***************************** ## ----generate data for sigmoidal, echo=FALSE, warning=FALSE, results='hide', message=FALSE---- time=seq(3,24,0.5) #simulate intensity data and add noise noise_parameter=0.1 intensity_noise=stats::runif(n = length(time),min = 0,max = 1)*noise_parameter intensity=sicegar::sigmoidalFitFormula(time, maximum=4, slope=1, midPoint=8) intensity=intensity+intensity_noise dataInputSigmoidal=data.frame(time, intensity) ## ----generate data for double - sigmoidal, echo=FALSE, warning=FALSE, results='hide', message=FALSE---- noise_parameter=0.2 intensity_noise=runif(n = length(time),min = 0,max = 1)*noise_parameter intensity=sicegar::doublesigmoidalFitFormula(time, finalAsymptoteIntensityRatio=.3, maximum=4, slope1=1, midPoint1Param=7, slope2=1, midPointDistanceParam=8) intensity=intensity+intensity_noise dataInputDoubleSigmoidal=data.frame(time, intensity) ## ----normalize_data, echo=FALSE, warning=FALSE, results='hide', message=FALSE---- normalizedSigmoidalInput = sicegar::normalizeData(dataInput = dataInputSigmoidal, dataInputName = "sigmoidalSample") normalizedDoubleSigmoidalInput = sicegar::normalizeData(dataInput = dataInputDoubleSigmoidal, dataInputName = "doubleSigmoidalSample") ## ----sigmoidal and double sigmoidal fit to datasets--------------------------- sigmoidalModel <- multipleFitFunction(dataInput=normalizedSigmoidalInput, model="sigmoidal") ## ----echo=FALSE, warning=FALSE, results='hide', message=FALSE----------------- doubleSigmoidalModel <- multipleFitFunction(dataInput=normalizedDoubleSigmoidalInput, model="doublesigmoidal") ## ----generate additional parameters for sigmoidalModel and doubleSigmoidalModel---- sigmoidalModelAugmented <- parameterCalculation(sigmoidalModel) ## ----echo=FALSE, warning=FALSE, results='hide', message=FALSE----------------- doubleSigmoidalModelAugmented <- parameterCalculation(doubleSigmoidalModel) ## ----generate additional parameters for sigmoidalModel------------------------ # before parameter calculation t(sigmoidalModel) # after parameter calculation t(sigmoidalModelAugmented) ## ----echo=FALSE, warning=FALSE, results='hide', message=FALSE----------------- # Parameters for double sigmoidal model print(t(doubleSigmoidalModel))