## ----eval=FALSE--------------------------------------------------------------- # library(shinymrp) # # # Initialize the MRP workflow # workflow <- mrp_workflow() ## ----eval=FALSE--------------------------------------------------------------- # # Load example data # sample_data <- example_sample_data() # # # Preprocess the input data # workflow$preprocess( # sample_data, # is_timevar = TRUE, # is_aggregated = TRUE, # special_case = NULL, # family = "binomial" # ) # # # Retrieve the cleaned data (optional) # clean_data <- workflow$preprocessed_data() # # # Link to ACS and obtain poststratification data (e.g., by ZIP code) # workflow$link_acs( # link_geo = "zip", # acs_year = 2021 # ) ## ----eval=FALSE--------------------------------------------------------------- # # Bar plot of a demographic variable # workflow$demo_bars(demo = "sex") # # # Map of sample size by geography # workflow$sample_size_map() # # # Plot the distribution of the outcome variable # workflow$outcome_plot() ## ----eval=FALSE--------------------------------------------------------------- # # Specify and create the model # model <- workflow$create_model( # intercept_prior = "normal(0, 4)", # fixed = list( # sex = "normal(0, 2)", # race = "normal(0, 2)" # ), # varying = list( # age = "normal(0, 2)", # time = "normal(0, 2)" # ) # ) # # # Fit the model: MCMC sampling # model$fit(n_iter = 500, n_chains = 2, seed = 123) # # # Inspect summary and diagnostics # model$summary() # model$diagnostics() # # # Posterior predictive checks # workflow$pp_check(model) # # # Compare different models using leave-one-out cross-validation # # workflow$compare_models(model, another_model) ## ----eval=FALSE--------------------------------------------------------------- # # Plot estimated outcomes by demographic group # workflow$estimate_plot(model, group = "sex") # # # Choropleth map of geographic estimates # workflow$estimate_map(model, geo = "county")